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ABSTRACT

The pricing of American options on multiple as-
sets or with path-dependent payoffs is an important
but computationally challenging problem. In earlier
work, we introduced simulation estimators for this
problem which, though biased, are consistent and
asymptotically unbiased. In this paper, we introduce
enhancements to reduce bias. One enhancement ex-
ploits more easily computed European option prices;
another uses bootstrapping for bias estimation.

1 INTRODUCTION

An option is a security granting the owner the right,
but not the obligation, to buy or sell an asset at a
specified price. If the option may be exercised at
only a specified time, it is called European; if it may
be exercised at any time in an interval, it is called
American. More generally, “American” refers to any
security whose cash flows can be influenced by its
owner. Pricing an American option entails determin-
ing an optimal policy and is thus more difficult than
pricing an otherwise equivalent European option.

In practice, American options are usually priced by
applying dynamic programming to a discrete-time,
discrete-space approximation to the evolution of the
underlying asset or assets. The binomial method of
Cox, Ross, and Rubinstein (1979) is probably the
best known and most widely used such technique.
See Chapter 14 of Hull (1993) for an introduction
and see Broadie and Detemple (1994) for an exten-
sive comparison of methods. Using multi-dimensional
generalizations like that of Boyle et al. (1989), the bi-
nomial method and its variants are effective in pricing
options involving up to three or perhaps even four as-
sets. But because the computational requirements of
these techniques typically grow exponentially in the
number of state variables, higher dimensional prob-
lems quickly become intractable. The presence of
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path-dependent payoffs further complicates the prob-
lem.

In Broadie and Glasserman (1995) (henceforth
BG), we introduced a simulation-based method for
pricing American options with finitely many exercise
opportunities. The convergence rate of Monte Carlo
is generally insensitive to the dimension of the prob-
lem, making it especially attractive precisely where
the binomial method breaks down. The BG method
produces estimates which, though biased, are con-
sistent (converge in probability) and asymptotically
unbiased. Moreover, by combining estimators that
are biased high and biased low, this method produces
conservative confidence intervals allowing for rigorous
error control. No rigorous error control is available
using the binomial method. Barraquand and Mar-
tineau (1995), Grant et al. (1994), and Tilley (1993)
have proposed other simulation-based procedures for
pricing American options; questions remain about the
convergence of each of these.

In this paper, we investigate enhancements to our
earlier estimators. Our first enhancement exploits in-
formation about European option prices to simultane-
ously reduce variance, bias, and execution time. Our
second and more ambitious technique uses bootstrap-
ping to estimate (and hopefully reduce) bias. We re-
view the problem setting and our earlier estimators
in the next section. The enhancements are presented
in Sections 3 and 4.

2 MODEL AND ESTIMATORS

We assume that all information required to deter-
mine the payoff from exercising an option is recorded
in a vector-valued Markov chain {S:;}. In practice,
S; would record all relevant information about asset
prices, interest rates, exchange rates, and supplemen-
tary variables needed to eliminate path-dependence.
For simplicity, we will mostly consider the case of a
fixed interest rate and think of the components of S;
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as stock prices. In this case, a typical model makes
the logarithms of the components of S; random walks
with normal increments correlated across components
but independent over time.

2.1 The Optimal Stopping Problem
We use the following notation to determine payoffs:

o Timet =0,...,T, means t = tg,...,t4_1, with
0=ty <t < - < tyg_q =T; the t, are the
exercise opportunities.

o e~ R ig the discount factor from t — 1 to t. We
take R; to be a component of the vector S; and
assume R; > 0 for all ¢.

o ROt = Z::l R"
o hi(s) = payoff from exercise at time ¢ in state s.

o fr(s) =gr(s) = hr(s).

o gi(s) = Ele B+ £,,1(St41)|S: = s] = continua-
tion value at time t in state s, ¢t =0,...,7 — 1.

o fi(s) = max{h:(s), g:(s)} = option value at time
t in state s, t=0,...,T — 1.

Our goal is to compute

fo(So) =mTaxE[e‘R°'h,(ST)], (1)

where the maximum is over all stopping times 7 tak-
ing values in {0,1,...,T}. The optimal policy stops
at

7=1inf{0 <t < T : he(Ss) > 9:(St) 15

1.e., the first time the immediate exercise value is at
least as great as the continuation value. That the
market price of an option can be represented in this
way is a consequence of the general theory of the
pricing of contingent claims. For an entry into the
connection between simulation and this theory see
Boyle et al. (1995); for textbook treatments see Duffie
(1992) and Hull (1993).

