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ABSTRACT

We critically review the work that has been done in
applying basic, smoothed and parametric bootstrap
methods to simulation experiments. We develop a
framework to classify bootstrap methods in this con-
text and use it to compare various bootstrap schemes.
Most bootstrap methods are hard to analyse theoret-
ically. An exception is the parametric case for which
a detailed analysis can be carried out. An interest-
ing result in this case is that, whereas in standard
statistical experiments bootstrap samples give only
information about the variance of a statistic and not
1ts mean, this turns out not to be so in simulation ex-
periments. Thus parametric bootstrap samples can
be advantageously included in estimates of the re-
sponses of interest.

1 INTRODUCTION

Suppose we wish to assess the variability of a statistic
of interest calculated from a random sample. Boot-
strapping is a way to do this by numerical compu-
tation. It works by (re)sampling, with replacement,
from the original sample, then calculating the statis-
tic for each these bootstrap (re)samples. Under cer-
tain general conditions, the sample variability of these
bootstrap statistics turns out to have nearly the same
variability as that of the original statistic, and so can
be used to estimate it.

Bootstrap methods have been proposed in many
areas of statistical inference. We review the work
that has been done in applying basic, smoothed and
parametric bootstrap methods in the special case of
simulation experiments. This seems a particularly
appropriate use, as simulation experiments also use
sampling techniques to reconstruct the statistical dis-
tributions of quantities of interest. We develop a
framework which can be used to classify and consider
bootstrap methods in this context.
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It is important to realise that, in simulation ex-
periments, bootstrapping can be used in two quite
distinct ways.

Firstly, it can be used to assess variability within
the simulation experiment itself. Here, input vari-
ates, generated from given probability distributions
are used in simulation runs to produce response out-
puts of interest. If we equate this simulation output
with the observations obtained in a statistical experi-
ment, then bootstrap sampling of this simulation out-
put can be used to assess its variability. We shall call
this the known input distribution case.

Secondly, bootstrapping can be used to assess that
variability of the simulation output stemming from
use of finite-sized real data to estimate or construct
the input probability distributions of the simulation
model. Here the bootstrap methodology is different
from the first case because there are two sources of
statistical variation: that due to the variability of the
observed true data and that due to the variability in
generating input variates used in the simulation ex-
periment itself. We shall call this the unknown input
distribution case.

We shall consider both cases. In particular we dis-
cuss the statistical properties of the bootstrap tech-
nique for the second case, showing that it differs sig-
nificantly from that of the first.

Nelson (1990) points out that bootstrap methods
are computationally expensive, thus ruling them out
for use in complex simulations. However this not a
problem in the known input distribution case, as the
bootstrap resampling does not involve any more sim-
ulation runs; these runs being the expensive part of
the overall process.

We also consider a method of parametric boot-
strapping, in the unknown input distribution case,
which can be regarded as an integral part of the origi-
nal simulation scheme. This method of bootstrapping
yields information about the mean of the response
of interest as well as its variability. This improved
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efficiency should make it worth considering even in
complex simulations.

There is a third possible use of bootstrapping: to
validate stochastic input models. Here classical non-
parametric bootstrapping cannot be used. However
if parametric bootstrapping is used then this pro-
vides a ready means of carrying out the validation.
Space prevents discussion of this application here. We
hope to describe the technique and its extension to
goodness-of-fit and to sensitivity analysis clsewhere.

2 THE SIMULATION MODEL

We assume a framework that highlights the depen-
dence of the simulation on input variates. We shall
assume that the simulation requires s streams of vari-
ates. The variates used in one simulation run will be
denoted by

&= (&1, &2, 8 i=1,2,.s. (1)

We shall assume that the total number of variates
used is [, with the ith stream using [; ~ «;l, where
«; 1s a fixed proportion of the total. This allows us
to think of ! as being a generalised run length, and
to consider asymptotic results, where the run length
becomes large, by letting [ — co. When referring to
all the variates we use the notation:

2= (61,82, .6

The output of interest from the simulation run, y, can
be regarded as a function of the ¢;:

y =y(E). (2)

We consider two possible formulations. The first is
where each sample is drawn from a joint distribution
with probability increment DF;(&;), i = 1,2,...,s.
This is the non-parametric case. The second is where
each sample is assumed to have a joint distribution
with probability increment DF;(&;,60), i = 1,2,...,s
which depends on a vector 8 = (6,,03, ...,0,) of p pa-
rameters. We call this the parametric case. The input
distributions are known, in the non-parametric case
once the F; are specified, and in the parametric case
once both the F; and the values of the parameters
have been specified.

