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ABSTRACT

Techniques that make the minimum of assumptions
about the underlying characteristics of the simulation
output series are particularly useful for simulation
analysis. This tutorial discusses robust non-parametric
techniques with immediate applicability to such crucial
steps in simulation analysis as sampling, experimental
design, and output analysis. Algorithms are provided
for various tasks. This is a revised version of the paper
that appeared in the Proceedings of the 1994 Winter
Simulation Conference.

1 MOTIVATION

Even though the construction and execution of
simulation models have been largely facilitated by the
impressive advances in simulation packages, correct and
effective analysis of the results requires considerable care.
Since a simulation is a statistical sampling experiment,
appropriate statistical methods are essential to avoid
erroneous conclusions, ultimately leading to poor
decisions. In particular, special attention must be paid
to the details of sampling, experimental design, and data
analysis.

Considerable attention has been devoted to these
problems yielding rigorous procedures for output
analysis, mostly customized from classical statistical
techniques. The latter are based on stringent
assumptions about the properties of the output process.
Unfortunately, a large number of simulation practitioners
using high-level simulation languages have little
knowledge or interest in verifying whether the
underlying assumptions of the given technique are
satisfied by the simulation output. Moreover, these
packages do not always provide appropriate utilities for
correct output analysis. Given this environment,
methods that make the minimum of assumptions about
the stochastic properties of the output sequence are
particularly useful.
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The objective of this tutorial is to revisit an old
nonparametric technique, which addresses simulation
analysis issues in a hypothesis testing framework. The
randomization (permutation) tests were first proposed by
Fisher (1925, 1935); the computational burden, however,
had rendered such tests infeasible for practitioners. The
approach is extremely flexible in that it enables the use
of a wide variety of test statistics. Moreover, no
assumptions are needed conceming the distribution of
the sample of observations. It is, on the other hand,
computationally intensive, however, the required
computing power does not exceed the capabilities of a
personal computer. A comprehensive treatment of
permutation tests can be found in Good (1994).

This tutorial is organized as follows: Section 2
introduces the concept of randomization tests. Various
applications in simulation analysis are presented in
Section 3. Section 4 offers some concluding comments.

2 PRELIMINARIES

The problem of statistical inference within the Neyman-
Pearson framework can be described in the following
manner: some null hypothesis, Hj, conceming the nature

of the probability law governing N observations,
X1,X2,...XN, is to be tested. Some alternative

hypothesis, Hj, concerning the nature of this law is also

specified. To conduct the test, a region, w, is selected in
the sample space, €, which is such that, if the sample
point falls into ©, Hy is rejected. This is the so-called

critical region.
Adopting the notation of Box and Andersen (1955),
let X be a vector of observations (xj,X2,....XN), and let

poXp) and p1(X;) represent the probability laws under
Hg and Hy, respectively. Then w is selected such that:

M Jo poXp dXr = @,

@) Jo pi(Xp dX; is maximized
The problem is to devise exact tests of significance when
the form of the underlying distribution, po(X;), is not

known. The traditional practice is to build implicitly
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more structure into the null hypothesis. For instance,
the conventional t-test is a test of the hypothesis that
two variables have common means; moreover, they are
independently and normally distributed with common
variances. The only part of this hypothesis of real
interest is that the variables have common means; the
condition that the variables are normally distributed with
constant means and constant variances is added as a
matter of convenience, simply to be able to specify
po(Xp). As a consequence, if the null hypothesis is
rejected, it may be either due to the dependence of
variables or due to the fact that the varables are not
distributed according to the normal law. The purpose of
the randomization procedure is to construct valid tests
without having to add extraneous, but analytically
convenient, conditions to the null hypothesis.

Within this procedure, X is regarded as a member of
the set X, which contains N! samples X1,X>7,.... XN of
observations (x1,X2,...,XN) in all possible permutations.
Then the probability that Xy is observed given that it
belongs to the set X is:

PoX ) py(Xp)
PoX (1X) = 5 e

2 py(X)
=1

Thus, poXr) = poXrlX)po(X), and Jepo (X;IX)
po(X)dX; = o

The last equality is satisfied only if pp(Xp) is some
symmetric function of the observations x1,x7,...,XN.
This is possible if the observations are independent and
identically distributed; but it is not possible, if, for
instance, they are not identically distributed or are
serially correlated. If po(X;) is a symmetric function,
we have poXp = poXy) for rg=1,2...N! and
poX;1X) = I/NI.

