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ABSTRACT

\We review fast simulation techniques used for esti-
mating probabilities of rare events and related quan-
titles in different types of stochastic models.

1 INTRODUCTION

In this paper we review some of the fast simula-
tion techniques used for estimating probabilities of
rare events and related quantities in different types
of stochastic models. This paper is by no means a
comprehensive survey of these rare event simulation
techniques, nor does it present a complete reference
list of all the contributions in this area. However,
an attempt has been made to give some of the ba-
sic concepts and algorithms used for different types
of stochastic models. For those types of models for
which this has not been possible due to space con-
straints, an attempt has been madeé to point to the
latest references, so that an interested reader may fol-
low up. The reader is referred to Heidelberger (1993),
Nicola, Shahabuddin and Heidelberger (1993), and
Nakayama (1994) for more comprehensive surveys of
fast simulation techniques applied to reliability mod-
els, and Heidelberger (1993) and Asmussen and Ru-
binstein (1994) for techniques applied to queueing
models.

Estimations of the small probabilities of rare events
are required in the design and operation of many en-
gincering systems. Consider the case of a telecom-
munication network. It is customary to model such
systems as network of queues, with each queue having
a buffer of finite capacity. Information packets that
arrive to a queue when its buffer is full arc lost. The
rare event of interest may be the event of a packet be-
ing lost. C'urrent regulations stipulate that the prob-
ability of packet loss should not exceed 10~°. Or in a
reliability model of a space craft computer, we may be
interested in estimating the probability of the event
that the system fails before a mission time. Natu-
rally, one would want this to bc extremely low. The

178

main problem with using standard simulation to esti-
mate such small probabilities is that a large number
of events have to be simulated in the model before any
samples of the rare event may occur. Hence special
simulation techniques are needed to make the events
of interest occur more frequently.

Importance sampling is a technique that can be
used for this purpose. This technique was initially
used in the area of Monte Carlo integration (see, e.g.,
Kahn and Marshall 1953). An extension of the ba-
sic concept to stochastic processes may be found in
Glynn and Iglehart (1989). In importance sampling,
the stochastic model is simulated with a new prob-
ability dynamics, that makes the events of interest
occur more frequently. The sample value is then ad-
justed to make the final estimate unbiased. However,
choosing any change of measure that makes the event
of interest occur frequently is not enough; how it is
made to happen more frequently is also very impor-
tant. For example, an arbitrary change of measure
that makes the rare event happen more frequently
may give an estimator with an infinite variance. Thus
the main problem in importance sampling is to come
up with an appropriate change of measure for the rare
event simulation problem in hand. Different classes
of stochastic models may use changes of measure that
are totally different in nature.

Another method which makes rare events happen
more frequently is a technique introduced in Bayes
(1970). In standard simulation, the stochastic pro-
cess being simulated, wastes a lot of time in a region
of the state space which is “far away” from the rare
set of interest, i.e, from where the chance of it enter-
ing the rare set is extremely low. In Bayes (1970), a
region of the state space that is “closer” to the rare set
1s defined. Each time the process reaches this region,
from the “far away” region, many identical copies of
this process are generated. In simulation terminology
this is called “splitting”. Each of the split copies is
simulated till it exits back into the “far away” region.
From there on, only one of the split copies is contin-
ued until another entrance into the “closer” region.
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This way we get more instances of the stochastic pro-
cess spending time in a region where the rare event
is more likely to occur.

There are a few software based modeling tools
which use these rare event simulation techniques.
SAVE (see Blum et al. 1994) incorporates a provably
efficient importance sampling heuristic for reliability
models called balanced failure biasing. UltraSAN (see
Obal and Sanders 1994) gives the user the capability
to specify an importance sampling change of mea-
sure of his/her choice for certain classes of stochastic
models. Importance sampling methods for estimat-
ing the normalization constants of multiclass closed
queueing networks are incorporated in MonteQueue
(see Ross, Tsang and Wang 1994). A version of the
splitting method mentioned above has been imple-
mented in ASTRO (see Villen-Altamirano and Villen-
Altamirano 1994).

The rest of the paper is organized as follows. The
problem statement and the quantities to be estimated
are given in Section 2. In Section 3 we illustrate the
rare event simulation problem. In Section 4, the gen-
eral concept of importance sampling is described. Im-
portance sampling for reliability models are presented
in Section 5.1, and for queueing models in Section 5.2.
Applications of importance sampling for other types
of stochastic models have been summarized in Sec-
tion 5.3. Section 6 describes the splitting technique
mentioned above.