In what follows we shall include 8 in the notation
so that we can consider the parametric case explic-
itly. The non-parametric case is recovered from the
parametric case, simply by ignoring the dependence
on 6.

It will be convenient to regard the input variates
as having been obtained by the transformation

& = &i(u;,0) (3)
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of a corresponding set of independent uniform U (0, 1)
variates:

u; = (UiI,UiQ; ...,u“.) = 1,2, sy S (4)

We assume the uniforms to be independent, but the
components of the €; are not necessarily so. The out-
put (2), can then be regarded as a function of the
u;:

y=1y(U,0), (5)

where
U: (UI,UQ,...,U,). (6)

We assume that the purpose of the simulation ex-
periment is to estimate the expected value of y, which
is a function of @ only:

n(8) =E(y,0) = / ¥(U,6)dU. (1)

We consider the overall simulation experiment as be-
ing made up of r runs. The responses or outputs from
these runs will be written as:

v (U;,0) = n(0)+e;(U;,0) j=1,2,....7. (8)

These outputs depend on the parameter vector 8. The
“error” variable e; is the random difference between
the jth simulation run output and n(6). We shall as-
sume E(ej) = 0 and Var(e;) = 72/l for j = 1,2, ...,7.
Note that we emphasize the dependence of Var(e;)
on the run length [.

Assuming that 6 is fixed for the moment, we have

Ely; (U;,0)] = n(0), (9)

and the mean of the outputs
y=9(U1,Us, ..U, 0) = Y y;(U;,0)/r,  (10)
j=1

1s an unbiased estimator of n(6) with
Varly) = 7%/rl. (11)

Note that this is the total variance of the response
only when the input distributions are completely
known. In this case there is no problem in estimating
this variance. We can use the sample variance of the
y;’s, which will be denoted by s®.

The more interesting situation is when the F; are
not completely known. We assume, in this case, that
there is available a sample of empirical data for each
stream:

X; = (zil)‘riﬂ)'“yxin,) 1= 1,2, LS. (12)
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As in the case of the [;, we assume that the total
number of observations is n, and that n; = gin, is a
fixed proportion, f3;, of the total. This allows us to
consider asymptotic results as sample size becomes
large simply by letting n — co. We write

X:(xl,)cg,...,xs). (13)

We shall consider how use of these values to estimate
F; in the non-parametric case, or F; and 6 in the para-
metric case, affects the variability of the response, and
in particular how then to estimate Var[y].

3 A POSSIBLE CONFUSION IN TERMI-
NOLOGY

There is the possibility of confusion in terminology
when considering bootstrapping in simulation experi-
ments. In classical statistical experiments, bootstrap-
ping is a second stage technique. In the first stage a
statistic, which we can view as being the response
of interest, is calculated from data obtained from a
statistical experiment. Bootstrapping is then used,
as an alternative to standard statistical analysis, to
assess the variability of the response. Placed within
this framework, the simulation runs of a simulation
experiment constitute the first stage; the simulation
output being the response of interest. It just happens
that this first stage is a bootstrap method in its own
right, because the runs are based on sampling of input
variates, and this is a bootstrapping technique. If we
therefore apply bootstrapping in the second stage to
assess the variability of the simulation response then
this could be viewed as a double use of the bootstrap-
ping technique.

Cheng (1994) discusses how the simulation exper-
iment itself can be regarded as a bootstrap method.
To avoid confusion we shall not make explicit use of
this interpretation but reserve bootstrapping termi-
nology only for the second stage process of estimating
the variability of the response output.