Hence, at significance level o, an exact test of
hypothesis can be constructed by arranging that K out of
the N! permutations are included in ®, and the
remaining N!-K permutations are included in Q-o,
where K= LaN!]. Then we have

K
Ipo(x) h P, (X 0dx = %Jpo(x)dx
Q r=l1 Q

where Q represents the sample space.  While no
restrictive assumption is needed conceming the null
distribution, pg(-) a class of probability laws for the
alternative hypothesis, pj(-), has to be specified in order
to obtain a most-powerful test. Trade-offs between the
validity and power of randomization tests are discussed
in Box and Andersen (1955).
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It is also desirable to derive the permutation
distribution and make it practical to carry out tests of
significance. =~ Except for very small samples, the
calculations to determine whether the observed value of
the sample point belongs to the critical region ar
extremely tedious. In fact, the computation of the
permutation distribution or p-value results in exponential
time bounds as one enumerates all possible permutations
of the data (Spino and Pagano 1991).  In such cases, an
alternative approach is to use an approximation to the
discrete distribution of the test statistic by means of
some familiar continuous distribution for which tables
are available (Scheffé 1959). Pagano and Tritchler
(1983) and Spino and Pagano (1991) introduced
polynomial-time algorithms to compute the permutation
distribution in a matched-pairs design.  Other such
algorithms have been proposed by Edgington (1980),
and Berry and Mielke (1985). However, even with
polynomial-time bounds, the time complexity of these
algorithms may be unacceptable when the sample sizes
are large.

Another alternative is then to approximate the
permutation distribution to any desired level of precision
by sampling from the complete reference set, X, of
permutations in order to reduce the computational
difficulties and approximate p-values for larger samples
(Noreen 1989, Berry and Mielke 1985, and Edgington
1980). In other words, the distribution of the test
statistic under the null hypothesis is approximated by
shuffling the data and recomputing the test statistic.
Each shuffle generates one permutation of the variables.
One thousand shuffles can then be viewed as a sample of
size¢ 1000 from the population of all possible
permutations.

The significance of the actual test statistic for the
original unshuffled data is then assessed relative to this
empirically generated distribution. The null hypothesis
is rejected if the actual value of the test statistic for the
original data is unusually large. Noreen (1989) calls this
procedure an approximate randomization test.

Hoeffding (1952) demonstrates that randomization
tests are asymptotically as powerful as analogous
conventional parametric tests when the assumptions
underlying the parametric test are true. Validity proofs
are also provided by Foutz (1980), who also discusses
the power of randomization tests.

A similar methodology, first suggested by Efron
(1979) is bootstrapping, which proceeds as if the sample
is the population for purposes of estimating the
sampling distribution of the test statistic. That is,
artificial samples are drawn with replacement from the
sample itself.

The idea may first seem a bit odd. However, given a
sample of observations {x1,x,...,X;p}, the maximum
likelihood nonparametric estimator of the population
distribution is the one that assigns a probability mass of
1/m on each of the observations (Efron and Tibshirani
1984).  The implication is that, when the sample
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contains all of the available information about the
population, it is almost natural to proceed as if the
sample is the population.

These resampling techniques yield the following
kinds of nonparametric tests:

Permutation Test:

1. Choose a test statistic, T(X).

2. Compute T for the original set of observations.

3. Obtain the permutation distribution of T by repeatedly
rearranging the observations.

4. Obtain the upper a-percentage point of the permutation
distribution and accept (or reject) the null hypothesis
according to whether T for the original observations is
smaller (or larger) than this value.

Rank Test:

1. Choose a test statistic, T.

2. Replace the original observations by their ranks.
Compute T for the original set of ranks.

3. Obtain the permutation distribution of T by repeatedly
rearranging the ranks and recomputing the test statistic.
4. Accept or reject the hypothesis in accordance with the
upper  o-percentage point of this permutation
distribution.

Bootstrap Test:

1. Choose a test statistic, T(X).

2. Compute T for the original set of observations.

3. Obtain the bootstrap distribution of T by repeatedly
resampling from the observations with replacement.

4. Obtain the upper a-percentage point of the bootstrap
distribution and accept (or reject) the null hypothesis
according to whether T for the original observations is
smaller (or larger) than this value.

