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ABSTRACT

In studies on conditions guaranteeing variance reduc-
tion for Common Random Numbers (CRN), there is
often the implicit assumption that the timing inputs,
i.e., the random variables of clock samples, are gen-
erated via the inverse transform method. Some rec-
ommend using only inverse transform method when
using CRN, suggesting that this strategy yields the
best result, i.e., the highest degree of variance reduc-
tion. In this paper, we derive conditions guarantee-
ing variance reduction for a special class of systems—
generalized semi-Markov processes (GSMP) with ex-
ponential clock samples—when using CRN and when
the clock samples are generated via a version of the
acceptance-rejection method. Our preliminary exper-
imental results show that the variance reduction un-
der this construction may be higher, sometimes signif-
icantly, than when inverse transform method is used.

1 INTRODUCTION

In studies on conditions guaranteeing variance reduc-
tion for Common Random Numbers (CRN), there is
often the implicit assumption that the timing inputs,
i.e., the random variables of clock samples, are gen-
erated via the inverse transform method. Some rec-
ommend using only inverse transform method when
using CRN, suggesting that this strategy yields the
best result, i.e., the highest degree of variance reduc-
tion (for an informative discussion on the use of in-
verse transform when using CRN, see Glasserman and
Yao 1992b, Section 2.2). Far less analysis is available
when the timing inputs are sampled via some ver-
sion of the acceptance-rejection method (Glasserman
and Vakili 1994 provide some results related to this
case). In this paper, we derive conditions guarantee-
ing variance reduction for a special class of systems—
generalized semi-Markov processes (GSMP) with ex-
ponential clock samples—when using CRN and when
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the clock samples are generated via a version of the
acceptance-rejection method. Our preliminary exper-
imental results show that the variance reduction un-
der this construction may be higher, sometimes signif-
icantly, than when inverse transform method is used.

Consider two generalized semi-Markov processes.
Let L; : Q — R represent the random variable of
some performance index of system ¢ ( = 1,2). One
would expect that to compare the two systems, it is
more appropriate to compare their performances un-
der the same set of inputs, i.e., it is more appropriate
to compare L;(w) with Ly(w). This intuition is vali-
dated if Var(L;—L,) is smaller under the common in-
put approach when compared with independent sam-
pling, or, equivalently, if L; and L, are positively
correlated when common inputs are used.

The common approach to establishing variance re-
duction is to rely on two notions of (a) association—a
strong form of positive correlation defined for prob-
ability measures on partially ordered sets—and (b)
monotonicily. In this approach, it is shown that L,
and L, are monotone functions of the clock read-
ings. If the measure defined on the space of clock
readings is associated, then variance reduction of the
CRN follows from the fact that increasing functions of
an associated measure are positively correlated, i.e.,
Cov(Ly, Ly) > 0 (see, e.g., Heidelberger and Iglehart
1979, and Glasserman and Yao 1992b). It is often
assumed that clock readings of the same event form
i.1.d. sequences of random variables and that clock
readings of different events are independent. Asso-
ciation of the resulting measure on the input space
follows from established results immediately (Esary
et al. 1967).

The input space for our particular construction
of a GSMP with exponential clock readings corre-
sponds to that of a finite number of Poisson processes.
Samples of clock readings are generated by a well-
known acceptance-rejection method from the inter-
event times of the Poisson processes; in this sense,
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it may be said that the Poisson processes drive the
GSMP. We show that the natural partial order for
this construction is one that is different from the par-
tial ordér used when clock samples are generated via
inverse transform. Our variance reduction results fol-
low from two basic results proved in the paper: (1)
The Poisson measure defined on the input space is
associated. (2) Condition M, shown by Glasserman
and Yao (1992a) to imply monotonicity of the event
epoch with respect to the commonly used partial or-
der on the input space, also implies monotonicity with
respect to the partial order defined on the input space
we use in this paper.

The rest of the paper is organized as follows. The
GSMP model and our particular construction is de-
fined in Section 2. In Section 3 we show that the
Poisson measure defined on the input space is associ-
ated. In Section 4 we prove that condition M implies
monotonicity of the event epochs. Variance reduction
and experimental results are given in Section 5. We
conclude with a brief summary.

2 MODEL

We begin with the definition of a generalized semi-
Markov scheme (GSMS). To simplify the presenta-
tion, we limit ourselves to deterministic schemes, i.e.,
those in which the triggering event of a transition and
the current state of the system uniquely determine
the next state of the system.

