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ABSTRACT

We study the multiply-with-carry family of genera-
tors proposed by Marsaglia as a generalisation of the
previous add-with-carry and subtract-with-borrow
families of Marsaglia and Zaman (1991). We define
for them a general (infinite) state space and focus our
attention on the (finite) subset of recurrent states.
This subset will, in turn, split into possibly several
subgenerators. We discuss the uniformity of the d-
dimentional distribution of the output of these sub-
generators over their full period. In order to improve
this uniformity for higher dimensions, we propose a
method for finding good parameters in terms of the
spectral test.

1 THE MWC GENERATORS

Marsaglia (1994) proposed an cxtension of the add-
with-carry (AWC') and subtract-with-borrow (SWB)
families of uniform random number generators.
The new generators are called multiply-with-carry
(MW(). Let » and b be positive integers. Then, a
MWC' of order r, and base b, is defined as follows.
Consider the set ¥ of those ¢ = (z_y,...,0_5,¢) €
Z™t! with 0 < 2, < b for —r < ¢ < —=1. This
set is the state space of the generator. We refer to
¢ as the carry component of the state o. In state
o, the generator outputs the pseudo-random number
z_1/b € [0,1) and then cvolves into another state
o' =(z",..., 2., ¢) € X determincd by the condi-
tions

z; =z for —r <i< -1, (1)
it db=mz_ 4+ .. Far_r+c, (2)

where the coefficients a; are suitably-chosen fixed in-
tegers. Note that the integers £, and ¢’ are uniquely
determined from (2) since we must have 0 < +' | < b,
and therefore z’; is the least positive residue of
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arr_1+ ...+ a-r_, + c modulo b. Marsaglia (1994)
also proposes to take b = 2%, a power of 2, so that z’_;
and ¢ are easily obtained (on a binary computer). We

pUt ag = _11
r

m = Z ab’,
1=0
and we assunie throughout that m # 0.

In this paper, we study the d-dimensional unifor-
mity of the output of MWC generators. Results
are stated without proof; further developments and
proofs will be given in a forthcoming extended ver-
sion of the paper. We first show in section 2, the
importance, in this respect, of the subset of recur-
rent states and we give a characterization for these
states. Lemma 1 is a generalization of a statement
of Marsaglia and Zaman (1991) for the case of the
AWC/SWB generators. This lemma is further gener-
alized to arbitrary dimension in Section 3, by connect-
ing the MWC generators with linear congruential gen-
erators (LCG’s). This connection was investigated by
Tezuka, L’Ecuyer, and Couture (1994) and Couture
and L’Ecuyer (1994), again in the AWC/SWB case.
We also distinguish two aspects of the question of d-
dimensional uniformity, requiring different methods.
These are discussed in Secions 4 and 5 respectively.
We see in Section 4 that the problem leads to some
arithmetical questions; these will be discussed else-
where. In Section 5, the method used is the well-
known spectral test. We examine in this respect
some specific instances proposed by Marsaglhia (1994).
We also indicate a method to search for parameters,
which are good according to this test. For general
references on randomn number generation, the reader
can consult, e.g., Knuth (1981), .’Ecuyer (1994) and
Niederreiter (1092).

2 RECURRENT STATES

Consider the transformation T' : ¥ — ¥ defined by
T(r_q,....o—pc)= (a1, ... 0 '), subject to (1)
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and (2). A state o € ¥is recurrent (with respect to T')
if T(o) = o, for some positive integer n. According
to the theorem below, any stale will quickly evolve
into the set ¥y of recurrent states. We define the
function & : ¥ — R by

-1 741

S, )= — E E ajri_ b,

i=—r =0

6(‘1'_1,. .