3 APPLICATIONS
3.1 Testing Random Number Generators

Random variate generation constitutes an active area of
rescarch.  Following L’Ecuyer (1990), we define a
random number generator as a structure G=(S,u,f,U,g)
where S is a finite set of states, p is a probability
distribution on S, called the initial distribution, U is a
finite set of output symbols, f:S—S is a transition
function, and g:S—U is the output function. A
generator operates as follows:

1. Select the initial state sge S according to p. Let
up < g(so)-

2. For,i=1,2,..., lets; « f(si-1)and uj « g(sy.
The sequence of observations {ug,uj,...} is the output of
the generator. The initial state s is called the seed. The
output sequence should look as if the uj’s were the

values of IID random variables, uniformly distributed
over U. An ideal generator would be such that, using

reasonable computing resources and time, it is
impossible to distinguish between the generator’s output
and a sequence of truly IID uniform variates over U.

In practice, however, this is either supported by a
theoretical basis or verified by statistical analysis.
Theoretical tests use the numerical parameters of a
generator to assess its global characteristics. Statistical
tests, on the other hand, are based on the actual output of
the generator to examine how closely they resemble IID
uniform random variates.

Approximate randomization tests can be used to this
end. Such tests are rather easy to design: any function of
a finite set of IID uniform random variables can be used
as a test statistic to define a test of hypothesis. To gain
power, the test can be repeated N times, and the
empirical distribution of the values of the test statistic
can be compared to its theoretical distribution, for
instance. A specific algorithm can be devised as
follows: (Yiicesan 1992)

1. Generate N sets of random numbers, each set
containing k numbers.

2. Sort each set. This produces a permutation of indices
ineach set. There are k! possible permutations for each
set. If the random numbers are independent, then all
permutations are equally likely.

3. Count the number of each permutation occurring for
these N sets and apply a chi-square test.

3.2 Resampling of Empirical Distributions

Stochastic discrete-event simulations are driven by
parametric or empirical distributions, typically fitted to
the observed (finite) samples. Any finite sample yields a
distribution estimate with some error. The nature of the
error in the empirical distribution’s approximation to the
true distribution function is well understood. Yet, this
eror is typically ignored in the analysis of simulation
output.

A correct statistical analysis should include an
assessment of the errors that result from using finite-
sample estimates for probability distributions used in the
simulation. Ideally, several empirical samples should be
taken and a mixed-effects analysis of variance (ANOVA)
conducted to estimate the magnitude and the significance
of the empirical distribution random effect. Such an
approach may however be costly.

A Dbootstrap resampling method provides an
inexpensive resampling approach to assess the true
estimation error (Barton and Schruben 1993). In a
Monte Carlo simulation experiment, the bootstrap
resampling method can be implemented as follows:

1. Sample, with replacement, n values from {x)

X(2).--»X(n)}, the observed data ordered from the
smallest to the largest value. Call these values v(1),
V(2)--->V¥(n)-

2. Compute an empirical distribution based on the v
sample.
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3. Repeat this process t times and run the simulation
with each of the resulting distributions to collect t
bootstrap samples of the simulation process. Perform a
mixed-effect ANOVA.

The example of an M/M/1 queue demonstrates that the
variation in simulation output due to empirical sampling
can be significant even for relatively large empirical
distributions. Resampling schemes provide an
improvement over the standard approach.

3.3 Tests for Initialization Bias

The objective here is to detect any significant change in
the mean of the output process. The null hypothesis is
that there is no initialization bias in the output mean
To test this hypothesis, a preliminary step is taken where
the output series of N observations is partitioned into b
non-overlapping batches, each of size m (N =bm). This
is done in order to control the serial correlation in
simulation output. Working with the batched process,
however, is conceptually identical to working with the
original process.

The test is applied to b batch means, rather than the
original output sequence. The batch means are further
partitioned into two groups. Initially, the first group
contains only the first batch mean, while the second
group contains the remaining b-1 batch means.

The test statistic could be the absolute value of the
difference between the grand means of the two groups.
The randomization test is applied to the batch means.

The procedure is repeated by redefining the groups.
In the second iteration, the first group contains the first
two batch means while the second group contains the
remaining b-2 batch means. The randomization test is
applied to the new groups. In the third iteration, the
first group contains the first three batch means while the
second group contains the remaining b-3 batch means,
and so on. The procedure can be continued until the first
group contains the first b-1 batch means and the second
group contains the last batch mean.

The truncation point is then determined by the
earliest iteration where the null hypothesis is not
rejected. Note that this may be the very first iteration
(implying no significant initialization bias in the output
series) or may never happen (implying that the system
has not yet settled into a steady state). This assumes
that the significance level of the test is a more or less
monotonically increasing function of the number of
batches in the first group. This is true when there is
initialization bias in the sequence; otherwise, it is
basically a random variable uniformly distributed over
the interval [0,1].

