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ABSTRACT

Batching is a well known technique for estimating
the variance of point estimators computed from sim-
ulation experiments. The batch statistic variance
estimator is simply the (appropriately scaled) sam-
ple variance of the estimator computed on subsets
of data. The simulation and statistics communities
seem to be largely unaware of each other’s results
in this area. Some empirical and theoretical results
from the simulation and statistics literature will be
discussed and compared.

In particular, we discuss the important issue of
selecting batch size and present a new data based
method for determining it. The basic idea 1s to em-
pirically estimate the optimal batch size for a smaller
simulation length, and then extrapolate using knowl-
edge of the optimal order of magnitude of batch
length for the original simulation length. We pro-
vide a small simulation showing the effectiveness of
the proposed method.

1 INTRODUCTION

Consider the following scenario: We observe the out-
put sequence {Y; : 1 < 7 < n} from a simula-
tion run, and compute a statistic of interest, s,
5n(X1, ..., Xn), which estimates a real valued param-
eter, . In order to draw inferences from s, to 8 (e.g.,
confidence intervals, hypothesis tests) we need an es-
timate of Var(s,).

Due to potential serial dependence in the out-
put sequence, estimating Var(s,) may be quite diffi-
cult, particularly if the statistic s, is complicated.
Even for the statistic X' = 137" X;, however,
nVar(s,) — 572 Cov(Xo,X;), and it is nontriv-
1al to get accurate estimates of these covariances, or
to know at what lag the covariances become negligi-
ble.

For this reason, estimators based on reusing the
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data, variously known as batch, subsampling, resam-
pling, standardized time series estimators have been
proposed. We will refer to all these methods as batch
methods. The basic 1dea of all batch methods is the
same: compute the statistic of interest on smaller se-
ries of consecutive observations as “replicates” of s,,
and compute a standardized sample variance of these
replicates to estimate Var(s,).

In Section 2 we formally introduce some of these
estimators and present some results from the simu-
lation and statistics communities exploring the effi-
cacy of the estimators. We discuss how the success
of all batch methods depends crucially on the choice
of batch size (the length of the replicates). Section
3 presents a data based method for determining the
optimal batch length for the replicates and presents
results from a small simulation. Finally, possible
methods of improving the suggested algorithm are
discussed.

It should be noted that there are a wide variety of
alternatives to batching, e.g., spectral analysis, time
series models, and regeneration. These methods are
discussed by, e.g., Fishman (1978) and Bratley, Fox,
and Schrage (1987). In the sequel we only consider
batch variance estimators.

2 SOME RESULTS ON BATCHING

Let {{X; : 1 < i < n} denote the simulation out-
put and assume that these observations come from a
stationary sequence, i.e., the simulation has reached
steady state. Let
X = (N oo Xmgp)ym =0, ..., (n— b),

denote the “subseries” or “batches” of length b start-
ing with the (m+ 1)’th observation, so that in partic-
ular, X0 denotes the entire output. The important

point is that for each m, X;* maintains the same de-
pendence structure as the original sequence X2. Let
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st denote the corresponding subseries replicates, or
batch statistics, si* 1= sp(N]").

Two natural estimators of nlVar(s,) are Vn, based
on using all possible nonoverlapping replicates and
Vo, based on all possible replicates. These are defined
as:

[=}

1=

where k is the largest integer less than n/b, and

n-»b
o bb—s
Vo o= bz TRyt

It should be noted that various authors use slightly
different constants in the definitions of Vy and Vp,
but all are reasonably close for small values of the
ratio b/n.

There have been potentially hundreds of papers
written about these and related estimators so the fol-
lowing will not be in any way comprehensive. We
will examine the basic issues of consistency of the
two estimators, efficiency of the two estimators, dis-
tributional results related to the estimators, and the
important issue of optimal batch size.

2.1 Some Preliminary Definitions

In all that follows we assume that the standardized
variance of the statistic of interest converges to a
nonzero constant, 1.e.,

Vo i=nVar(s,) — V € (0, ).

We assume that V,, is close to V and thus we take
V to be the object of interest in this paper. For any
sequence of random variables .Y, we will write

. Ly
N, =%

if BE(X, —C)?> — 0asn — oo. Practically, L,
convergence of an estimator implies small bias and
small variance for long output sequences. .\, Loy
will denote convergence in distribution to the random
variable .\'.