2 PROBLEM STATEMENT

Consider a stochastic process {.\(s) : s > 0} on state
space S. We partition S into two subsets: S =GUDB
where B is the set of system states which are rare and
of interest, and G = §/B = B. Suppose the process
reaches steady state, i.e. X(s) = N as s — oo, for
some random variable X'o,. One measure of interest
is estimating o = E(f(X..)) where f(z) = l{zen).
From the physical point of view, this is the long run
fraction of time the process spends in the rare state
B. Sometimes we may also be interested in the mean
time between visits to the set B, while the process is
in steady state. We denote this by £.

We may also wish to estimate certain transient
quantities like the fraction of time during [0,1]
the process spends in the set B, ie., a(t) =
E(f;=0 f(X(s))ds/t). Let 3 be the first time the
process hits the set B. Then E(rg) and P(7p < t)
are also measures of interest in many situations.

3 RARE EVENT SIMULATION

Here we illustrate mathematically the basic prob-
lem of rare event simulation. Let Z be a random
entity with probability measure p(-) on its sample

space 2 and let R be a rare (under p(-)) subset of
the sample space. The problem may be to estimate
v = P(R) = Ep(l{zer)) where the subscript in the
expectation denotes the probability measure assigned
to the random variable Z. Systems which have rare
events are characterized by a rarity parameter ¢ so
that as ¢ — 0, ¥ — 0. For example, in a reliability
system with highly reliable components, ¢ may be the
maximum failure rate of components in the system.
For a queueing system with buffer size B, we can set
¢ = 1/B so that as ¢ — 0, the buffer overflow event
becomes rarer. In standard simulation, we generate n
samples of the random variable Z, say Z,,Z2,...2,
and estimate y by using ¥ = >, lyz,er})/n. For
fixed n, the half width (HW,) of the confidence
interval is (approximately) directly proportional to

VVarp(1zery) = Vv — v* = /7 for small y. Con-

sequently, the relative error RE, = HW, /7, is di-
rectly proportional to \/Var,(1{zer))/7- It is then
easy to see that RF, — oo as ¢ — 0. Equivalently,
the simulation run length n, required to achieve a
fixed relative error, RE,, goes to oo as € — 0.

A related problem is the estimation of ¥ =
E,(W(Z)1(zery) where W(-) is some function with
domain . Since R is rare, this expectation tends
to be small and difficult to estimate. From the repre-
sentation of ¥ given above, it will not seem surprising
that fast simulation techniques that work for the es-
timation of v also seem to work for 1.

4 IMPORTANCE SAMPLING

Let p/(+) be another probability measure on the sam-
ple space of Z, so that p/(z) > 0 whenever p(z) > 0
for all z in R. Then

Y= / Agerpple)ds = Bp(liem L (2) (1)
1S

where the subscript in the expectation denotes the
probability measure assigned to Z and Ly/(-) is the
likelihood ratio, i.e., Ly/(z) = p(z)/p'(z) whenever
p'(#) > 0 and 0 otherwise. Equation (1) suggests that
we can use p'(-) instead of p(-) to generate n samples
of Z and then use v = Y1, lyz,eryLp(Zi)/n as an
unbiased estimator of 4. This is called importance
sampling. The problem is to choose a p’(-) so that

Van/(l{Zen}Lp/(Z)) < Var,,(l{ZER}).

In most rare event simulations with importance sam-
pling, an attempt is made to come up with changes
of measure p/(-), so that the relative error, RE}/,
remains bounded as ¢ — 0. This is known as the
bounded relative error (BRE) property.

To apply importance sampling to estimate the mea-
sures given in Section 2, one first has to represent
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these measure in terms of small probabilities and ex-
pectations of the type given in Section 3. First con-
sider the case where {\'(s) : s > 0} is regenerative
(see Crane and Iglehart 1975). Pick a regenerative
state that is frequently visited and let 7 be the corre-
sponding regenerative cycle time. Define W to be the
amount of time in a regenerative cycle that the pro-
cess spends in the rare set B. Then a, may be repre-
sented as the ratio E(W)/E(7). In most cases E(7) is
not small and 1s thus easy to estimate using standard
simulation. However most samples of W are zero and
thus we need importance sampling to estimate E(W)
accurately. Relating to Section 3, the Z corresponds
to a random sample path in a regenerative cycle of the
above stochastic process, the p(-) is the original prob-
ability measure on these sample paths, R is the set
of these sample paths that visit B, and W(Z) = W
is the amount of time the sample path Z spends in
B. Thus the rare event simulation problem becomes
estimating E,(W(Z)l(zer)) = E,(W(2)) = E(W).
The changes of measure p’(-) used are such that they
induce a drift in the stochastic process towards B so
that the chance of the rare event R happening is in-
creased. However, once B is visited, the stochastic
process is simulated with the usual dynamics so that
the regenerative cycle completes soon (Goyal et al.
1992).