2.1 A Generalized Semi Markov Scheme

Let S, a finite or countably infinite set, be the state
space of the system, and A = {a,---,ax} be the set
of events; for each state s € S, let £(s) be the set of
active events in 5. Let £ = {£(s);s € S}. For each
s € Sand a € £(s), let fo(s) be the unique next state
of the system if the present state is s when a occurs.
Let So = {s; € £(s)}. In other words, S, is the set
of all states in which « is active. Therefore, f, : S —
S. Let ¥ = {f,;a € A}. Given these definitions, a
deterministic GSMS is defined by G = (S, 4,€,¥). A
GSMS captures (defines) the structure of the system.

2.2 Timing Inputs

Let R, be the set of non-negative real numbers, rep-
resenting the time axis (¢ > 0). Let B be the Borel
o-field on R4. A simple counting measure m on Ry
is a measure on (R4, B) such that

1. m(C)€ {0,1,2,---,00} for all C € B,
2. m([a,d]) < oo for all a,b € R,

3. m({z}) € {0,1}.

To each counting measure m there corresponds a
unique sequence w = {{,;n > 1} C Ry such that

Lty <ty<--,
2. m(C) = Yps1 I{ta € C}.

where I is the indicator function.

Let M be the space of all simple counting measures.
Let My, , -+, M4, be k copies of M. To simplify the
presentation, and with a slight abuse of notation, we
write wy, € M,; w, refers to the sequence of epochs
associated with a counting measure in M,. We define
the space of timing inputs, Q, as follows

Q=

k
M,,.
=1
Let w € Q; then w = (wg,, " ,wg,). To
make things more explicit, we write w, =
{t1(ai),t2(ci), - -}. In words, w,, is the sequence of
epochs “reserved” for the occurrences of event a;.
We denote the superposition of the components of
w by {(tl,el),(tg,eg), . } Note that {tl,tg,' . } =
Uk {ti(as),t2(as), -+ -} and ep = a; if t, = ta, (ay),
for some n;.

2.3 The State Process

To define the sample path of the system correspond-
ing to the input w € Q, i.e., {X;(w);t > 0}, we pro-
ceed as follows:

Fix an initial state sop € S. (In the rest of the pa-
per we assume the initial state of the system is fixed
and is equal to sg.) Define the discrete-time sequence
{Ya(w);n > 0}—the sequence of states of the sys-
tem at instances {to = 0,¢;,t2, - -}—recursively, by
Yo(w) = so, and

=] fenrs(Ya(@)), if eny1 € E(Ya(w));
Yoi(w) = { Ya(w), other:rlise.

In other words, if event e, is active in state Y, (w),
the reserved epoch for this event is used and a tran-
sition to a new state occurs; on the other hand, if
en41 is not active in state Y,(w) this event is simply
ignored (the reserved epoch is not used) and the time
is advanced to the next epoch.

The state trajectory is defined by

Xe(w) =Y Ya(@){ta <t <tap1}.

We now define a particular probability measure on
the set of inputs.
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2.4 Poisson Probability Measures

The Poisson probability measure on M is defined as
follows: Let M be the o-algebra generated by func-
tions m — m(C). Let the probability measure P,
defined on (M, M), be such that

1. If Cy,---,C, € B are disjoint then P(m(C,) =
ny, -, m(C;) = n,) = [, P(m(Ci) = ny),
i.e., events {m(C;) = n;},i = 1,---,r are inde-
pendent;

2. Foreach C € Band n > 0,

e-,\y(C)(/\ll(C))"
n!

P(m(C) = n) =

)

where p(C) is the Lebesque measure of the set C. A
random element of (M, M) with distribution P is a
Poisson process with rate A.

Let (M4, , Ma,, Pa,) be defined as above, where the
rate of P,, is A4,. Then the probability space of the
inputs is defined by

k k k
(@, F, P) = ([ Mo, [] Ma, [T Pas)-
i=1 =1 1=1

One of our main results, given in the next section,
is that the probability measure P is associated.

3 ASSOCIATION OF POISSON PROBA-
BILITY MEASURES

Association is a strong form of positive correlation
and a property of random variables, random vectors,
and, more generally, of probability measures on par-
tially ordered set. Introduced by Esary et al. (1967)
for sets of real-valued random variables, it is defined
as follows:

A set of real-valued random variables { X, ..., X,,}
is said to be associated if, for any two increasing real-
valued functions f and g,

Cov[f(X1,...,Xn),9(X1,...,Xn)] >0

when the covariance exists.