We define strong mixing as follows. For integer k& >
0, let F(.Y?,.) denote the o-field generated by the ob-
servations (.‘. ‘—1,Xp), and let F'(X;°) denote the
o-field generated by the observations (\Xi, Xg41,...).
Loosely, F(X?_ ) denotes the set of all events de-
pending on observations up to .Xg. Define:

a(k) := sup(|P(AB) — P(A)P(B)]),
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where the sup is taken over A € F(X°_ ) and B €
F(XP).

The underlying process is said to be strongly mix-
ing if a(k) — 0 as k — oo. Roughly, this means
that dependence between observations becomes weak
at long lags.

2.2 Consistency Results

Several results demonstrate different modes of con-
vergence for the estimators Viy and V. For example,
Carlstein (1986a) gives the following:

Result 1: Assume that the sequence {X; : 00 < i<
oo} 1s strongly mixing, and let ¢, := nl/2(s, — Esp).
Assume that b — oo, b/n — 0. If

Elt,|*? < o,
for some é > 0, then
vy v

It turns out that under the same conditions we have
that
Vo L2 v

For the special important statistic .\ we can obtain
the following corollary:

Corollary 1: Assume that s, = X. Under the condi-
tions of Result 1 we have: If

EX8 < x
and «(k) < k=%, for large k, then

Tv 22V and v, L2 V.

The consistency in Corollary 1 has also been proven
under various assumptions by, e.g., Damerji (1994),
Goldsman and Melamed (1992), and for a class of
linear statistics by Politis and Romano (1993). Con-
sistency results have been proven for general spatial
statistics by, e.g., Possolo (1991) and Sherman (1995).

2.3 Comparing Vn and Vo

Both Viy and Vj are L, consistent under the same
conditions in Result 1. This raises the natural ques-
tion as to which is preferable. It is not difficult to see
that the two have the same expectation so we need
to compare their variances. V has many more sum-
mands so it may hope to be less variable, but the
replicates contain a great deal of redundancy so it 1s
not clear it is at all advantageous. It is difficult to
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compare fcla general statistic s,, so we now assume
that s, = X, the sample mean.
Meketon and Schmeiser (1984) show the following:

Result 2: Assume that b — oo and b/n — 0. Then

arllo)
Var(Vy)
Thus, if one can afford the additional computa-
tional burden, it is preferable to use all possible
batches of length b. This result has also been ob-
tained by Kunsch (1989) in his study of the “block-
wise bootstrap”. His basic idea is to choose k batches
of length b from the set of all possible batches of
length b, “glue” them together, and calculate s}, say.
If this is done B times then the variance estimator is
simply the (unstandardized) sample variance of the
B values of s},

Result 2 was actually obtained by Cox and Lewis
(1961) in the case of estimating the intensity of a
Poisson process. In fact, they allow any amount of
overlap between the batches in their formulation. In
particular, let Vg and Vp denote the variance esti-
mators with half and 3/4 overlap, respectively. Their
results show that

Var(Vo) _ 8/9
Var(VH)
and
Var(Vo) _ 32/33.
Var(VT)

Thus, the “partially” overlapping Vg and Vg may be
an attractive alternative to Vo if computations are
costly.

We mention a related procedure that uses stan-
dardized time series (these are weighted batch statis-
tics) as replicates suggested by Schruben (1983).
These estimators are sometimes less variable than
Vi, although only nonoverlapping (weighted) batches
are used — so the computational burden is similar.
Further improvement can sometimes be obtained by
combining a standardized time series estimator with
Vy (Goldsman and Schruben 1984). The covariance
between two (combined) estimators has be en studied
by Pedrosa and Schmeiser (1993).

2.4 Some Distributional Properties

The simulation community often wants to guard
against making the batch lengths too small. For

this reason, often the number of batches, k, is con-
sidered fixed at some moderate number, like 10 to
30 (Schmeiser 1982), which often gives reasonable
numerical results. Further, this suggests a certain
approach to distribution theory based on batching.
Consider Uy. For fixed k& ~ (n/b), this estimator
does not converge to V. Nevertheless, for large n
(and hence large b), each batch statistic is approxi-
mately normally distributed and the batches are ap-
proximately independent. This suggests considering
the standardized batch means as a random sample
from a normal distribution, and forming the associ-
ated t-statistic. Towards this end, Glynn and Ingle-
hart (1990) give a continuous time analog to the fol-
lowing (under the assumption that the continous out-
put process can be approximated by Brownian Mo-
tion):

Result 3: Assumifor simplicity that kb = n. For
i =1,k let X; = Z;b:(i_lelXj/b. Then for
fixed k, as b — oo:

k
BNk = /(U /0 2y, (1)
i=1

where t; denotes the student’s ¢{-distribution with &
degrees of freedom. This result is then used to obtain
a confidence intervals for p.