Given that at time ¢ = 0 the system is in the re-
generative state, the F(7g) defined in Section 2 may
be represented as the ratio E(7min)/P(R) (see, e.g.,
Keilson 1979). Here P(R) is the probability of the
rare event R (i.e., of hitting B in a regenerative cy-
cle) and 7, is the time to hit either B or the re-
generative state given that the process starts in the
regenerative state Again, F(7n:n) Is easy to estimate
using standard simulation. However, we have to use
importance sampling to estimate P(R).

The other transient measures are naturally in terms
of small probabilities and expectations, if the time
horizon 1s small. However, for large time horizons,
the importance sampling variance may be grow ex-
ponentially with time (see Glynn 1994). In those
cases, some other representations of the transient
measures may prove useful (see, e.g., Shahabuddin
and Nakayama 1993).

Now consider the case where {X(s) : s > 0} is non-
regenerative (this also applies when the regenerative
cycles are very long, so that the regenerative simula-
tion procedure cannot be used effectively). One can
still use a ratio representation of the steady state mea-
sure. Let A be a state or a set of states that are visited
quite frequently in the simulation. Define an A-cycle
to start whenever the process enters the set A. Then
the ratio formula & = E(W)/E(Z) still holds where
now W = W(Z) is the amount of time the process
spents in the set B in an A-cycle and 7 = 1(Z) rep-
resents the duration of an A-cycle, given that the

process is in steady state (e.g., Cogburn 1975). The
actual simulation procedure uses a splitting technique
combined with batch means (Nicola et al. 1993). We
first run a few A-cycles so that the system (approx-
imately) reaches steady state. After that, each time
an A-cycle starts, we split a process from the original
process. The split process uses the change of mea-
sure as prescribed by the importance sampling. We
use this split A-cycle to get a sample of W(Z) and
L,(Z) and use the original A-cycle to get a sam-
ple of 7(Z). Since the successive A-cycles are gener-
ally not independent, we have to use the procedure of
batch means to build confidence intervals. A similar
splitting idea was used in Al-Qaq, Devetsikiotis and
Townsend (1993) for estimating bit error rates over
certain communication channels.

We can also use a ratio-representation to estimate
B which was defined in Section 2: § = E(7)/E(N)
where N is the number of visits to B during an A-
cycle (Glynn et al. 1993). Again, E(N) is the small
expectation which we have to estimate using impor-
tance sampling.

5 APPLICATIONS OF
SAMPLING

IMPORTANCE

5.1 Reliability Models

Consider the fairly general class of reliability models
considered in Blum et al. (1994). These are systems
consisting of components that fail and get repaired.
Components are not independent in the sense that
they share repairmen, they have operational/repair
dependencies and there may be failure propagation
(i.e., the failure of a component may cause another
component to fail instantaneously). If we assume that
component failure times and repair times are expo-
nentially distributed, then the system can be mod-
elled as a continuous time Markov chain (CTMC)
{X(s) : s > 0}. For example, in the simplest such sys-
tem, X(s) = (X1(s), Xa(s),..., Xn(s)) where X;(s)
may be considered to be the number of components of
type ¢ that are up and N is the total number of com-
ponent types. A transition of the CTMC corresponds
corresponds to either a component failure transition
or a component repair transition. In mathematical
models of highly reliable systems, the failure rate of
a component, say component i, is represented as A;€"
where ¢ is the rarity parameter, and r;, ); are posi-
tive constants (i.e, independent of €). The r;’s may be
different if the system is “unbalanced”, i.e., compo-
nents have failure rates that are of different orders of
magnitude. Since the repair rates are comparatively
large, they are represented by a constant.