Broadie and Glasserman (1995) argue that, in gen-
eral, there is no unbiased estimator of (1). As an
alternative, they introduce two estimators, one bi-
ased high and one biased low, both consistent and
asymptotically unbiased. We discuss these next.

2.2 The Estimators

Our method simulates random trees determined by
the evolution of S;, rather than just sample paths.
Given a value of the branching parameter b, the evo-
lution of the tree can be described recursively as fol-
lows. From the (fixed) initial state So, we generate b

Figure 1: A tree with b =3

independent samples Si,...,S? of the state at time
t = 1; from each node value S;'"** we generate b
samples St’;_l"], jg=1,...,b, condltionally indepen-
dent of each other given Sti""i‘ and each having the
distribution of S;;; given §; = S:""i' Thus, each
sequence SO,S;I,S”’Z, ..,S;l"'iT is a realization of
the Markov chain S;. Figure 1 illustrates a tree with
b=3.

Our high estimator is simply the result of apply-
ing dynamic programming to the random tree. More
precisely, working backwards through the tree using
the recursions

O} T = hp(S3T)
and

it _
CH =

°-|._.

max 4 hy( S”

b
Z RN t+1“j , (2)

we compute the high estimator © = ©y. That this
estimator is biased high is a consequence of Jensen’s
inequality; that it is also consistent and asymptoti-
cally unbiased as b — oo is proved in BG (1995).
The high estimator uses all branches emanating
from a node to approximate both the optimal action
(stop or continue) and the value of this decision. Our
low estimator differs in that it separates the branches
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used to determine the action from those used to de-
termine the payoff. Here is a verbal description:

1. At each node in the tree, reserve one successor
node. Average the discounted low estimator val-
ues at the other b — 1 successor nodes.

2. If the average obtained is less than the immedi-
ate exercise value, set the node value equal to
the immediate exercise value; otherwise, set the
node value equal to the discounted value from
the reserved node.

3. Average the resulting node value over all b ways
of selecting the reserved successor node.

4. Repeat these steps backwards through the tree.
Now we give a more precise formulation. First let
52T = hp(S3T).

Next, set
T’:I“'lt] — ht(StH---n)

if
. . 1 b Il"'ltl . L.
PSP 2 s S e R e, ()
=1
i#5

and
i1ied _ =R, pineied
up =e Ttfl

otherwise. Then let
1 &
1t 11147
GARFE @

fort=0,...,T—1. The low estimator is 8§ = §,. BG
(1995) show that this estimator is biased low but also
consistent and asymptotically unbiased as b — oo.

For a fixed branching parameter b, we may compute
multiple replications of the high and low estimators
and estimate the standard deviation of each. By tak-
ing the upper confidence limit of the high estimator
and the lower confidence limit of the low estimator we
obtain a conservative confidence interval for the true
price. If we let d be the number of exercise opportuni-
ties and n the number of replications, then the work
required to carry this out grows like nb?~1. In partic-
ular, increasing the branching parameter is typically
far more costly than increasing the number of replica-
tions. However, increasing b is essential to reducing
bias and thus reducing the width of the confidence
interval. This difficulty motivates our investigation
into techniques for reducing or estimating bias.

3 PRUNING WITH EUROPEAN VALUES

Pricing a European option is generally easier than
pricing the American counterpart: there is no opti-
mization involved in the European price. It is there-
fore natural to try to exploit information obtained
from the European case in pricing the American op-
tion. In BG (1995), we showed through examples that
the European price provides a highly effective control
variate. Here we illustrate two other uses, both of
which reduce the number of nodes in the tree.

1. Pruning at the end. Let T — 1 denote the penul-
timate exercise opportunity. The optimal action at
time T' — 1 depends on which is greater, the imme-
diate exercise value hr_;(St—1) or the continuation
value g7—1(S7—1). The estimators © and 6 implicitly
estimate the continuation value at each node. But at
time T — 1 the continuation value is just the value
of a European option initiated at time 7" — 1 and
maturing at time 7. Computing this value directly
and efficiently eliminates the need to branch at the
penultimate node. This reduces the work required to
O(nb?~2). Intuitively, it seems likely to reduce both
bias and variance as well. Bias and convergence re-
sults for the original BG estimators continue to apply:
we have merely reduced the number of time steps and
replaced the terminal payoff hr(-) with a new termi-
nal payoff E[e‘RThT(ST)|ST_1 =]