More generally, let (2,<) be a partially ordered
set. A set A is called an increasing set or an upper
set if

z€Az<y=>y€EA

For example, on the real line, R (with the usual or-
der), increasing sets are sets of the form [a,00), or
(a,00), where @ € R.. For any partial order on 2, the
set of upper sets defines the partial order and vice
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versa. A function f : Q@ — R is increasing iff the

inverse image of upper sets in R are upper sets in Q.

A probability measure g on Q is called associated
if

1(A1 N A2) > p(A1)p(Az) (1)

for all upper sets Ay, A;. An equivalent definition is

/fgdu > /fdll/yd# 2

for all bounded and increasing f,g Q — R
(Lindqvist 1988).  Given this definition, an n-
dimensional vector of real-valued random variables is
associated if its distribution is an associated measure
on R".

In what follows we use the following properties of
associated sets of random variables (see Esary et al.

1967).

1. A sel consisting of a single random variable is
associaled.

2. Independent random variables are associated.

3. Subsels of associated random variables are asso-
cialed.

4. Increasing functlions of associated random vari-
ables are associaled.

Having stated these general definitions and results,
we now turn to the input space, 2, defined in the pre-
vious section. We define the following partial order
on §2:

We define partial orders on the sets M, as follows.
Let wq,,wy, € My,. Then

/ ’
Wa; SWq, <= Wa, Sw,,.

The above partial order, expressed in terms of the
corresponding counting measures, becomes:

Ma, < My, <= me,(C) < ml, (C), forall C€B.

The partial order on the input set Q is defined as the
product or componentwise order; in other words,

W< W > w,, < W 1<i<k.

[« ¥

We are now prepared to state and prove the main
results of this section.

Proposition 1 The Poisson probability measure Pa,
defined on (My,, My,) is associated.

Proof. The upper sets on M,, are generated by the
following sets

{m € Ma,;m(C) > k},
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where k € Z* and C € B. It is sufficient to show that
condition (1) is verified for these sets.

Let C1,C, € B. The sets C; N C2, Ciy N C}
and Cj N C; are disjoint (C’ is the complement of
C); hence, because of the properties of Poisson mea-
sures, Ny = m(C, N C2), N2 = m(C) N Cj), and
N3 = m(C1 N Cy) are independent random variables.
The random variable N; is associated (i = 1,2,3)
(property 1 above). Given the independence of N;’s,
{Ny, N2, N3} is an associated set of random variables
(property 2 above). Also note that m(Cy) = N+ No,
m(C2) = N1+ N3, and that functions f(z,,z2,23) =
z) + z and g(z1,z2,z3) = r1 + T3 are increasing.
Therefore, m(Cy) and m(C?) are associated random
variables (property 4 above). Let k1, k2 € Zt and let
A; = {m;m(C;) > k;} (i = 1,2)be two upper sets.
The inequality

P(A1 N Az) > P(A1)P(Az)

follows from the fact that m(Cy) and m(C;) are as-
sociated. O

Theorem 1 The probabilily measure P defined on
(2, F) is associated.

Proof . The proof follows from the above proposi-
tion and Theorem 3.3 of Lindqvist (1988) that states:
If two probability measures on two sets are associ-
ated, then the product measure defined on the prod-
uct space of the two sets is associated. O

We now turn our attention to a number of outputs
of the GSMP defined in the previous section.

4 Monotonicity of Event Epochs

We consider the following outputs of the system de-
fined in Section 2. Let {Ty(n);n > 1},a € A, be the
sequences of event epochs, and {Dq(t);t > 0}, € A,
the number of events of a type occurred prior to, or at
time t. A number of performance indices of interest
can be expressed as functions of these outputs. These
quantities are defined as follows:

To(0)(w) = 0 and for n > 1,

To(n)(w) = min{t;,i >1:¢; =a,a € E(Yim1(w)),
t; > To(n—1)(w)};
D,(t)(w) = max{n > 0:T4(n)(w) <t}

4.1 Condition M

Glasserman and Yao (1994) identify a monotonicity
condition (condition M) that guarantees monotonic-
ity of event epochs with respect to clock samples in

the usual construction of a GSMP from a GSMS. In
this section we will show that the same condition M
also guarantees monotonicity of event epochs in our
construction; in our case with respect to the partial
order defined on the space of inputs §2 in the previous
section.

Before giving the basic result of this section, we
need to describe the condition M. This requires giv-
ing a number of definitions and results. In this, we
follow Glasserman and Yao (1994).