A result analogous to (1) was given for a gen-
eral statistic, s,, by Carlstein (1986b), and ex-
tended to spatial statistics by Sherman (1994). The
main assumption in deriving these results is that
Corr(sn,s) ~ (b/n)/2. This “mean-like” assump-
tion was also made by Schmeiser, Avramidis, and
Hashem (1990) in their study of the variance estima-
tor Vo. The reason for this terminology is that when
s, = X computed from i.i.d. data, Corr(s,,s}*) =
(b/n)1/? (exactly).

Distributional results for the variance estimators
themselves, as well as an extensive numerical study
comparing coverage rates of confidence intervals are
given by, e.g., Sargent, Kang, and Goldsman (1992).

2.5 Asymptotically Optimal Choice of Batch
Size

The previous asymptotic results have been important
in justifying the use of batching for variance esti-
mation. However, for either of Vi or Vg, for any
given simulation, the important practical question is:
How should we select batch size, b7 In the sequel
we define the optimal b to be the one that minimizes
MSE(V) := Bias*(V) + Var(V). In this section we
discuss two results that give the order of magnitude
of b as a function of n.



300

Carlstein (1986a) adresses the question of batch
size by examining the statistic .\ in the special case
where the output sequence is generated by the AR(1)
process:

Xi=pNic1 + ¢, (2)

where ¢;’s are independent standard normal random
variables. He shows that in this situation

Bias(Vy ~2 §(1/6) + o(1/b),

= 0=,

Var(in) = = (b/n) + ol /)

and thus that the asymptotically optimal b is

2/3
2p
bopt = (m) 711/3. (3)

This shows that larger batch sizes are needed for
stronger correlations in the sequence, which is in-
tuitively reasonable. Equation (3) also suggests a
method for obtaining b in any given situation. As-
sume (temporarily) that the sequence is generated by
an AR(1) process, estimate p (e.g., by Least Squares),
and plug the resulting p into Equation (3).

Song and Schmeiser (1988) discuss a more general
result for the estimator Vp: Assume that

Bias(Vo) = —(1/b)esy1 + o(1/b)

and A
Var(Vo) = (b/n)es 3 + o(b/n).
Then
2c272
b, = ~T1 173
pt cwgn , (4)

where ¢, ¢, are constants depending on the process
and <v; depends on an infinite sum of covariances in
the process.

These results giving the order of magnitude for the
optimal b aid in the derivation of a model free (e.g.,
without assuming an AR(1) structure) data based de-
termination of appropriate batch size b presented in
Section 3.

3 A MODEL FREE, DATA BASED
CHOICE OF BATCH SIZE

The statistics and simulation communities have long
sought an effective method of determining an appro-
priate batch size without making assumptions on the
mechanism generating the output (e.g., AR(1)). Not-
ing just two comments from the recent literature,
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Sargent, Kang, and Goldsman (1992) say that “a
good batch size estimation procedure would be of
tremendous importance” while Damerji (1994) says
that “batch-size selection is still an unresolved prob-
lem”.

We will focus on the estimator Vp although the
proposed method is generally applicable to the other
batch variance estimators discussed. We consider
only s, = X, although the method may well be appli-
cable to other “mean-like” statistics. The basic idea
Is to empirically estimate the best b for a sequence
of smaller length, m, and then extrapolate to obtain
the best b for the entire sequence of length n. The
basis of this is as follows: Note from the results of
Section 2.5 (equations (3) and (4)) that the optimal
b is of the form b, = Cn'/3 where the constant C
depends only on the underlying process and not on
n. For any shorter sequence of length m, say, we have
bm = Cm'/3 and thus b, = (n/m)'/3b,,. If we can
estimate b, by b,, then our estimate of b, will simply
be b, = (n/m)'/3b,,. Towards this end we give:

The Algorithm for Estimating b,

1) Choose a pilot value for b, b = b*, say, and cal-
culate Vo using b = b*.