4 THE STANDARD BOOTSTRAP

The standard bootstrapping technique works as fol-
lows. Let
X = (x1,%Xq, .., X,) (14)

be a (multivariate) sample of actual data, the x; hav-
ing the form (12). From this a statistic (response) of
interest, t(X), 1s calculated. We wish to estimate
the variability of ¢(X). The bootstrap method for
doing this is as follows. Form b bootstrap samples.
Each bootstrap sample is obtained by sampling, with
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replacement, [; values from the original sample x;,
1 =1,2,...,s

X} = (X}, X}a, X)) k=1,2,..,b.  (15)

Calculate the bootstrap response, t*(Xj), for each
bootstrap sample, and obtain the sample variance of
these bootstrap responses. This sample variance esti-
mates the variance of {(X). The process is illustrated
in Figure 1.

X — t(X)

N
X7 — uXj)
N N

Figure 1: Basic Bootstrap Method

4.1 Known Input Distribution Case

In the case where the input distributions are known,
we can view the outputs y;, j = 1,2, ..., r as being the
observed sample. Thus we simply let X =y = x, (as
s = 1 in this case), and t(X) =g. All the techniques
of standard bootstrapping are now available in this
situation; see Efron and Tibshirani (1993) for an in-
troduction; see also Hinkley (1988); DiCiccio and Ro-
mano (1988).

Applications involving the construction of boot-
strap confidence intervals using this structure are dis-
cussed by Shiue et al. (1993), who investigate their
properties through simulation studies.

An interesting variation of this case is also consid-
ered by Shiue et al., where the y;, j = 1,2,...,r are
taken to be bivariate output from regenerative cycles
in the operation of a queue.

Other variations are possible. Kim et al. (1993b)
consider the case where the output of the simulation
1s a time-series, obtained from a single run. Whereas
Shiue et al. ensure independence of the y; by using
regenerative cycles, Kim et al. achieve this by clip-
ping the time-series into binary form and then tak-
ing consecutive runs of zeroes and ones as being the
(now independent) y;. The y; can then be bootstrap
(re)sampled. Additional methods for handling such
autocorrelated timeseries are considered by Kim et
al. (1993a). A good review of these and other non-
parametric methods, as they apply to simulation, is
given by Yicesan (1994).
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4.2 Unknown Input Distribution Case

Observe that we can apply the hasic hootstrap
method in a simulation experiment where the raw
data X is unaltered, and is to be used directly as the
input to produce the response, y(X) = t(X). This is
represented by the top line in Figure 1: X —(X).
The other lines, Xip — UX;), k= 1,2,..,b, rep-
resent the b simulation runs using hootstrap sam-
ples X} obtained directly by resampling the original
data, X, and then using the resulting hootstrap as
input to the simulation which then produces the re-
sponse y(X}) =t(X};). This is the simplest example
of the non-parametric bootstrap applied to estimate
the variation due to using finite sample-size data to
construct input distributions; X and Z being one and
the same in this case.

5 SMOOTHED BOOTSTRAPPING

In the standard bootstrap, the resampled observa-
tions are restricted to the values observed in the orig-
inal sample. When the original sample size is small,
the tail behaviour may be particularly unrepresenta-
tive. To try to overcome such difficulties, methods
have been suggested for smoothing the empirical dis-
tribution function (EDF). The standard method of
smoothing is depicted in Figure 2. The only differ-
ence from the scheme of Figure 1 is that a smoothed

EDF, F,, is first constgucted_ from §ach sample x;, for
t=1,...,s. We write F = (F}, ..., F;.) These are then
sampled to give bootstrap samples, X7, of the same

size as X, for use as inputs to the simulations.

X — y(X)
N
F(.)

Figure 2: Basic Smoothed Bootstrap Method

5.1 Known Input Distribution Case

This 1s basically similar to the basic bootstrap casc
depicted in Figure 2, except that smoothing is done
prior to resampling. We again view the outputs y;,
J = 1,2,...,r as being the observed sample; and let
X =y =%, and t(X) =y. The techniques of stan-
dard smoothed bootstrapping are now available in
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this situation; see Efron (1982); Silverman and Young
(1987); Banks (1989); Young (1990).

5.2 Unknown Input Distribution Case

This i1s an interesting case. A smoothing method tai-
lored for the simulation context has been given by
Barton and Schruben (1993), and a slight generaliza-
tion of it is depicted in Figure 3.