First consider steady state estimation. For this
purpose one can simulate the embedded discrete time
Markov chain of the CTMC. Let P = {P,;, : z,y €
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S} denote the transition matrix for this Markov
chain. The regenerative state is taken to be the
one in which all components are up. Relating to
Section 2, the B corresponds to the set of states of
the CTMC in which the system is considered failed.
The changes of measure used here are called “fall-
ure biasing heuristics” and correspond to simulating
the system using a new probability transition matrix
P’ = {P], : z,y € §}, with the property that for
any states z, y, Py, > 0if Pry > 0. If the state
B is visited before the regenerative cycle completes,
then the transition matrix P is used for the remainder
of the cycle. The intuitive idea behind these heuris-
tics is to artificially make failure transitions happen
much more frequently than in the actual system. The
original heuristic was introduced by Lewis and Bohm
(1984) and is now called simple failure biasing in the
literature. However, this heuristic does not have the
BRE property for unbalanced systems (Shahabuddin
1994). A modified technique called balanced failure
biasing (Goyal et al. 1992, Shahabuddin 1994) has
been proven to have the BRE property in Shahabud-
din (1994). The following compact representation has
been taken partly from Nakayama (1994).

Algorithm: Balanced Failure Biasing

e From any state z, let Ap(z) (cf. Ag(z)) be
the set of transitions (z,y) that correspond
to component failure (cf. repair) transitions.
Let pr(z) = ) yeap(s) Pey and pr(z) =
ZyEAR(z)PI-y' Define I,y = 1 if Py > 0 and
I, = 0 otherwise. For any state z, define np(x)
to be the number of failure transitions possible
(under P) from z. Let p*, 0 < p* < 1, be a
constant. In practice, 0.5 < p* < 0.9.

e If pr(z) > 0 then

Palzy/nr(z) if (z,y) € Ap(z)
P, =< (1=p.)Pry/pr(z) if (z,y) € Ar(z)
0 otherwise

o If pp(z) =0, let P, = zy/nr(z) if (z,y) €
Ap(z) and Py, = 0 otherwise.

A crucial assumption used in Shahabuddin (1994)
to prove the BRE property of balanced failure bi-
asing is that all states of the Markov chain, except
the state in which all components are up, have at
least one component repair transition. In situations
where this assumption does not hold (e.g. deferred re-
pair), balanced failure biasing may give infinite vari-
ance. This was shown in Shahabuddin and Juneja
(1992) who also developed an improved failure bias-
ing scheme for the fast simulation of such systems.
Another failure biasing heuristic based on the concept

of failure distances may be found in Carrasco (1992).
A detailed investigation of the conditions on systems
under which failure biasing heuristics give bounded
relative error may be found in Nakayama (1993) (and
some references therein). However, so far it appears
difficult to use these results in practice. Some addi-
tional results in this regard may be found in Strick-
land (1995). For results and references on derivative
estimation the reader is referred to Nakayama (1995).

In the case of estimating transient measures in time
interval [0,¢] like the unreliability and the expected
interval unavailability, just using failure biasing is not
enough. We also have to use some mechanism to en-
sure that the first transition happens before time .
This is termed forcing and was introduced in Lewis
and Bohm (1984). It is shown in Shahabuddin (1994)
and Shahabuddin and Nakayama (1993) that forcing
combined with failure biasing produces BRE in the
estimation of the reliability and the interval availabil-
ity for cases where ¢ is small (¢ is either of the same
order as the regenerative cycle time or smaller). How-
ever for cases where t is large the relative error tend
to infinity. For such cases, a method based on esti-
mating Laplace transform functions of the transient
measure is studied in Carrasco (1991) and another ap-
proach based on estimating bounds to the transient
measure (rather than estimating the actual measure)
is studied in Shahabuddin (1994) and Shahabuddin
and Nakayama (1993).

For non-Markovian models, an importance sam-
pling approach based on re-scheduling failure events is
given in Nicola et al. (1991). Two other approaches,
one based on uniformization, and the other which was
called exponential transformation, were introduced
for estimating the unreliability in Heidelberger, Sha-
habuddin and Nicola (1994) and shown to have the
BRE property under fairly general conditions.

Some work has also been done in the area of esti-
mation of unreliability in a network with independent
components. A network is modelled as a graph whose
edges represent the components. The network is said
to fail if the connectivity between two (disjoint) sets
of nodes is lost. Again, if the components are highly
reliable, then the chance of a network failure is very
small. The reader is referred to Fishman (1986) and
Lieber, Elmakis and Rubinstein (1994) for some im-
portance sampling schemes used in this area.

