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ABSTRACT

Two principal classes of methods for the genera-
tion of uniform pseudorandom numbers can nowa-
days be distinguished, namely linear and nonlinear
methods, and contributions to both types of meth-
ods are presented. A very general linear method,
the multiple-recursive matrix method, was recently
introduced and analyzed by the author. This method
includes as special cases several classical methods,
and also the twisted GFSR method. New theoreti-
cal results on the multiple-recursive matrix method
are discussed. Among nonlinear methods, the digital
inversive method recently introduced by Eichenauer-
Herrmann and the author is highlighted.  This
method combines real and finite-field arithmetic and,
in contrast to other inversive methods, allows a very
fast implementation, while still retaining the advan-
tages of inversive methods.

1 INTRODUCTION

Pseudorandom numbers are generated by a deter-
ministic algorithm and should simulate a sequence
of i.1.d. random variables sufficiently well. We con-
centrate on the important case where the target dis-
tribution is the uniform distribution on the interval
I = [0,1], i.c., on the casc of uniform pseudoran-
dom numbers. Recent reviews of the area of uniform
pseudorandom number generation can be found in the
books of Niederreiter (1992) and Tezuka (1995) and
in the survey articles of L’Ecuyer (1994) and Nieder-
reiter (1995¢). We also touch upon uniform pseudo-
random vectors, the parallelized versions of uniform
pseudorandom numbers, which are needed in paral-
lelized simulation methods.

Two principal classes of methods for uniform pseu-
dorandom number generation can nowadays be dis-
tinguished, namely linear and nonlinear methods.
Most classical methods, such as the linear congru-
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ential method and shift-register methods, are of the
linear type. A very general linear method for uni-
form pseudorandom number generation, the multiple-
recursive matriz method, was introduced in Nieder-
reiter (1993) and further analyzed in Niederreiter
(1995a). In Section 2 we briefly review this method
and then present new theoretical results that im-
prove on earlier theorems. We also explain how the
multiple-recursive matrix method can be used for uni-
form pseudorandom vector generation and discuss re-
sults that go beyond those in Niederreiter (1995b)
for uniform pseudorandom vectors. A very promising
nonlinear method is the digital inversive method of
Eichenauer-Herrmann and Niederreiter (1994) which
1s discussed in Section 3. Some conclusions are drawn
in Section 4.

We recall the following concepts that form the ba-
sis of the serzal test for uniform pseudorandom num-
bers and vectors; see Chapter 7 of Niederreiter (1992)
for a full treatment of this test. For any N points
to,t1,...,ty_y € I® [0,1]* we define their (star)
discrepancy Dy by

DNZSI}PIKN(J)—V(J)I, (1)

where the supremum is extended over all subinter-
vals J of I* with one vertex at the origin, Kn(J)
is N=! times the number of 0 < n < N — 1 with
t, € J, and V'(J) denotes the volume of J. If M
Is a positive integer and the supremum in (1) is ex-
tended over all subintervals J of I¢ of the form J =
[Ti2;lai/M, b;/M) with integers 0 < a; < b; < M for
1 <1< s, then we arrive at the discrete discrepancy
En ar of the points to, t1,...,tN_1.

We use the following notation: for a purely peri-
odic sequence of arbitrary elements u,,n = 0,1,...,
we write per(u,) for the least period length of the
sequence.
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2 MULTIPLE-RECURSIVE MATRIX ME-
THOD

2.1 General Description

The multiple-recursive matrix method for the gencr-
ation of uniform pseudorandom numbers and vectors
was introduced in Niederreiter (1993) and proceeds
by vector recursions. The following is a description
of the method in a general framework. We choose
integers M > 2,k > 1, and m > 1 as well as m x m
matrices g, A1,...,.4x_1 with integer entries, and
also an m-dimensional row vector b with integer com-
ponents. Then we generate a sequence zg,zp,... of
m-dimensional row vectors with integer components
from the set {0,1,..., M — 1} by selecting initial vec-

tors zg,21,...,25—1 and using the kth-order vector
recursion
k-1
Znik = ) ZnpnAn +bmodMforn=0,1,....
h=0

Specifically, let
Zn = (z}l”,.‘.,:,(im’> forn=20,1,....

Then a sequence zg, r1, ... of uniform pseudorandom
numbers is defined by

m
ra=y M el forn=0,1,.... (2)
j=1

There is a considerable amount of flexibility in this
method: we may either choose A/ to be a large mod-
ulus and m small, or we may take A to be a small
modulus and m sufficiently large to obtain a small
discretization.

The multiple-recursive matrix method includes as
special cases the linear congruential method (take
k = m = 1), the multiple-recursive congruential
method, the GFSR method, and also the twisted
GFSR method of Matsumoto and Kurita (1992). The
multiple-recursive matrix method is not only an ex-
tension of earlier methods, but it also provides a
general framework for studying many types of linear
pseudorandom number generators.