Let ¥ be the set of states o for which
0<o(a)/m<1/b. (3)

and put ¢, = (b—1,...,b—1,a0 + ...+ @;). Note
that T(¢1) = ¢, and that &(¢;) = m/b". We thus
have ¢; € ¥ but ¢; is not contained in ¥'. There
is only one other state in ¥ fixed by T', namely ¢, =
(0,...,0), and it is contained in X',

Theorem 1 For any state ¢ € &, we have T™(0) €
Yt if the non-negative inleger n erceeds

max(0, log, [6(c)| —log, |m|+r)+max(r, log, |m|)+1.
Moreover, By = &' U {¢1}.

It follows from this characterisation of T that the
real interest centers on the set ¥/ rather than on Zp
itself. Clearly, T is an invertible transformation of &',
In the next section, we will give another description
of the set ¥’ which will allow a further study of the
action of T' on it. The following two lemmas are easy
consequences of (3).

Lemma 1 Given any r-tuple (z_q,...,2_,) € Z7,
with 0 < z; < b for —r < i < =1, the number of
values of ¢ such that (r_y,...,z_,,c) € ¥ differs

from |m|/b" by less than 1.

This first Lemma can be interpreted as a result on the
uniformity of the output r-tuples of successive values
over the whole ¥/, Tt will be further generalized in the
next section. The next lemma will be used in Section

.

Lemma 2 [fa; > 0 for 1 <[ < r, then the carry
componentc of a stale in S/ satisfies0 < ¢ < Y j_; ar.
These inequalities are best possible if m > b,

3 ORBIT STRUCTURE

Since T is invertible on the set ¥’ the latter will
split, in general, into a number of disjoint subscts—
the orbits—on each of which the action of T is transi-
tive. Each of these orbits defines a different random
number generator, which we may refer to as a sub-
generator. Note that ¢ constitutes an orbit by itself.
The subgenerator defined by it is trivial.

Put Z,, = {k € Z]0 < k/m < 1}. Define the
mapping S : Zy, — Zym by S(k) = k' where k' €
Z., is subject to bk’ = k (mod m). The following
theorem allows to reduce the study of the action of T
on ¥’ to that of S on Z,,, which is well known.

Theorem 2 There exists a mapping ¢ : Z,, — X,
uniquely delcrmined by the following two properties.

1) The transformation S is mapped by ¢ into T, that
is, we have 1(S(k)) = T(u(k)) for k € Z,.

2) If k € Zp,, we have y_1 /b < k/m <y_1/b+1/b,
where y_, is the first component of 1(k).

The mapping ¢, subject lo the above conditions, is
then one to one, and its image s 1(Z,,) = L. Also,
1(0) = <o.

We have a similar decomposition of Z,,, with re-
spect to the tranformation S into a set of orbits,
which we may call S-orbits. The set of S-orbits in
Z., correspond by ¢ to the set of T-orbits of £/. Con-
sider now, one such T-orbit, and the subgenerator
it defines. Let d be any positive integer, and let
Y—1,--.,Y—aq be given integersin {0, ...,b—1}. It then
follows from Theorem 2, that the number of times the
output d-tuples of successive values of this subgener-
ator assume the value (y_q4/b,...,y—1/b) over its full
period is equal to the number of integers k in the
corresponding S-orbit satifying Zi_zl_d yibt < k/m<
Simoayibt + b

The question of the distribution of the output d-
tuples of subgenerators is thus equivaleni to the ques-
tion of the distribution of the S-orbits in Z,,, into
intervals of length |m|/b%.

We may now distinguish two cases, according to
whether |m|/b¢ is larger or smaller than 1. If it is
smaller than 1, each output d-tuple can appear only
once, and we are then interested in the set formed
by these d-tuples. When it is larger than 1, it more
a question of the frequencies of given output values.
We may refer to these two cases as the large and small
mterval cases.

4 LARGE INTERVALS

We assume, from now on, that the coefficients a; have
been chosen in such a way that m is prime.

The simplest case arises if b is a primitive root mod-
ulo m. Then the action of 7" on ¥'\{¢o} is transi-
tive, and we have, besides {}, a single orbit. It
then follows from the previous section that, when
Im|/b? is large, the d-tuples of succesive output val-
ues of the subgenerator defined by ¥/\{s}, will be
equal essentially equally often, over the full period, to
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any given d-tuple of numbers of the form y/b, where
ye{0,....b—1}.

