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ABSTRACT

We show how the classical batch means estimator of
the variance parameter of a strictly stationary depen-
dent stochastic process can be viewed as a maximum
likelihood estimator based on asymptotic properties
of the standardized time series of observations from
the process.

1 INTRODUCTION

There exist several methods for estimating steady
state parameters of a strictly stationary dependent
simulation output process from a single simulation
run. Let X = {Xy, Xs,..., X,,} represent the output
of such a process with mean u = E(.Y;), and process
variance parameter
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Usually, the mean value of the process, u, is the
parameter of interest but estimating ¢ is also of in-
terest both as a direct measure of the variability of the
process as well as in constructing confidence intervals
to assess the precision of \',. Several estimation pro-
cedures have been proposed including batch means,
spectral, regenerative, autoregressive, and standard-
1zed time series (STS) methods. In a study of the STS
method, Glynn and Iglehart (1990) identify a general
class of transformations of the original process that
lead to STS interval estimation procedures and one
mapping in particular that yields the batch means
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method. In this paper we point out another interest-
ing relationship that exists between the methods in
which the batch means estimator of the process vari-
ance parameter can be viewed in the context of STS
as arising from the straightforward application of the
method of maximum likelihood.

In Section 2 we review briefly the batch means and
STS methods. In Section 3 we derive the correspond-
ing estimator of the process variance parameter from
first principles using the method of maximum likeli-
hood. In Section 4, we conclude by suggesting some
potentially useful applications of the result.

2 BATCH MEANS AND STS

In the method of batch means, the random sample
X1, X2,..., Xy, is divided into b adjacent, nonover-
lapping, batches each of size m. As a mat-
ter of convenience, we assume b and m are pos-
itive integers and the sample size is such that
n = mb. The ' batch consists of observations

Nitti-1yms Nogi=1ym, - -, Xim. Fori =1,2,...b,
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1s the sample mean of the observations from the
ith batch. The sample variance of the process
{Nim, Nom, ..., Xom } is denoted by
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For fixed b > 1, it can be shown (Schmeiser 1982)
that
m(b—1)52
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where \i_, denotes a Chi-squared random variable
with b — 1 degrees of freedom which leads to the fol-
lowing method of moments estimator for o2

(1)
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An interval estimation procedure for u is obtained
from the related result

[b_(‘_\in - lu)
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where Ty_; denotes a Student’s ¢t random variable
with b — 1 degrees of freedom.

The basis of the STS method (Schruben 1983) is
the existence of a functional limit theorem for the
sample mean of the simulated process. Let

ya(t) = 2AC (\[/r%t]) )

where X,(j) denotes the cumulative average of the
first j observations of the original process and [ ] de-
notes the greatest integer function. To apply the STS
method, 1t 1s necessary to assume that

0<t<1

Y, — oW asn—

where 117(t) is the standard Weiner (Brownian mo-
tion) process. It follows that the so-called standard-
ized series

To(t) =Ya(l) = Ya(t), 0<t<1, (2)

converges weekly to o B(t) where B is the Brownian
bridge process defined as W(t) conditioned such that
W(0) = 1W(1) = 0. From this can be derived several
estimators for o2 as well as their asymptotic distri-
butions including one based on the signed area under
the standardized process

1
A, = / Tn(t)dt
0

and an another based on the maximum of the stan-
dardized process

where

tn=inf {t:Ta(t) > Tu(s)}

0<t,5<1
1s the random time index where the standardized se-
ries achieves a maximum.

In their characterization of the STS method, Glynn
and Iglehart (1990) identify a general class of real-
valued transformations of the cumulative average pro-
cess, X,,, that obey a scalar central limit theorem and
lead to interval estimation procedures for p. Specifi-
cally, they establish properties of the transformation
g(-) sufficient to insure
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The defining characteristic of the mapping is that the
asymptotic distribution of the resultant pivot is, in
each case, independent of the unknown scale param-
cler o due to the effect of an algebraic cancellation
that occurs much like it does in the construction of
a f-statistic. In an application of this result, they
demonstrate that
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where Ayr(t) = z(t) — x(t — 1/b) yields the batch
mecans-based pivot defined in (1). In particular, the
quantity
L&
7 2 (M Talifb) = To(1)/b)° (3)

i=1

can be associated with the batch means-based esti-
mator for o2 given by (1). In the following section,
we show how this estimator can be derived in an
alternate way by straightforward application of the
method of maximum likelihood in the context of the
limiting distribution of the process T, (t).

3 A Maximum Likelihood Interpretation

By definition, the functional central limit theorem
that applies to (2) implies that all finite dimensional
distributions of the standardized process T,(t) are
also convergent. In particular, for any fixed b > 2
the vector of b — 1 equally spaced points in time on
the standardized process,

( Tn(l/b)) Tn(2/b)v RN} Tn((b - 1)/b) )»
converges weakly to the random vector
o( B(1/b), B(2/b),..., B((b—1)/b))

as n — oo, For 0 < s <t <1, the covariance of the
zero mean, normal random variables B(s) and B(t)
1s

C'ov(B(s), B(t)) = s(1 —1) (4)
so that the limiting joint density
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1s multivariate normal with zero mean vector and co-
varlance matrix ¥ with entries
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It is also not difficult to show that for 1 < i,j <b—1
the entrics of Y1 take the [ollowing form

2 ifi=j
[T b f S l
Vo= =% il =
Go) RN ]
0 otherwise.
More generally, f(x,a?) is a one-parameter exponen-

tial family member in o® with canonical representa-
tion

f(x,0) = exp {c()T'(x) + d(0) + S(x)} La(x)

where 8 = 02,

o) = —%, d(f) = —In {(‘27r)b77l §|} ‘

b—1
T(x) = bZ(-l‘? —ziriyr), S(x) =0,

1=1
and A = R!~!. General theory (see, for instance,
Bickel and Doksum 1977) prescribes that the the
maximum likelihood estimator of 8 is the unique so-
lution to the equation

Eo[T(X)] = T(x)
which in this case yields

b-1 b—1
bZ(zE - xiri+1)] = bZ(J:;‘) — IiTiq1).
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E,:

with ; = T,(i/b) and z, = T,(1) = 0. After
some simple algebraic manipulations involving the re-
peated application of (4), one can easily verify that
the resultant maximum likelihood estimator is the
same as (3).

4 CONCLUSIONS

The maximum likelihood interpretation of the batch
means process variance parameter has several poten-
tially interesting applications. For example, variants
of the batch means method, including overlapping
and spaced batched means methods lend themselves
to similar interpretations. There has also been a
significant amount of work employing various neth-
ods to show that these procedures for estimating the
process variance parameter are strongly consistent as
well as consistent in the mean square sense (sce for
instance, Damerdji 1995 and Chien, Goldsman, and
Melamed 1994). It is possible that large sample the-
ory applicable to maximum likelihood estimators may
provide a useful framework for establishing such re-
sults.
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