5.2 Queueing Models

5.2.1 Queues with LI.D. Renewal Input
Stream

Changes of measures for queueing models, that have
the BRE property, have been proposed and stud-
ied in Cottrell, Fort and Malgouvres (1983), Parekh
and Walrand (1989), Sadowsky (1991), among many
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others. Most of these provably efficient changes of
measure in the above papers apply to a single server
queueing system where the arrival stream constitutes
an 1.1.d. renewal process. The measures of interest
have been the tail distribution of the steady state
waiting time and queue length in systems with infi-
nite buffer; the steady state customer loss probability
in systems with finite buffer. The change of measure
1s based on “exponentially tilting” the arrival and the
service distribution. Let Fa(-) (cf. Fs(-)) denote the
original interarrival time (cf. service time) time dis-
tribution and let M4(-) (cf. Mg(:)) be its moment
generating function. The new inter-arrival time (cf.
service time ) distribution Fy(-) (cf. Fs(:)) corre-
sponding to the provably efficient change of measure,
1s determined as follows:

Algorithm: GI/GI/1 Queue

o Let 6* be the solution of M4(—-0)Ms(0) = 1,
6> 0.

e Then dF,(z) = e " %dF4(z)/Ma(0*) and
dFs(z) = e® *dFs(z)/Ms(6*).

For the M/M/1 queueing system with arrival rate
A and service rate p (with A/g < 1) this change of
measure corresponds to interchanging the arrival rate
and the service rate. Note that this makes the queue
unstable so that large queue lengths are reached much
faster. Sadowsky (1991) presents a provably efficient
change of measure for the GI/GI/m queueing system.

Extensions of these provably efficient changes of
measures to networks have been few and apply mainly
to Markovian tandem networks (e.g., Glasserman and
Kou 1994). Heuristical approaches for fast simula-
tion of more general networks, based on a large de-
viations approach, may be found in Parekh and Wal-
rand (1989) and Frater, Lennon and Anderson (1991).
Ross, Tsang and Wang (1994) have used importance
sampling to estimate the normalizing constant which
occurs in the solution of multi-class product form
closed queueing networks.

5.2.2 Queues with Correlated Arrival Pro-
cesses

Provably efficient changes of measures for discrete
time queues with autocorrelated arrival processes
were studied in Chang et al. (1994) and continu-
ous time versions in Juneja (1993) (see, e.g., Lehto-
nen and Nehriyen 1992 for analogous concepts in the
context of risk analysis). Fast simulation of Markov
fluid models of such queues have been studied in Ke-
sidis and Walrand (1993) and Mandjes and Ridder
(1995). Chang et al. (1994) also linked fast simu-
lation techniques for ATM switches to the concept
of effective bandwidth (see, e.g., Chang 1994) of the

arrival sources, thus generalizing the class of source
models that can be handled and allowing the study
to be extended to the class of intree networks. Some
critical concepts in Chang et al. (1994), dealing with
effective bandwidths in intree networks, were also de-
veloped independently in de Veciana et al. (1993).
Since the literature on this subject is very vast, we
just present the algorithm for a simple discrete time
queue that is fed by a Markov modulated arrival pro-
cesses (MMAP).

Consider a single discrete time queue system that
is fed by K external sources, each of which is a
MMAP. For simplicity, we consider the simplest form
of such an arrival process. Let the kth source be
in any of the M states {0,1,...My_1}. Let Yj(t)
be the state of the kth source after time ¢, and let
pe(,5) = P(Ye(t + 1) = j|Yi(¢t) = i). Let the num-
ber of packets a source transmits per unit of discrete
time, ax(t), be equal to the current state of the source
and let a(t) = Zle ar(t) be the total arrival to the
queue in that unit of discrete time. We assume that
the queue has the capacity to dispatch ¢ packets ev-
ery unit of discrete time. Let B denote the size of
the buffer. Then the number of people in the system
at time t is governed by the following Lindley type
recursion: Q(t+ 1) = (min(Q(t) + a(t + 1), B) —¢)*.
The problem is to estimate the steady state proba-
bility of packet loss when ¢ = 1/B is small. In this
case we let the set A (corresponding to an A-cycle)
to be the set of states of the extended Markov chain
(Q(t),Y1(t) .. . Yk(t)) that have Q(t) = 0. Let Ag ¢ be
the spectral radius of the matrix that has elements
Ak(i,7) = €% pi(i,j) and let hy o(j) be the corre-
sponding eigenvector. The provably efficient change
of measure corresponds to doing a sort of exponen-
tial tilting to the MMAPs (the service rate c remains
unchanged). The new transition matrix for the kth
MMAP, pi.(7,j), can be determined as follows:

Algorithm: Queue with MMAP arrival

e Let 6* be the solution of the equation
k=1 10g(Ak6) = c and 6 > 0.

® Then pi(7,j) = €% pi (3, j)hr,0(§)/ Mk o 6(3).