2. Intermediate pruning. The sole reason for branch-
ing (as opposed to simulating sample paths in the
usual way) is to allow for consistent estimation of the
optimal action at a node. Suppose that at time ¢t
there is a node corresponding to state s. If we knew
that hi(s) < g:(s), we would know that the opti-
mal action is to continue and there would be no need
to branch; it would suffice to generate just one suc-
cessor node. Of course, in general we do not know
9:(s) since g; is itself the value function of an optimal
stopping problem. But if we can find an easily com-
puted lower bound ¢(s) < (respectively <) g:(s), we
can check if h;(s) < (respectively <) #(s). If this
holds, stopping is guaranteed to be suboptimal so
there is no need to branch. If there is no branch-
ing out of node 1; ---;, then (2) gets replaced by
0" = exp(— R, 11O, " and (4) gets replaced
with 6" = exp(—R{}1*")6;,*". This does not
alter the convergence of the estimators, provided the
number of replications (equivalently, the number of
branches out of Sy) increases to infinity. It is gener-
ally not possible to determine in advance the reduc-
tion in work per run resulting from pruning because
the amount of pruning is random.

In virtually all practical examples, the value of an
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option remains strictly positive throughout its ex-
istence. Thus, a simple choice of bound is simply
£(s) = 0: at any node at which the immediate exer-
cise value is zero, there is no need to branch. This
test is free because this choice of ¢ requires no com-
putational effort.

In the case h,(s) > 0, we may decide to com-
pare the immediate exercise value with a more refined
bound. Natural choices are ¢;41(s),...,¢r(s), where
l;(s) is the value of a European option initiated in
state s and maturing at time k. Each of these corre-
sponds to a particular (suboptimal) exercise policy for
the American option and thus provides a lower bound
on gi(s). If he(s) < €x(s) forany k =t +1,...,T,
there is no need to branch.

We have examined the effectiveness of these two
pruning techniques in pricing an American option on
the maximum of two assets. In this example, the
state is two-dimensional with components St(l) and

Stm. These asset prices evolve according to the rule

i i 1
Sips = 51 exp{(r — 6 = 50T (t1 — 1))

ti+1

+Vhr - 5W), i =12,

where 7 is the (constant) interest rate, 61,6, are the
dividend yields, oy,02 are the asset volatilities, and
(W}l), WJ@)) are mean-zero normal random variates
with standard deviations o7, 02 and correlation p. For
simplicity, we take S((,l) = S((,z) = so and let this com-
mon initial asset price vary. The immediate exercise
value is given by h(s1, s2) = max{max{s;, s2}— K, 0},
where K is the strike price. This corresponds to an
option to buy either asset at price K.

Numerical results are illustrated in Table 1 for the
following parameters: the annualized interest rate
r = .05; both assets have dividend yields ¢; = 0.10
and volatilities o; = 0.20; their correlation is p =
0.30; the strike price K is 100; the time to expiration
T is 1 year; there are four exercise opportunities. We
implemented the European value at the penultimate
step and intermediate pruning based on first checking
if A(s1,82) > 0 and, if so, then comparing with a sin-
gle European option maturing at time 7. (The Euro-
pean price is computed from the formula of Johnson
1987.) At nodes passing both these tests we generate
b = 50 branches. For each value of sg, the two rows in
the table show results without and with pruning, re-
spectively, based on approximately equal CPU times.
The values labeled “True” were obtained using the
binomial method of Boyle et al. (1989) with 800 time
steps. The values labeled “Est” are the averages of
the corresponding high and low estimators. Taking
the midpoint is a fairly arbitrary way of compromis-

ing between the two; the “% Error” was computed
from this estimate. Confidence intervals were com-
puted as explained at the end of Section 2. Because
these intervals are conservative, the actual coverage
is usually much greater than the nominal coverage.
Indeed, we have found that a nominal level of 90%
often yields 99% actual coverage.

The results of Table 1 indicate substantial gains
from pruning, as evidenced by the percent errors and
confidence interval widths. The potential for savings
is even greater than that indicated by the tables. If,
for example, 6; = 62 = 0, then the optimal policy
holds the option to expiration; with pruning, the al-
gorithm will in fact never branch.

4 BOOTSTRAPPING

Our second approach to the issue of bias uses a boot-
strapped estimate of bias based on Efron and Tibshi-
rani (1993). We first briefly review their technique,
then discuss how we apply it in our setting.

4.1 Background

Efron and Tibshirani consider the problem of esti-
mating the bias of an estimator defined on random
samples from a distribution on the real line. Let F
be the distribution and let t(F') be a scalar statistic.
Let X1,...,X, bei.i.d. samples from F and write X
for (Xi,...,X,). Let 4(X) be an estimator of t(F).
By definition, its bias is

biasp(y) = Er[y(X)] - t(F),

the subscript F' indicating the distribution from
which the observations are drawn.