Condition M is a structural condition on the
scheme. Given a GSMS G and an initial state sg,
a feasible string ¢ = B, --- 8, is a finite sequence
of events such that, 8y € &(so), B2 € E£(f5,(s0)),
and 0 on. Let fo(s0) = fp, 0 -0 fp,(s0) and
E(o) = E(f+(50)).- The set of feasible strings of G,
L, is called the language generated by G.

Consider astring o in £. Let [¢]4; be the number of
instances of a; in ¢ and define the score of o, denoted
by [o], by [¢] = {[0]a,;1 < i < k}. The score space
associated with the language £ is the set consisting
of all feasible scores and is defined by

N={zeZzt:30€L,o] =2z}
A scheme is called noninterruptive if

s€S a,fEE(s),a # B =P EE(fals)),

1.e., if the occurrence of an event does not de-activate
an active event. A scheme is called permutable, if

01,02 € L,[01] = [02] = £(0n) = E(02).

In other words, the numbers of events of each type
in a string determine the set of active events associ-
ated with the string, independently of the order of
the events in the string. For a permutable scheme,
its characteristic function, x : N' — Z,’;, is defined by

Xa(z) = 24 + I{a € £(2)).

A characteristic function specifies the one-step be-
havior of the evolution of the strings. (Note that
E(z) = €(o) for any ¢ such that [¢] = z; permutabil-
ity makes this definition unambiguous.)

We are now prepared to define condition M. A
scheme (equivalently the language generated by it) is
said to satisfy condition M if for all ¢y,05 € L,

[01] < [02] = E(a1)\A12 C E(02),

where Aj3 := {a € A,[01]a < [02]a}-

This condition specifies that if one string’s score
dominates the other’s, this condition is preserved as
the two strings evolve. Glasserman and Yao prove,
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among other things, that condition M is equivalent,
on the one hand, to the scheme being noninterruptive
and permutable, and on the other, to its character-
istic function x being increasing (Theorem 3.10 of
Glasserman and Yao 1994). It is the latter that we
use to establish the main result of this section.

Theorem 2 If a GSMS satisfies condition M then
Dy, (t) is increasing in w for allt > 0, and i =
1,---,k, ie.,

w<w = D (t)(w) < D, (t)(w').

Proof. Let w' = {(t1,€1),(t2,€2),, -} and w < W';
therefore w C w’. Dg,(t)(w) and Dy, (t)(w') are con-
stants on {,, <t < t,41 (n = 1,...), therefore it is
sufficient to show that D, (tp)(w) < Da,(tn)(w’) for
alln=1,2,... We have

n = | Xa(Da,(ta)(@')), ent1 = ai;
Da,(tn+l)(w ) = { Da.(tn)(wl), entl # a,
and

Xa,(Da;(tn)(w), en41 = i,
Dq,(tn41)(w) = (tat1,€n41) Ew;
Dy, (tn)(w), otherwise.
The proof is by induction on n. Set Dg,(to)(w) =
Do, (to)(w') = 0 for all o € A.  Assume

Do, (th)(w) < Dg,(tn)(w'). Since condition M is
in force, the characteristic function x is increas-
ing; hence, X (Do, (tn)(@)) < Xe(Da, (tn)(w")). The
above recursions show that under all conditions
Do, (ta+1)(w) € Dg;(tn4+1)(w’) and the induction
step is complete. O

Due to the relation between {D,, (t);t > 0} and the
sequence {T,,(n);n > 1}, the next corollary follows
immediately.

Corollary 1. If a GSMS satlisfies condition M
then T,,(n) is decreasing in w for all t > 0, and
i=1,---k, ie.,

w<uw

= To(n)(w) 2 Ta,(n)(w').

5 VARIANCE REDUCTION

Our variance reduction results follow directly from
the results of the previous sections. Specifically, a
corollary of the results of the previous section is

Theorem 3 Let Gy, and Gy be two schemes that sat-
isfy condition M. Let Ly and Ly be performance in-
dices for the GSMPs defined by G,, and G,, respec-
tively. Assume L; is increasing (decreasing) with re-
spect 1o the sequence of event epochs. Let W be a
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random element of the input space with distribution
P, then
Cov(Li (W), Lo(W)) > 0.

In other words, if common inpuls are used then the
performance indices are posilively correlated.

An immediate consequence of the above theorem,
using a routine argument, is that using common in-
puts reduces Var(L; — L) when-compared to using
independent inputs.

A question that naturally arises is how much vari-
ance reduction is obtained in this case, and how does
the amount of variance reduction compare with that
obtained by using the usual CRN. To address the sec-
ond question, we performed some preliminary simu-
lation experiments. The results of these experiments
indicate that the effectiveness of the two methods de-
pend on the models simulated. The difference in some
cases may be significant.