2) For some m, consider X} ,i=1,...,(n—m+1),
all possible series of length m. For the ’th series of
length m, let Vi. denote the batch variance estimator
computed from the series X using a batch size of
m*, and define:

n—m+1 .
b = argminm. Z (Vi.—Vo) /(n—m+1).
i=1
This is the empirical estimate of the b,, that mini-
mizes MSE(Vp) for a sequence of length m.
3) Compute b, = (n/m)'/3b,,
4) Set b* = b,, and repeat steps 1) to 3).

The algorithm could be iterated if desired. In the
simulations in Section 3.1 the algorithm converged
in the single iteration approximately 60 percent of
the time, and in the simulation experiment no fur-
ther iteration was performed. We note that a similar
algorithm for the purpose of estimating the distribu-
tion function or the bias of an estimator has been
suggested by Hall and Jing (1994).

3.1 A Simulation Experiment

We performed a small simulation experiment to study
the effectiveness of the proposed algorithm. The
model generating the output sequence is an AR(1)
sequence as described in Equation (2). From Equa-
tion (3) we know the asymptotically optimal b, and
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we take this to be the correct value. Simulation ex-
periments have shown that for all cases considered the
asymptotic values coincide approximately with finite
sample optimality. The optimal values of b for each
setting considered are given in Table 1.

Table 1: Optimal Batch Sizes for the AR(1) Process

I
n bH 8
200 8 16
1000 13 28

Ten output sequences of length 200 were generated
from Equation (2) with p = .5. In each case the pilot
value in Step 1 was b* = 20 and m = 10. In some
cases the algorithm chooses the largest possible m*
in step 2. For this reason we take the argmin over
a restricted set of m* values which rules out unrea-
sonable estimates of b, (this seems to be necessary
to avoid occasionally bad estimates, see Table 2). In
this case the search set for by, is (1, ..., 8).

The detailed results are given in Table 2. From Ta-
ble 1, we see that the correct value is b = 8. Columns
2 and 3 give the values from steps 2 and 3 in the algo-
rithm, while columns 4 and 5 give the values on the
next interation. We take the last column to be the
final estimate of .

Table 2: Determination of Optimal Block Size, b = 8

Sim. bm b, by b
1 378 3 8
2 g 22 8 22
3 2 5 3 8
4 6 16 4 10
5 1 3 2 5
6 4 10 4 10
7 8 22 8 22
8 4 10 3 8
9 4 10 4 10
10 5 14 4 10

In 5 of 10 trials the algorithm converged 1n a single
iteration. The revised estimate moved closer to the
correct. value in all 5 trials for which the algorithm
did not converge in one iteration. On the other hand,
in two of the trials the algorithm chose the largest
possible value b,, = 8.

We extended the simulations as follows: For each of

two output lengths n = 200 and n = 1000, for each of
two values of the AR(1) parameter p = .5 and p = .8,
and for each of two pilot values b*, we generated 20
output scquences, and applied the algorithm to each
sequence to obtain b,. In all cases m = n/20 and
for n = 1000 the search set for b, was (1,...,25). In
Table 3 for each setting we give b, the average of the
20 b,’s, and its estimated standard error.

Table 3: Determining Optimal Block Size

Setting pilot, b* b st. error
n=200,p=.5 20 127 1.5
optimal b = 8 10 8.90 .52
n=200,p=38 20 19.3 91
optimal b = 13 10 13.8 3.9
n=1000,p=.5 50 30.7 4.2
optimal b = 16 25 20.3 2.5
n = 1000, p = .8 50 34.8 2.7
optimal b = 28 25 30.3 1.4

The results are promising but mixed. In all cases
the algorithm brings the user closer to the correct b
than was the pilot value. Also, the algorithm seems
to work better when the pilot value, b* is close to the
correct value. This is reasonable, as in Step 2) of the
algorithm, the estimated MSE is closest to the true
when Vy is closest to V.

One disquieting feature is that the procedure seems
to work no better for n = 1000 than for for n = 200.
At least partially, this is due to the two different
search sets for b,,. In the n = 200 case the upper
bound in the search set for b,, is closer to the true
than for n = 1000. Another issue is how effectiveness
depends on the choice of m. Hopefully, further simu-
lations with refinements to the algorithm can improve
this method for estimating batch size.
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