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ABSTRACT

We present a new method for finding a global optimal
solution to a discrete stochastic optimization prob-
lem. This method resembles the simulated annealing
method for discrete deterministic optimization. How-
ever, in our method the annealing schedule (the cool-
ing temperature) is kept fixed, and the mechanism for
estimating the optimal solution is different from that
used in the original simulated annealing method. We
state a convergence result that shows that our method
converges almost surely to a global optimal solution
under mild conditions. We also present empirical re-
sults that illustrate the performance of the proposed
approach on a simple example.

1 INTRODUCTION

Consider the problem of optimizing an objective func-
tion over a discrete feasible set of parameters in sit-
uations where the objective function does not have a
closed form expression, so that its values have to be
estimated or simulated. In mathematical notation,
this problem can be represented as

min f(ur),

rES

(1)

where S is a discrete set and f : § — R is a deter-
ministic function whose cvaluations all include some
noise. Often f is the expected performance of a com-
plex stochastic system, so that for all z € S,

f(r)

Elh(z,Y3)], (2)

where Y, is some random variable that depends on
the parameter z and h is a deterministic function.
In the deterministic case, when the values of the
function f can be evaluated easily, then one can use
a discrete deterministic optimization technique such
as the branch-and-bound method or the simulated
annealing method to solve the optimization problem
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(1). But when the function evaluations are difficult
to come by and include noise, deterministic optimiza-
tion techniques can not be used to locate the optimal
solution. Instead aspecialized method should be used
to deal with functions with noisy evaluations.

For objective functions of the form given in equa-
tion (2), when independent and identically dis-
tributed observations Y.(1),Y;(2),...,Yz(n) of the
random variable ¥, can be generated for all z € §,
and when S is finite, one could think of replacing the
original optimization problem (1) by an approximate
optimization problem

min f (), ®)
where fp(z) = LS e bz, Ye(d)), for all z € S, and
then use a deterministic optimization technique to
solve this approximation of the original optimization
problem. But in order to guarantee convergence, the
sample size n may have to be very large, which implies
that it may require too much computer time to get a
good estimate of the solution. In addition, it can be
difficult to determine how large n should be for (3) to
be a good approximation of the original optimization
problem (1) - (2).

The approach outlined above (using equation (3)
to approximate the original optimization problem (1)
- (2)) would be more convenient if the number of
alternatives were small, say less than twenty. In
such situations, methods for selecting the best sys-
tem can be used to solve the discrete stochastic op-
timization problem (1) - (2). Goldsman, Nelson and
Schmeiser (1991) present a brief overview of three
methods for selecting the best system: interactive
analysis, ranking and selection, and multiple compar-
isons. For more details on ranking and selection and
multiple comparison procedures, see Goldsman and
Nelson (1994). Other related work has appeared in
the literatures on the multi-armed bandit problem
and on learning automata, see for example Lai and
Robbins (1985), Devroye (1976), and Yakowitz and
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Lugosi (1990).

More recently, Yan and Mukai (1992), Gong, Ho,
and Zhai (1993), and Andradéttir (1995, 1996) have
proposed new methods for discrete stochastic opti-
mization. These methods all generate a Markov chain
on the feasible set S of the optimization problem (1).
However, the specifics of this Markov chain, as well
as the approach used to estimate the solution, differ
between the methods. Both Yan and Mukai (1992)
and also Gong, Ho, and Zhai (1993) show that under
certain conditions, their methods converge in proba-
bility to a global solution of the underlying optimiza-
tion problem. On the other hand, Andradéttir proves
that under certain conditions, the method proposed
in Andradéttir (1995) converges almost surely to a
local optimizer of the objective function, whereas the
method proposed in Andradéttir (1996) converges al-
most surely to a global optimizer.

In this paper we introduce a new method for dis-
crete stochastic optimization that resembles the sim-
ulated annealing method for discrete deterministic
optimization. In particular, the proposed approach
generates a Markov chain on the state space S of the
underlying optimization problem (1) that strongly re-
sembles the Markov chain generated by the simulated
annealing algorithm. However, the proposed algo-
rithm differs from the simulated annealing algorithm
in that it uses a constant, rather than decreasing,
cooling temperature (see the discussion in Sections 2
and 3). Also, our new method employs the mech-
anism proposed by Andradéttir (1995, 1996) to esti-
mate the optimal solution, which is different from the
mechanism used by the original simulated annealing
approach.