The empirical real data, X, is as in (14). The orig-
inal simulation experiment is depicted in Figure 3
by the top line: X —F(.) — Z; — y;(Ej) — v
ferc, as before, F = (13‘1,“.,]:}) denotes smoothed
EDF’s constructed from each sample x;, ¢ = 1,...}s.
The cxperiment comprises r runs. In the jth run,
the input variates, &;, ¢ = 1,...,s, used in the run
are sampled from these smoothed EDFs; y;(Z;),
j =1,...,s are the outputs from the runs, and y their
mean. In the bootstrap versions a bootstrap sample,
X%, is formed from X. The bootstrap simulations:
X; —Fi()— E — y(E;k) — Y precisely mimic
the original simulation experiment.

X—=F() =5 —5(E) =7 j=1..r

\ -

X; —Fi() — 8}, — u(E}) — i

N \
P F) — E = u(E) — e — 8]

N v
X; —F0)— 25, — uE,) — 0

Figure 3: Smoothed Simulation
Bootstrap Method

Barton and Schruben (1993) also consider an al-
ternative where a uniform resample is obtained - this
suggestion is in effect the method suggested by Ru-
bin, 1981, for a Bayesian resample.

A refinement to this method has been suggested by
Bratley, Fox and Schrage (1987) who suggest adding
an exponential tail to the smoothed empirical cdf.
The bias error introduced by this tail has been theo-
retically analysed for certain queues by Shanker and
Kelton (1994).

There is an important difference between the
schemes of Figures 2 and 3. An additional element
of random crror is introduced with the smoothed
bootstrap of Figure 3 through the sampling step,
F(.) — &; in the original simulation and hence in
the bootstrap version, l.T‘i.(.) — 7. Analysis as to
how this additional variation must be taken into ac-
count seems difficult however. Barton and Schruben

(1993) investigate this point through some simulation
studies.
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6 THE PARAMETRIC BOOTSTRAP

The intractability of the multinomial distribution of
bootstrap samples, has meant that most authors have
resorted to simulation studies to report their proper-
ties. We consider now the parametric bootstrap. This
is amethod that has received less attention in the sta-
tistical literature. However in the simulation context
it seems a worthy contender, as most simulations use
parametric input models. Moreover it proves possi-
ble to give a fairly detailed analysis of the propertics
of the method. The case where the parameters are
known is rather elementary. We consider therefore
only the case of inknown distributions.

6.1 Unknown Input Distribution Case

Suppose the original samples, x;, (14), are assumed
to depend on a set of unknown parameters but are
otherwise supposed known. The x; are used to fit the
parameters; the simulation then uses input variates
sampled from the fitted distributions. The method is
depicted in Figure 4. It will be seen that the struc-
ture is like that of the smoothed bootstrap method
except that fitted distributions, rather than smoothed
distributions, are used to generate the input variates.

(This scheme is not the only possible.  One
might obtain bootstrap resamples, X7, directly from
X, rather than sample from the fitted distribution,
F(.,4). But we run into the difficulty of a scarcely
tractable multinomial resampling distribution. We
do not consider this version further here.)

)—Ej—vyj(Ej)—'y j:l,...,T‘

/E«———Q}.n—x
ES

Xt — 01, F(,0;) — E;, — yn(E5) — o

7

N
2

X; — 03, F(,01) — B — ui6(E0) — s — s

7

Xy — 0;,F(,0;) — 25, — yin(E5,) — 0y
Figure 4: Parametric Simulation
Bootstrap Method

As in the smoothed case of Figure 3 the additional
variation in y introduced through sampling of input
variates must be taken into account. It proves much
easier to carry out the analysis in the scheme depicted
in Figure 4. We concentrate on this case In the re-
mainder of the paper.

7 VARIANCE ERROR

We consider how variability of the simulation output
is affected by the use of sampled data in the para-
metric scheme of Figure 4. Specifically, in this case,
we wish to assess the effect on the variance of y of
estimating 0y, the unknown true parameter value.