If b = 2% with w an integer greater than 2, then
the Legendre symbol

2 2
Z ) = (=—1)m =-1)/8 _
(2)=11 L

and therefore b 1s a quadratic residue modulo m.
Thus b cannot be a primitive root modulo m, though
it may still generate the group of all quadratic
residues. Assuming this is so, the set ©'\{so} splits
into two orbits of the same cardinality (m — 1)/2,
corresponding respectively to the subsets in Z,,,\{0}
of quadratic residues and non-residues modulo m,
and defining two non-trivial subgenerators. For both
of these subgenerators, the question whether the
r-tuples of successive outputs are well distributed
amounts to the following question. Are there, gen-
erally, in an interval of length |m]|/b", (roughly) as
many quadratic residues as non-residues modulo m.
Since m will be taken usually very large, one cannot
answer by merely listing all quadratic residues. It is
generally believed that the quadratic residues mod-
ulo a prime are fairly uniformly distributed. However
results in this respect are scarce, and not easy to ob-
tain. The question is all the more difficult as the
length of the interval is smaller. The simplest case 1s
for the interval (0,|m|/2), and is equivalent to ask-
ing if the most significant binary digit of the output
of the subgenerators, is as often 0 as 1 over the full
period.

5 SMALL INTERVALS

We now examine the distribution of d-tuples of suc-
cessive outputs of a (sub)generator in a case where
|m|/b% < 1. In this circumstance, any such d-tuple
will appear only once in the full period, and we are
led to study them as a set, rather than a set with
multiplicities.

We assume, in this section, that

(1) the basis is a power of two: b = 2%, with w € Z
greater than 2,

(i1) all coefficients a;, { = 1,..., r are non-negative,
the greater weight being given to the leading
coefficient a,, so that a, > a > 0 for | =
1,...,7—1, and

(iii) the carry component ¢ of all recurrent states sat-
isfies 0 < ¢ < b, which, according to Lemma 2,
amounts to the inequality Y j_; a; < b. We will
also exclude the trivial case where a, = b (and
therefore ¢y = 0,{=1,...,7—1).

The exponent w in assumption (i) will normally be
the computer’s word length. Thus, all components
of a state, save the carry, can each be stored in one
word. Assumption (iii) guarantees that the carry can
also be stored in one word and, therefore, that the
sum on the right-hand-side of (2) can be accumulated
in a double word register.

Let d be any positive integer. We denote by ey, ...,
€4, the canonical basis in R¢. Let Ay be the lattice
in R? generated by v* = 1/m ijl b¥=Jie; and 2.
The intersection of Ay with [0,1)¢ is then precisely
the set of d-tuples (k/m,...,S% 1(k)/m), with k €
Z,,. By Theorem 2, the study of the distribution of
the set of d-tuples of successive outputs over ¥/ is
by large reduced to the study of the lattice Ay (we
use here ¥’ instead of the orbits contained in it only
for simplicity’s sake, since in our main applications
below, consideration of these orbits would lead to the
same lattice Ag). Let A% denote the lattice dual to
Ag.

If we AD\{0} and n € Z, then the region {v €
R?|n < v-w < n+1} is the set of points between two
parallel hyperplanes, apart by a distance of 1/||w]],
and it contains no point of A;. We are thus concerned
with the presence of small vectors in A'4) as they
produce wide gaps in the distribution of points of A4.

Assume now that d > r. This is the small interval
case in this situation. Put

d
w, = E aq—j;€j5.

j=d-r

We will also write w(ld) when it is convenient to indi-
cate the dimension. We have, in the case d = 7 + 1,

Theorem 3 The non-zero vectors of minimal length
wm AT are the vectors +w; .