5.1 Experimental Results

We simulated two systems: an M/M/1 queue under
different traffic intensities, and a closed Jackson net-
work with different population sizes. In both cases
we studied the correlation induced on different per-
formance indices when the systems were “far apart”
(p = traffic intensity of M/M/1 queue = 0.2,0.5
and 0.9, N = population size of the Jackson net-
work = 30,40,50) and when they were “close” (p =
0.8,0.85,0.9, N = 46,48,50); we also estimated the
induced correlation at different instances in time as
the simulation evolved, in order to study the depen-
dence on time. The experiments were performed, on
the one hand, using the usual CRN approach, and on
the other, using a particular implementation of using
common Poisson inputs known as the Standard Clock
technique (see Vakili 1992).

5.1.1 M/M/1 Experiments

An M/M/1 queue with A = arrival rate =1 was sim-
ulated at different values of ;4 = service rate. From
each simulation, the following performance indices
where estimated: (a) the average number of cus-
tomers in the system, (b) the average time spent in
the queue, and (c) the probability that the time spent
in the queue is greater than a fixed value.

Two sets of experiments were performed: (i) p =
0.2,0.5,0.9, and (ii) p = 0.8,0.85,0.9. The experi-
ments were run using the usual CRN and the Stan-
dard Clock. The correlation of the performance in-
dices across the alternatives were estimated from 100
independent replications. These values where esti-

mated at ¢ = 2000, 4000, 8000, 16000, 32000, 64000.



Variance Reduction for Poisson Processes 283

The following were observed:

1. The correlation was higher for “closer” systems
compared lo those that were “far apart.”

2. All performance indices showed the same quali-
tative behavior.

3. The correlation of CRN was consistently higher
than that of the Standard Clock.

4. There was no significant dependence on time.

The correlation induced by the usual CRN and by
the Standard clock on the average number of cus-
tomers in the system for p = 0.2 and p = 0.9 at
t = 2000, 4000, 8000, 16000, 32000, 64000 are graphed
in Figure 1. The same quantities for p = 0.85 and
p = 0.9 are graphed in Figure 2.

5.1.2 Closed Jackson Network Experiments

A closed Jackson network with 5 servers was simu-
lated. Let y;=rate of service at server 7, and p;; = the
probability that the customer goes to server j after
departing from server i (i = 1,---,5). The following
values were used: py = 0.7,42 = 0.6,u3 = 0.5, 14
0.4,/15 = 03, and Pi2 = 0.4,p15 = 0.6,1721

0.2,p24 = 0.8,1)32 = 0.65,p35 = 0.35,})41 = 0.5,p43
0.5,})54 =1

From each simulation, the following performance
indices where estimated: (a) the average time spent
at server 1, (b) the average time spent at server 3,
(c) the average queue size at server 1, (d) the aver-
age queue size at servers 3, (e) the total number of
departures from server 1, (f) the total number of de-
partures from server 3. Server 3 was a heavily loaded
server and server 1 a lightly loaded one.

Two sets of experiments were performed: (i) N =
30,40,50, and (ii)) N = 46,48,50. The experiments
were run using the usual CRN and the Standard
Clock. The correlation of the performance indices
across the alternatives were estimated from 100 inde-
pendent replications. These values where estimated
at t = 2000,4000, 8000, 16000, 32000, 64000.

The following were observed:

1. The correlation was higher for “closer” systems
compared to those that were “far apart.”

2. All performance indices showed the same quali-
tative behavior.

3. The correlation for the Standard Clock was con-
sistently higher than that of CRN, in some cases
significantly.

4. There was no significant dependence on time in
the case of Standard Clock, whereas the correla-
tion for the CRN was an increasing function of
time, starting from values close to zero.

The correlation induced by the usual CRN and by
the Standard clock on the average number of cus-
tomers at server 1 for N = 30 and N = 50 at
t = 2000, 4000, 8000, 16000, 32000,64000 are graphed
in Figure 3. The same quantities for N = 48 and
N =50 are graphed in Figure 4.

6 SUMMARY

We derived conditions that guarantee variance reduc-
tion for common random numbers (CRN) method
when the clock samples of GSMPs with exponen-
tial clock samples are generated via an acceptance-
rejection method. Our preliminary simulation exper-
iments show that for some systems this approach may
perform better than when CRN is used in conjunc-
tion with the inverse transform method for generating
clock samples.
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