Consider first. the basic simulation experiment de-
picted in Figure 4 by the top line: X — 6 —F(.,0)—
Z; — yi(Ej) = 9, J=1,...,7. When 0p is estimated
then the expression (8) for the observations should be
written as:

u(Z5) =y (U;,0) = n(0)+¢;(U;,0) 44
j=12,..,r

where both § and U; are random. The variance of
the estimate of the expected response can be written
as

Var(yi2, vi(U;.0)/r) =

+E{Var [5 2, w3 (U, 0)/7 | 01}
9 7

Cheng (1994) shows that, to first order, (17) reduces
to

Var(y25 -, v (Uj,0)/r] = 1/ (60)TV(8,)n' (00)
+72/rl
=ao%/n+12/0l
(18)
where V() is the covariance matrix of the estimates
of the 6;, and

7' (60) = In(0)/90 s, - (19)

The first term on the right in (18) is simply the
variability resulting from estimating parameters from
empirical data, whilst the second term is the variabil-
ity arising from the simulation experiment.

Confidence intervals for n(fg) can be constructed
by directly estimating the variance terms in (18). The
difficult term is o?/n. Cheng (1994) discusses how
the gradients (19) can be estimated, by perturbing
the parameter estimates one at a time. This pertur-
bation method is expensive if the number of param-
cters is large. A conservative estimate is obtained
by a simultaneous perturbation. Such a method has
heen considered by Cheng and Holland (1995b). The
hootstrap method of estimating ¢%/n is given in Fig-
ure 4. This shows the way the bootstrap experiment
is constructed: F(.,é) — X5 — é;, F(.,é;) — E;k —
Yin(ZETx) — Yk The fitted cdf F(.,f) is used in each
bootstrap experiment to generate a bootstrap sample,



176

X7, of the same size as the original X. The bootstrap
sample is then used to estimate 6, producing a boot-
strap estimated cdf, F(.,0%), which is then used to
generate input variates for the bootstrap simulation.
Each bootstrap experiment comprises 7* runs, which
may be different from the number of runs, r, in the
basic experiment. We let the length of the hootstrap
runs be {*, which may be different from [, the length
of the basic runs. The observations can be written as

Yik(2) = yie(Ujk, 01) = 08 )+ex(Uji, 0;)
J=1,2,..r"
(20)

Each bootstrap experiment yields a bootstrap mean

-
Yr = Zyjk/r*.

j=1

We denote the average of these means by

b
J=0""Y o
k=1

Cheng and Holland (1995a) show that, to first or-
der, this has conditional variance:

Var[g| 0] = (o/n+12/r*1*)/b. (21)

This quantity is estimated by s2, the sample variance
of the bootstrap means, g, k =1, ...,b.

The simulation variance, 72/r*!*, can be estimated
from any of the b bootstrap experiments, or from the
original experiment (which estimates 72/rl). Thus
we can obtain an estimate of o /n.

An interesting and important feature of the scheme
in Figure 4 i1s that we have {wo possible estimators of
n(0y): y and §. In standard statistical applications,
the variance of § cannot be reduced by combining
with the bootstrap y;’s as y is already sufficient for
6. But the simulation experiment stage injects a vari-
ability into the estimation of (fy) that is not present
in the standard statistical case.

Cheng and Holland (1995a) show that the uncon-
ditional variance of g is to first order:

Var[y) = o?/n+ (e?/n+ 12/r*1*)/b. (22)
and that the variance of the estimator:
j=ag+(1-a)j
is minimized when

_ o¥/n+ r2/rl
Tobr2frl4 o /n 4 T/ rrle

& = (min
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The minimized value
Va"'min(g) = 02/” + C"min7'2/’f'l (23)

is smaller than either Var(y) or Var(y).

These results allow us optimally to allocate com-
puting time, if this is scarce, between the original
experimental runs and the bootstrap runs. We de-
duce, from the form of (23), that it is best to allocate
only sufficient time to achieve a prescribed accuracy
in estimating o?/n from the bootstrap runs. The re-
mainder of the effort should be concentrated in the
criginal experiment to keep the variability of the es-
timate of the response obtained from these runs as
small as possible.

8 CONCLUSIONS

It should be realised that bootstrapping methods are
an alternative to, rather than a replacement for, more
standard statistical procedures. Nevertheless in sim-
ulation experiments, as in standard statistical ex-
periments, there are situations where bootstrapping
seems an attractive option. In particular the para-
metric bootstrap is especially amenable to analysis
and seems to have the potential to provide a useful
tool for estimating how the finite sample size of real-
data affects the variability of the output of simulation
experiments.
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