Let F denote the empirical distribution of the ob-
servations (.\'y,...,X,). The bootstrap estimate of
bias is

biass(v) = Ep[y(X)] — t(F).

In this expression, t(F') is the value of the statistic of
interest for the empirical distribution and Ez[y(X))
is the expectation of the estimator o when the obser-
vations are drawn from F' rather than F. Typically,
t(F) can be evaluated directly, but E[y(X)] requires
Monte Carlo: B random samples of size n are drawn
from F' and the sample mean of their v values is used
to approximate Ex[y(X)].

Efron and Tibshirani recommend a slight variant
of this estimator. To each of the B bootstrap ran-
dom samples there corresponds a vector of frequen-
cies (P1,...,Pn), in which P; records the fraction of
observations in the sample equal to the i*h original
observation X;. Let F be the distribution assigning
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S0 0 se(9) S) se(O) [90% CT | Est.  True % Err.
70 0224 0.006 0.227 0.007 [0.214, 0.238] 0.226  0.236 4.25
70 0239 0.001 0.239 0.001 [0.237, 0.241] 0.239 0.236 1.27
80 1.211 0.022 1.231 0.023 [1.175, 1.268] 1.221 1.260 3.12
80 1.255 0.004 1.257 0.004 [1.249, 1.263 1.256 1.260 0.35
90 3.933 0.051 4.036 0.052 [3.850, 4.122] 3.985 4.076 2.23
90 4.077 0.013 4.092 0.013 [4.056, 4.113] 4.085 4.076 0.22
100 9.090 0.089 9.361 0.091 [8944, 9510 9.225 9.356 1.40
100 9.288 0.032 9.359 0.033 [9.234, 9.412] 9.323 9.356 0.35
110 16.558 0.128 17.005 0.130 [16.347,17.219] 16.782 16.925 0.85
110 16.775 0.061 16.942 0.062 [16.674,17.043] 16.858 16.925 0.40
120 25477 0.163 26.111 0.162 [25.209, 26.377] 25.794 25.979 0.71
120 25.838 0.084 26.107 0.084 [25.700, 26.246] 25.973 25.979 0.02
130 35.203 0.187 35.924 0.185 [34.896, 36.230] 35.564 35.763 0.56
130 35.606 0.100 35948 0.100 [35.442,36.113] 35.777 35.763 0.04
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Table 1: Improvement from pruning: for each s, first row is without pruning, second row is with pruning

mass P; to X;, where P; is the average of the P; over
the B bootstrap samples. The recommended estima-
tor of bias is then

B
Z (XD) - 1(F), (5)

where X(9) denotes the j*" bootstrap sample.

4.2 Bootstrapping the High and Low
Estimators

Applying the bootstrap method to © and 8 is not
altogether straightforward because these estimators
are defined on random trees, rather than on sets of
scalars. We implement it as follows. We view a ran-
dom tree as the state space of a Markov chain. The
transition structure of the chain is determined by the
branches of the tree, and the chain selects any of the b
branches emanating from a node with equal probabil-
ity. (For simplicity, we explain the method without
the pruning of Section 3.) The law of this Markov
chain plays the role of F in the scalar setting: it is
an empirical version of the true law of S;.

The next step is to generate bootstrap samples
from the empirical law. In the scalar setting, this
merely requires sampling with replacement n times
from the original observations (Xi,...,X5). In the
BG setting, generating a bootstrap sample means
generating b“~! paths of the empirical Markov chain.
(There are b%~! paths through the original tree, so
this is the appropriate number of paths to generate for
a bootstrap sample.) Each bootstrap path has proba-
bility 1/b of choosing any of the b branches emanating
from a node; however, the actual proportion of paths
in a bootstrap sample choosing a branch is likely to

differ somewhat from 1/b. For each node and for
each bootstrap sample we thus obtain a vector of fre-
quencies (P, ..., Py) for the b branches that emanate
from that node. In fact, it is only these frequencies
that matter, so it suffices to generate them directly,
without actually simulating paths through the tree.
Once we have a vector of such resampled frequencies
at a node, we compute bootstrapped estimator val-
ues ©1) and () by replacing the uniform weights in
(2), (3), and (4) with the weights (Py,...,F,). This
yields bootstrap values ©) and ), j =1,...,B.

Paralleling the scalar case, at each node we also
record the vector (FI, ..., Py) of average frequencies
over all B bootstrap samples and compute estimators
©p and 63 from these weights. Paralleling (5), the
resulting estimators of bias are

B
Z el _

blas(G)

tU |

and

blas (6) =

Zg(]) f5.

The bias-adjusted high and low estimators are

© — bias(®) and 6 — bias().