5.3 Other Areas

For references to applications of importance sampling
to risk analysis and sequential analysis the reader is
referred to Lehtonen and Nyrhinen (1992) and Sieg-
mund (1985) respectively. The concepts used in both
the above areas are similar to those used for queue-
ing models. Recently, importance sampling has been
used for estimating various measures of service (stock-
out frequency, fill rate, and average backlogs) in mul-
tistage production inventory systems. Standard sim-
ulation is no longer effective for estimating these mea-
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sures when the inventories become critical, i.e., when
either the back order penalty is very large, or the
target service level is very high. Glasserman and
Liu (1994) developed importance sampling changes
of measure for such systems and proved BRE type
properties.

Importance sampling has also been used in the esti-
mation of the bit-error rate in digital communication
systems. The reader is referred to Al-Qaq, Devetsiki-
otis and Townsend (1993) for a list of references in
this area.

For importance sampling applied to general
Markov chains, refer to Andradottir, Heyman and
Ott (1995), Glynn (1994) and references therein.

6 THE SPLITTING METHOD

This method was introduced in Bayes (1970). In-
cidentally, Bayes (1970) referred to this method as
“importance sampling”, as it does require sampling
from a region of importance. However, in the current
literature, the definition of importance sampling no
longer seems to include this method. Hence we think
that a more appropriate term for it may be “impor-
tance splitting”.

Consider the stochastic process {\'(s) : s > 0}
mentioned in Section 2, where the problem is to es-
timate «. The usual method is to first simulate the
process till it (approximately) reaches steady state.
After that, we simulate it for a interval of time t. For
convenience, assume that at s = 0 the process is in
steady state. Then ¥ = (f::o f(X(s))ds)/t gives an
unbiased (one sample) estimate of a. One can use
either the replication-deletion method or the batch
means method to construct confidence intervals.

Let C C S be such that B C C, and the steady
state probability of being in state C' is not as small
as . By an “upcrossing” we will mean the stochastic
process going from C(= S/C) to C. A “downcrossing”
will mean the opposite. The following is a polished
version of the algorithm in Bayes (1970).

Algorithm: Splitting Method

1. Set 7 = 0. Set simulation time s = 0, and the
cumulator sum = 0.

N

. Simulate one copy of the process until the next
upcrossing. Update j — j+ 1 and set s; to be
the absolute time of this upcrossing. If s; < ¢,
update s — s;; otherwise end the simulation and
go to Step 5.

3. At s; generate R split processes, each with the
starting state X'(s;) and simulate each split pro-
cess till a downcrossing. Let A, be the amount of

this elapsed time (after s;) for the rth split pro-
cess and let Y, be the amount of time in the inter-
val [s;, min{s; + A, t}] that the rth split process
spends in the set B. Let A = Zle A,/R. Up-

date sum — sum + S°F Y./R. Advance the
simulation time to s — s + A.

4. If s > t then end the simulation and go to Step
5; otherwise set .\'(s) equal to the state at the
downcrossing of the Rth split path. Go to Step
2.

Let ¥ be the amount of time in the interval
[0, min{s;,¢}] that the process spent in B. Form

the estimator & = (Y + sum)/t.

<

Bayes (1970) called the boundary between C and C
the “importance level”. A possible generalization of
this scheme to the case of multiple importance levels
was also mentioned.

Hopmans and Kleijnen (1979) investigated the
above algorithm in detail (for the one dimensional,
one level case) using a regenerative assumption, i.e.,
the system regenerates each time we have an upcross-
ing (or a downcrossing). In that sense the algorithm
which they use is slightly different in its execution
then what is given above. By conducting a vari-
ance analysis they determined the optimum R. They
applied it to a complex telecommunication system
model but they were not very satisfied with the im-
provement in efficiency obtained. Villen-Altamirano
and Villen-Altamarino (1991) revisited this idea and
proposed a slightly modified schemes to the one in
Bayes (1970) which they called RESTART. The only
difference from the Bayes (1970) algorithm is that in
Step 3, instead of s being updated to s + A, it is
updated to s + Ar. They also did a variance analy-
sis of their scheme to determine the optimum R and
the optimum placement of the level, and then com-
puted the efficiency gain obtained. Experiments us-
ing this scheme produced significant variance reduc-
tion on particular examples. Generalization of the
scheme and the variance analysis to the multi-level
case was done 1n a later paper (see Villen-Altamirano
and Villen-Altamirano (1994) for a complete set of
references).
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