This paper is organized as follows. In Section 2
we give a brief description of the simulated annealing
algorithm for discrete deterministic optimization. In
Section 3 we present the proposed discrete stochas-
tic optimization algorithm and state conditions under
which this algorithm is guaranteed to converge almost
surely to a global optimal solution of the optimization
problem (1) — (2). Section 4 contains empirical re-
sults for the proposed method, and some concluding
remarks are given in Section 5.

2 THE SIMULATED ANNEALING ALGO-
RITHM

Simulated annealing is a random search algorithm
that is designed to find a global optimizer of a given
deterministic function f over a finite set S in situa-
tions where the objective function f may have many
local minima. Before stating the details of the algo-
rithm, we need the following definitions and assump-

tions:

Definition 1 For each 2 € S, there exrists a subset
N(x) of S\ {z}, which is called the set of neighbors
of x.

Assumption 1 For any z,z’ € S, ¢’ s reachable
from x; i.e., there exists a finite sequence, {n;}i_g
for some I, such that

Tpg = 2, 2pn, = &', 25,,, € N(2p,),i=0,1,2,...,1 - 1.

Definition 2 Let R: §x S — [0,1] be a nonnegative
function that satisfies

1. R(z,2') >0« 2’ € N(z), and

2. Y es R(z,z') = 1.

Then R(z,z') is called the probability of generating z'
from z.

Assumption 2 The neighbor system {N(z): z € S}
and the transition probability function R are symmet-
ric, i.e.,

1. 2 € N(z) @z € N(z'), and

2. R(z,z') = R(z',z).

Now we state the original simulated annealing al-
gorithm. Note that {7,,} is a sequence of positive

scalars, and that for all z € R, [z]* = =z when £ > 0
and [z]* = 0 otherwise.

Algorithm 1
Step 0: Select a starting point Xy € S.

Step 1: Giwven \,, = x choose a candidate Z, €
N(z) with probability distribution

P[Zm =:z|\pm = z] = R(z, 2),

where N(z) and R(z,z) are defined in Defini-
tions 1 and 2.

Step 2: Given Z,, = =, generate Uy, ~ U[0,1], and
set
v _ z af Up < pm,
SmEL T o otherwise,

where

() = f@I]

= eX
Pm p [ T

Step 3: Let m=m+ 1. Go lo Step 1.
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Note that the simulated anncaling algorithm al-
lows “hill-climbing” moves (to go from » to «' with
f(z) < f(«')) in order to avoid local minima. Also,
the higher the “cooling temperature” Ty, the more
likely it is that a “hill-climbing” move will be made.
The initial temperature and the rate of decrease of
the temperature are important parameters that affect
the speed of convergence of the simulated annealing
algorithm and the quality of the final configuration.

Let

S*={reS: f(r) < [f(y) forall y € S}

be the set of global solutions to the optimization prob-
lem (1). Toshow that Algorithm 1 converges in prob-
ability to an element of &*, consider the undirected
graph with the states in & forming the nodes and the
neighborhood structure {N(z) : r € S} forming the
edges; i.e., if ' € N(x), then the edge (z, z’) belongs
to this undirected graph. The distance d(z,z’) be-
tween two nodes z and z’ is defined to be the length
(number of edges) of the minimum path from z to z'.
Let

Sm={z€S: f(y) < f(x) for all y € N(z)}

be the set of all the points that are local maxima for
the cost function. Define the radius of the graph

r= min maxd(z,z’),
TES\Sm T'€ES

and let
L = max — .
max max. |f(y) = f(2)]
The following result follows directly from Theorems
4.2 and 5.1 and Propositions 3.2 and 5.1 in Mitra,
Romeo, and Sangiovanni-Vincentelli (1986).