If we want to use the multiple-recursive matrix
method for uniform pseudorandom vector generation,
then we generate the sequence zg,2;,... of vectors
from above with a large modulus M and we derive a
sequence ug,uy, ... of m-dimensional pseudorandom

vectors by putting
1

unzﬁznelm forn=0,1,.... (3)

With & = 1 we get the matrix method for pseudoran-
dom vector generation as a special case.

It 1s an interesting mathematical problem to ana-
lyze the periodicity properties of a sequence zg, 21, . . -
generated by a kth-order vector recursion as above.
We report here on the results of Niederreiter (1993,
1995a) that have been obtained for the case where
the recursion is homogeneous, i.c., where b = 0,
and where the modulus M is a prime p. In this
case we assume also that the matrix Ay 1s nonsin-
gular as a matrix over the finite field F, of order p
and that the initial vectors zg,z;,...,25_; are not
all 0. Then the sequence zg,z1,... is purely peri-
odic with per(z,) < p*™ — 1. It is an important fact
that the maximum possible period per(z, ) = p*™ —1
can be achieved by a suitable choice of parame-
ters. It turns out that the sequences zg,z,... with
per(z,) = p*™ — 1 are determined by a primitive ele-
ment o of the finite field F, of order ¢ = p*™ and by
an m-tuple B = (f1,...,5m) € F7 with the property
that the km elements Bjoi=1,1 < i < k,1 < j < m,
are linearly independent over F,; compare with The-
orem 2 in Niederreiter (1995a). Let B = B(o) denote
the set of all m-tuples B with this property. The
lemma below is crucial for the following.

LEMMA 1. The cardinality |B| of the set B satisfies

-2)¢+1 .

2.2 Results on Pseudorandom Numbers

We restrict the attention to the case of the maximum
possible period per(z,) = T = p*”" — 1. Let the
pseudorandom numbers xg,ry, ... be defined by (2)
with M = p; then we also have per(a,) = T. For a
given dimension s > 1 we consider the points

xll = (".n)xﬂ-l-l\ "'7'1)n+5—].) e [S)n‘ = 0) 1) (4)

For s < k the points xg,x1,...,xr—1 in the full
period show an almost perfect equidistribution; see
('orollary 3 in Niederreiter (1995a). For s > k the dis-
tribution of these points can be described in terms of
the figure of merit r'*)( B, o) defined by Definition 4 in
Niederreiter (1995a). The larger the figure of merit,
the more uniform the distribution of these points, ac-
cording to Theorem 5 in Niederreiter (1995a). The
following existence theorem for large figures of menit,
whose proof depends on Lemma 1, improves on The-
orem 6 in Niederreiter (1995a).

THEOREM 1. Letp > 2, m > 2, and k < s < km.
Then for every primilive element o € Fy there erisls
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a B e B with

r#)(B,¢) > min(m,

[km — log, ﬁ:; = (s = 1) log,(m + 1)]),

where |u] is the greatest integer < u and log, denoles
the logarithm to the base p.

Fors > kand 1 < N <7 let D(,J) denote the dis-
crepancy of the points xp, Xy, ...,xny—; from (4). The
following result on the average order of magnitude of
D(,f,) improves on Corollaries 4 and 6 in Niederreiter
(1995a). The proof depends again on Lemma 1.

THEOREM 2. Letp > 2,m > 2, and k < s < km,
and let o be a primitive element of I'y. Then for the
corresponding sequences with per(z,) = 1T we have on
the average

Dgf) =0 (p—m + p—km(mlogp)s)
and
D(,\j) =0 (p"" + N~ 1pE™/2(log T)(m logp)‘)

for1l < N < T with implied constants depending only
on s, where the average is taken over all B € B.

2.3 Results on Pseudorandom Vectors

Again, we consider only the case of the maximum
possible period per(z,) = T = pf™ — 1. Let the
m-dimensional pseudorandom vectors ug,uy,... be
defined by (3) with M = p; then we also have
per(u,) = T. For a given dimension s > 1 we con-
sider the points

Vo = (Up,Ungr, -, Upge—1) €™ n=0,1,....
(5)
For s < k the points vg, vy, ..., vr_1 in the full pe-
riod show an almost perfect equidistribution; see The-
orem 3 in Niederreiter (1995b). For s > k these points
display a nontrivial lattice structure. Indeed, 1t was
shown in Theorem 2 in Nicderreiter (1995b) that

{0,vo,vi,...,vr—1} = L N[0, 1)™*

with an explicitly given ms-dimensional lattice L.
For s > k there is a figure of merit o'8)(B, o) asso-
ciated with the points in (5), according to Definition
3 in Niederreiter (1995b). In view of Theorem 8 and
Corollaries 3 and 4 in Niederreiter (1995b), a larger
figure of merit indicates a more uniform distribution
of these points. The following cxistence theorem for
large figures of merit, whose proof depends on Lemma
1, improves on Theorem 10 in Niederreiter (1995b).

THEOREM 3. Letp > 2,m > 2, and k < s < km.
Then there exists an effective constant d(m,s) > 0
depcending only on m and s such that the following
holds: if (p — 2)p*™ > d(m, s)(p — 1), then for every
primitive element o € Fy there exists a B € B such
that

2a . (p—2)p*™
T witha= 2
Qogaym—1 " 4T Tpp—1)

where b > 0 s an effective absolute constant.