Table 2 shows results with and without the boot-
strap bias adjustment. The option parameters are
the same as those used for Table 1. For each value
of sg, the first row gives results without the boot-
strap adjustment, the second row gives results with
the adjustment. The number of replications for the
unadjusted estimates was increased to make the CPU
times for all rows approximately equal. All results use
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so 6  se(d) bias(d) ©  se(©) bias(®)  [90% CI] Est. True % Err.
70 0.244 0.003 — 0.244 0.003 — [0.239, 0.250] 0.244 0.236 3.58
70 0.244 0.006 0.000 0.244 0.006 0.000 [0.234, 0.253] 0.244  0.236 3.38
80 1.265 0.010 — 1.267 0.010 — [1.249, 1.283] 1.266 1.260 0.45
80 1.249 0.015 -0.001 1.249 0.015 0.001 [1.223, 1.274] 1.249 1.260 0.92
90 4.069 0.019 — 4.105 0.020 — [4.037, 4.137] 4.087 4.076 0.28
90 4.063 0.029 -0.004 4.080 0.030 0.013 [4.015, 4.128] 4.071 4.076 0.10
100 9.298 0.030 — 9.476 0.030 — [9.249, 9.526] 9.387  9.356 0.33
100 9.319 0.048 -0.007 9.421 0.048 0.065 [9.240, 9.500] 9.370  9.356 0.15
110 16.769 0.038 — 17.200 0.039 — [16.705, 17.264] 16.984 16.925 0.35
110 16.708 0.055 -0.008 16.972 0.055 0.161 [16.617, 17.063] 16.840 16.925 0.50
120  25.793 0.045 — 26.493 0.045 — [25.720, 26.568] 26.143 25.979 0.63
120 25929 0.075 -0.026 26.344 0.075 0.263 [25.805, 26.467) 26.136 25.979 0.61
130 35.484 0.049 — 36.408 0.050 — [35.403, 36.490] 35.946 35.763 0.51
130 35.594 0.081 -0.019 36.155 0.080 0.346 [35.460, 36.287]  35.875 35.763 0.31

Table 2: Bootstrapping results, two-asset case: for each sg, first row is without bootstrapping, second row is

with bootstrapping

the pruning techniques discussed in Section 3. The
branching parameter b is 10 in all cases; the adjusted
estimates use B = 100 bootstrap replications.

The results are mixed. At lower values of sg, the
optimal exercise policy almost always holds the op-
tion to expiration, and there is very little branching
after pruning. As a result, there is very little bias (the
high and low estimators give nearly identical results)
and no benefit from bootstrapping. In particular, the
bias reduction is not sufficient to offset the increase
in standard error that results from bootstrapping. At
high values of sq, there is more branching; the bias ad-
justments become more significant and result in nar-
rower interval estimates. The relative error of the
point estimate appears to decrease slightly. However,
recall that our point estimate is (somewhat arbitrar-
ily) the average of the high and low estimates. Be-
cause the bias adjustment appears to be more signifi-
cant for the high than the low estimate, the midpoint
may not make optimal use of these adjustments.

Table 3 shows results for an American option on
the maximum of five assets. The parameters of this
option are the same as those of the two-asset exam-
ple of Table 2; in particular, correlations between all
pairs of assets are equal. We have no way of evalu-
ating the true price in the five-asset case so we re-
port only interval estimates. At each value of s, the
three rows implement the following techniques, re-
spectively: pruning; pruning plus a control variate;
pruning, control variate, and bootstrapping. Because
computing even the European price in the five-asset
case is burdensome, we implemented only intermedi-
ate pruning, not pruning at the end. For the inter-
mediate pruning we used the European price of an

option on the maximum of the two assets with the
highest value at a node; this is easier to compute
than a five-asset option and still provides an effec-
tive lower bound. For the control variate, we were
able to use the five-asset European price (computed
from Johnson 1987) because using the control variate
technique requires evaluating this price just once. All
rows are based on branching parameter b = 50. The
bootstrapped results use B = 100 bootstrap replica-
tions. The number of replications in each case was
chosen to make the CPU times approximately equal.

The first conclusion to be drawn from the interval
estimates in Table 3 is that the method is viable for
American options on five assets. In particular, the
halfwidths of the interval estimates using the control
variate are within 1% of the interval midpoint. The
results also suggest that the use of the control vari-
ate may be the single most effective way to increase
efficiency. Bootstrapping for bias estimation appears
to provide some further narrowing of the interval es-
timates. As always, caution is necessary in extrapo-
lating from limited computational results, especially
since the example and the method both involve mul-
tiple parameters.
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