Theorem 1 Under Assumptions 1 and 2, if the se-
quence {Tpn} satisfies

Th=— 1  m=0,1,2 ...,
™7 log(m +mo + 1)
where mq 1s any parameter satisfying 1 < my < oo
and v > rL, then

lim P{\m€eS&}=1
m—oo

3 THE PROPOSED ALGORITHM FOR
NOISY FUNCTIONS

The original simulated annealing algorithm (Algo-
rithm 1) is not designed to solve optimization prob-
lems that are stochastic in the sense that the evalu-
ations of the objective function f (see equations (1)

and (2)) involve noise. Gong, Ho and Zhai (1993)
mention that in order for the original simulated an-
nealing algorithm to be applied to solve such discrete
stochastic optimization problems, one needs to ob-
tain accurate estimates of the function values, and
that this will cost too much computer time. Haddock
and Mittenthal (1992) implemented this basic idea.
However, in order to reduce the required computer
time, they “employed a more rapid temperature de-
creasing (i.e., heuristic) annealing schedule” (so that
standard convergence results such as Theorem 1 do
not apply).

We propose another algorithm which does not re-
quire accurate estimates of the function values at ev-
ery iteration. This algorithm strongly resembles the
original simulated annealing approach, and in partic-
ular, it has the “hill-climbing” feature which allows it
to escape from local minima. However, our method
uses the criterion of Andradéttir (1995, 1996) in de-
termining the estimate of the optimal solution. In
particular, the state that the algorithm has visited
most often at any given time will be the estimate of
the optimal solution. We will need the following as-
sumption:

Assumption 3 The temperature T is a positive
(constant) real number. In addition, {Kn} is a se-
quence of positive inlegers satisfying limy, oo KN =
0.

Now we state the proposed simulated annealing al-
gorithm for noisy functions. Note that after m iter-
ations, X,, 1s the current state of the Markov chain
generated by the algorithm, for all z € S, Vj,(2z) 1s
the number of times the Markov chain {.\,} has vis-
ited state x in the first m iterations, and X}, is the
state that the Markov chain {.\',} has visited most
often in the first m iterations.

Algorithm 2

Step 0: Select a starting point Ny € S.  Let
Vo(Xo) = 1, and Vy(z) = 0, for all z € S,
r# No. Letm=0 and X}, = X,.

Step 1: Gwven X,, = z, choose a candidate Z,, €
N(r) with probability distribution

P[Zm =\, = ‘17] = R(JI, :)»

where N(z) and R(z,z) are defined in Defini-
tions I and 2.

Step 2: Gwen Z, = :z, generate independent ob-
servations Y, (1),Y2(2),...,Y.(Kpy) of Y, and
Yo(1),Y2(2), ..., Yo(R), of Y. (see equation
(2)). Evaluate fn(z) and fn(z), where fm(s) =

Ko Ay
ﬁ i h(s,Ys(?)) fors =z, =
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Step 3: Given Z,, = z, generate U, ~ U|0,1], and
set

- : fl, <
X = lfl m = Pm,
m+1 { r  otherwise,

where

[ - T
T

Pm = €Xp

Step 4: Let m =m+ 1, Vin(Npm) = Vo1 (Vm) + 1,
and Vi (2) = Vip—1(2), forallz € S, = # Xp.
If V(X)) > Vi (X2 _y), then let X} = Xy,
otherwise let X' = X . Go to Step 1.

We now state a convergence result for the proposed
algorithm. This theorem is proved in Alrefaei and
Andradoéttir (1995).

Theorem 2 Under Assumptions 1, 2, and 3, the se-
quence {\',} generated by Algorithm 2 converges al-
most surely to an element of §* (in the sense that
there exists a set A such that P(A) = 1 and for all
w € A, there exists M, > 0 such that X} (w) € §*
for allm > M, ).

4 APPLICATION OF THE PROPOSED
ALGORITHM

Now we apply the proposed algorithm to solve
a simple discrete stochastic optimization prob-
lem. In equation (1), let & = {1,...,10},
and let f(z) = FE[Y;] for all ¢ € &, where
Y, 1s a uniform random variable on the interval
u(z) £ 0.5, for all z € S and p(l),...,x(10) are
0.3,0.7,0.9,0.5,1.0,1.4,0.7,0.8,0.0, and 0.6, respec-
tively. We will apply Algorithm 2 to solve this opti-
mization problem with a number of different choices
of the parameters T, {Kn,}, {N(z) : ¢ € S}, and
{R(z,z') : ¢ € S and 2z’ € N(z)}. In particu-
lar, we use two different values of the temperature
T: T = 0.1 and T = 1. We also use two choices
for the sequence {K,}. In the first one we let
Km = |2log(m + 3)] for all m, where [z] denotes
the integer part of z for all z € R. Hence, this se-
quence {K,,} increases very slowly in m. The second
choice is K, = 14 |m/10] for all m, so this sequence
increases more rapidly in m than the first choice.
Also, we use two different neighborhood structures
{N(z):z € S}. The first neighborhood structure is