Note that by Theorem 7 in Niederreiter (1995b) we
always have ¢*)(B,0) < 2pF™. Thus, the figure of
merit o*)(B, o) given by Theorem 3 above has the
best possible order of magnitude, up to logarithmic
factors.

Fors >kand 1 < N <T let Eﬁ)p denote the dis-
crete discrepancy of the points vg, vy, ..., vy—1 from
(5). The following result on the average order of mag-

(B, o) >

nitude of E;\;’p improves on Corollaries 1 and 2 in
Niederreiter (1995b). The proof depends again on
Lemma 1.

THEOREM 4. Letp > 2,m > 2, and k < s < km,
and let o be a primitive element of Fy. Then for the
corresponding sequences with per(u,) = T we have
on the average

E7) =0 (p~*™(logp)™)
and
BN, = 0 (N1p*m/*(log T)(log p)™ )

for1 < N < T with implied constants depending only
on m and s, where the average is taken over all B € B.

3 DIGITAL INVERSIVE METHOD

Inversive methods for the generation of uniform pseu-
dorandom numbers rely on the operation of multi-
plicative inversion in modular arithmetic or in finite
fields to create pseudorandommess. An expository
account of such methods can be found in Chapter
3 of Niederreiter (1992), and an up-to-date survey
is given in Niederreiter (1995c). Inversive methods
lead to pseudorandom numbers with very attractive
properties, but until recently these methods suffered
from the disadvantage that the generation algorithms
are relatively slow. Although pseudorandom number
generation is usually not the bottleneck in calcula-
tions for simulation methods, it would still be desir-
able to find a faster inversive method. Such a method
is now available in the form of the digital inversive

method due to Eichenauer-Herrmann and Niederre-
iter (1994).
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We select a precision k£ > 1 and let Fy be the finite
field of order ¢ = 2¥. We denote by F;* the multiplica-
tive group of nonzero elements of Fy,. For y € I} let
y=9"tle Fy; be the multiplicative inverse of y in I}
and define 5y = 0 € F, fory = 0 € F;. Now we choose
parameters a € Iy and g € [y and an initial value
70 € Fy, and then we generate the sequence 34,71, ...
of elements of Fy by the recursion

Tngr =+ forn=0,1,....

Next, we choose an ordered basis (' of Fy, over F and
we let

ch = (cﬁl”‘...,dl“) forn=0,1,...

be the coordinate vector of 7, € F, relative to C'.

Note that the ¢4’ are bits. Now a sequence g, Iy, ...
of digital inversive pseudorandom numbers is defined
by
k
=3 ciiel forn=0,1,.... (6)
j=1
This sequence 1is purely periodic, and we have
per(ry,) = ¢ if and only if r* — Jr — « is a so-called
IMP polynomial over F;. We note that any primitive
quadratic polynomial over F, i1s an IMP polynomial
over Fy.

This method can be implemented in a fast manner
because of an efficient algorithm due to Itoh and Tsu-
Ji1 (1988) for the calculation of multiplicative inverses
in Fy. Fory € F; we have

‘)
=1 _ g=2 _ .okt T
H - /q “(I ) )

and so it suffices to describe how to compute powers of
the form 42" ~!. The idea is to reduce the calculation
of 4271 to that of 52t/ -1
identities

Jamey _ f_omlig

i =\7
camey L 2lmenrz g
Y = {7

for odd m.

. This is achieved by the

Gl z
K )2

1 for even m,

alm=1)/2_ 2 ~
7 7

Note that the second of these identitics was
not printed correctly in Eichenauer-Herrmann and
Niederreiter (1994). This paper provides further de-
tails on the implementation of the digital inversive
method.

If the pseudorandom numbers g, xq,... arc as
in (6), then the discrepancy Df,s’ of the points
X0, X1, - .., Xq—1 given by (4) satisfies

olmt1)/ 2

D=0 <k’q‘1/2) fors > 2

with an absolute implied constant. On the other
hand, for a positive fraction of the possible param-
cters, DY) is at least of the order of magnitude ¢=1/2
for s > 2. These results of Eichenaucr-Herrmann and
Niederreiter (1994) demonstrate that digital inversive
pscudorandom numbers show a satisfactory behavior
under the s-dimensional serial test.

4 CONCLUSIONS

The results in Section 2 indicate that there are choices
of m-tuples B € B such that the corresponding
pseudorandom numbers and vectors generated by the
multiple-recursive matrix method have strong statis-
tical independence properties, in the sense of a very
uniform s-tuple distribution. The discussion in Sec-
tion 3 shows that there is an inversive method which
can be implemented in a fast manner, namely the dig-
ital inversive method. The digital inversive method
shares the attractive properties of inversive methods
with regard to the serial test. In particular, param-
eters in the digital inversive method that guarantee
the maximum possible period ¢ also guarantee a good
performance under the serial test.
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