(Note that here one can replace assumption (1) 1
above, by the condition that & > 6.) The squared
length of this vector wy is equal to 14+5"]_, af. Thus,
a better (r 4+ 1)-dimensional uniformity is obtained

by choosing the coefficients a;, { = 1,..., 7, so as to
maximize Y |_, a, subject to the conditions in (ii-
ii1), namely that 0 < @y < ar <bforl=1,..., 71,

and °j_; a; < b. Clearly these conditions imply that
S i=1 ai < b?. Now, requiring good uniformity in still
higher dimension imposes further constraints on the
choice of the coefficients ;. In fact, for d > r + 1,
small vectors in A4 may arise as follows.

Define w; = —ej_1 +bej for j =2,...,d. Ifd > r,
then set of vectors wy,...,wy is a lattice basis for
A9 and an arbitrary vector w € A4 can thus be
written as w = Z;'i=1 zjw; with integer coefficients
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z;. Associate with such a w the vector v’ = zyw; +

bz;izg zje;. We have then the inequality

llwll < (1407 H)llw'[] + [fwa][p~ 1] (4)

Thus, if there exists integers z, ..., z4, not all zero,
such that |zy| and [|w’]] are small, we obtain a small
non-zero vector w € A'® . This condition does not
depend on the dimension d for d > 7, and amounts
to the existence of a small non-zero integer multiple
(I"H) of w(lr+1) sufficiently close to a vector of the
lattice b¥Z7+1.  We illustrate this using two sets of
parameters proposed by Marsaglia (1994). Both have
b = 2% and r = 8. His choice of coefficients makes
m and (m — 1)/2 prime, also in both cases, so that b
generates the group of quadratic residues modulo m,
and we thus have two non-trivial orbits.

In the first case he chooses a; = 1941, a- = 1860,
az = 1812, ay = 1776, as = 1492, ag = 1215, a; =
1066, and ag = 12013. His second choice is a; =
1111, an = 2222, ag = 3333, a4 = 4444, as = 5555,
ag = 6666, ar = 7777, and ag = 9272.

In Table 1, we give the minimum squared length
for a non-zero vector w € A'4, for dimensions 8 <
d < 15.

w

Table 1: Spectral test for Marsaglia's examples

d | First example | Second example
9 162815416 258774925
10 162815416 7917 146
11 57479774 4922735
12 13628741 1248822
13 3545576 627603
14 1311482 591467
15 589430 441038

We notice, in dimension d = r 4+ 2 = 10, a minimal
length vector smaller by a factor near 5 for the second
case relative to the first case. This vector is given
by Wmin = 177wy — 2hws — 21wz — 18wy — 1Hws —
12w, — 9wy — 6wsg. Its length is approximately equal
to 2813.74. The vector 177Tw; happens to be of least
distance to the lattice Z? among all vectors z;w;
with z; € Z, and 0 < |z;| < 2000. This distance is
approximately 2788.15, and this accounts, in view of
the inequality (4), for the presence in the lattice A(4)
of the small vector wmin.

It is easy to find coefficients a;, which will satify
distance of z;w;, to bZ?% much larger than 2788.15
for a wider range of values of z;. For instance, we
found that the choice a; = 16, a» = 20, az = 147,

aq = 1500, as = 2083, ag = 5276, a7z = 10551, and
ag = 45539, gives a minimal distance to bZ® approxi-
mately equal to 18163.47, for the set of vectors z;wy,
0 < |z1| < 3000. We then found nearby coefficients
which further satisfy the conditions that m is prime,
and that b generates the group of quadratic residues.
They are a; = 14, ay = 18, a3 = 144, aq4 = 1499,
as = 2083, ag = 5273, a7 = 10550, and as = 45539.
We give in Table 2 the minimum squared length for a
non-zero vector w € Al for dimensions 8 < d < 15,
for those coefficients.

Table 2: Spectral test for another example

d | The other example
9 2219514697
10 305990559
11 92513087
12 18472574
13 4862652
14 1910260
15 705271
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