N(z)={z £1 (mod 10),z £ 2 (mod 10)}  (4)

for all z € S. In this case, we let R(z,z') = 1/4 for
all z € S and =’ € N(z). On the other hand, the

second neighborhood structure is given by
N(x) = {z £1 (mod 10)} (5)

for all z € S. In this case, we let R(z,z’) = 1/2 for
all z € S and 2’ € N(xz). Note that in the first neigh-
borhood structure (4), we have one local minimum
at £ = 4 and one global minimum at « = 9. On the
other hand, in the second neighborhood structure (5)
we have three local minima at £ = 1,4, and 7 and one
global minimum at z = 9. Since the second neighbor-
hood structure has more local minima, we expect that
Algorithm 2 will converge more slowly in this setting
than when the first neighborhood structure is used.

Tables 1 through 4 show the results obtained by
applying Algorithm 2 to solve this optimization prob-
lem with the choices of parameters described above.
In particular, the tables show how many of one hun-
dred replications have converged to the true global
optimizer as a function of the number of iterations of
Algorithm 2 that have been completed. The tables
also give, for each choice of parameters, the average
number of observations (computed from the one hun-
dred replications) that were needed before the algo-
rithm converged.

Table 1: The performance of the proposed method
when K, = [2log(m + 3)| for all m and the neigh-
borhood structure 1s given in equation (4)

I [teration | T=01]T=1]

100 93 59
200 100 72
500 100 89
1,000 100 98
2,000 100 100
3,000 100 100

Average number

of observations 310 6,590

From the results given in Tables 1 through 4, we
conclude that in this example it is better to have
larger neighborhoods N(z), where z € S, and smaller
temperatures T (the results for the neighborhood
structure (4) are better than those for the neighbor-
hood structure (5), and the results for 7' = 0.1 are
better than those for T = 1). In addition, we find that
the number of iterations needed for the algorithm to
converge to a global minimizer does not seem to de-
pend heavily on the rate of increase of the sequence
{Kn}, but when the sequence {K,,} increases very
rapidly (e.g., when K, = 14 [m/10] for all m), the
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Table 2: The performance of the proposed method
when N, = 1+ [m/10] for all m and the neighbor-
hood structure is given in equation (4)

Il Iteration I T =0.1 [ T=1 ||

100 98 H6
200 100 63
500 100 37
1,000 100 97
2,000 100 100
3,000 100 100

Average number

of observations 163 23,572

Table 3: The performance of the proposed method
when K, = [2log(m + 3)| for all m and the neigh-
borhood structure is given in equation (5)

| Iteration |T=01]T=1]

100 72 40
200 76 56
500 98 70
1,000 99 84
2,000 100 94
3,000 100 98
4,000 100 100

Average number

of observations 2,580 15,402

algorithm usually (but not always) spends more com-
puter time in generating the observations.

5 CONCLUSION

We have presented a new method for solving discrete
stochastic optimization problems that resembles the
simulated annealing method for discrete deterministic
optimization. This method converges almost surely
to a global solution of the underlying optimization
problem. Its performance depends on the choice of
a number of parameters, including the temperature,
the neighborhood structure, and the number of ob-
servations obtained in the different iterations. Our
preliminary numerical experience indicates that small
temperatures and large neighborhood structures seem
to result in better performance. On the other hand,
the performance of the algorithm seems less sensitive
to how many observations are drawn in each iteration
(although it appears to be better to draw a relatively

Table 4: The performance of the proposed method
when K, = 1 4+ |m/10] for all m and the neighbor-
hood structure is given in equation (5)

H Iteration |T=01]T=1]
100 79 53
200 85 59
500 97 72
1,000 99 88
2,000 100 98
3,000 100 98
4,000 100 100
Average number
of observations 5,822 96,314

small number of observations per iteration). How-
ever, more research on how the parameters of the
proposed method should be selected in different situ-
ations 1s needed.
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