Example: M/M/]1 Oucue

This is a single-server queue with Poisson arrivals at rate
A and exponential service times at rate [L1. The system
is analyzed at a traffic intensity, p, of 0.7 to estimate
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the average customer delay in queue. Table 1 shows two
scenarios; one where the system starts empty and idle
(Wo = 0) and the other where the initial delay is sampled

from the (known) steady-state distribution (Wg ~ SS).

The total number of batches is 30 with a batch size of
500. The asterisk (*) denotes the truncation point
(Yiicesan 1993).

Wo=0 Wo~SS
Batchin| Sign. |Batchin| Sign.
Gl Level Gl Level
1(*) 0.061 1 0.515
2 0.570 2 0.765
3 0.890 3 0.880
4 0.960 4 0.635
5 0.320 5 0.905
6 0.260 6 0.135
7 0.260 7 0.425
8 0.570 8 0.150
9 0.315 9 0.270
10 0.405 10 0.270

Table 1: Significance Levels

3.4 Comparing Alternative System
Configurations

The real utility of simulation lies in comparing different
alternatives that might represent competing system
designs. Conventional statistical techniques are not
directly applicable to the analysis of simulation output
data in the of some performance measure. Such a
situation arises when a new policy is proposed to replace
the existing one. For i=1,2, let Xj; be the output of the

j‘h independent simulation run with the ith system (or
alternative policy), and let p; = E[Xj;] be the expected

response of interest under this system. It is desired to
assess the significance of the difference between the two
expected responses, namely 8=|; -L,. Law and Kelton

(1991, §10.2) describe a parametric approach for
comparing the two systems. The traditional one-way
model is xij = “"’ai"'eij for i=1,2, and j=1,2,..n

where  is the common mean, o is the so-called fixed
treatment (i.e., policy) effect, the gjj’s are IID variables
normally distributed with mean zero and unknown
variance G2 representing the random error for the jth
replication under policy i, and n; is the total number of
replications conducted under policy i. Sometimes, it is
required that 2;0; = 0. The underlying assumption of

the paired-t test (or confidence interval) is that the
differences between pairs of observations, Z; = X, -

X»j, are normally distributed. It is then necessary that
n) = np = n. It is also possible to apply the classical



Using Nonparametric Statistics 145

two-sample t-test without pairing up observations; to
obtain a valid test, however, it is necessary to assume
that Va:(le) = Var(ij). This assumption is harder to
Justify as the variances usually depend upon the specific
alternatives under consideration. Note that heuristic
approaches exist to handle the cases where variances are
unequal (Welch 1938).  Randomization tests, on the
other hand, eliminate the need to make such an
assumption altogether (Yiicesan 1994).

The randomization procedure used here assumes that,
under the null hypothesis, Hy: & = py-pp = 0, the
distribution of the m = n;+n, observations remains

invariant under all permutations. This assumption is
satisfied if the data, i.e., the simulation output, are IID.
This, in turn, is easily achieved by running independent
replications of the model.

The procedure starts with the selection of an
appropriate test statistic (e.g., the absolute value of the
difference between the mean responses under the two
policies). The value of the test statistic is computed for
the original data. Let Group i include the responses of
simulation runs under Policy i, i=1,2. Let d =
IX1-X2| be the test statistic, where Xi= (l/ni)Zinj for
i=1, 2. The significance of the observed value of the test
statistic is then assessed through a permutation test.
More specifically, the data set is permuted and the first
nj data points are arbitrarily included in Group 1 and the
remaining ny=m-n; data points are included in Group 2.
The test statistic, d, is then recomputed for the newly
formed groups. The objective is to determine, through a
large number of permutations, how unusual the original
value of the test statistic is with respect to the
permutation distribution.

Example: (s.S) Inventory Model

The example is an (s,S) inventory system from Law and
Kelton (1991, §1.5). An (s,S) inventory system is one
in which the inventory position of a single item is
reviewed periodically.  Different (s,S) combinations
correspond to different “policies” or “system
configurations.” The total operating cost for this
inventory system includes ordering, holding, and
shortage costs. Suppose that it is desired to compare the
current policy proposed policy of (20,80) in order to
improve the average total operating cost per month.

The system is simulated for 120 months under each
policy. The results of the five independent replications
for each policy, Xij, i=1,2; j=1,...,5, are listed in Table
2.

Law and Kelton (1991) construct confidence intervals
on the difference of the average total operating costs per
month under the two policies. They conclude that the
(20,80) policy results in lower costs at the 90%
confidence level.

Run | (20,40) | (20,80)
1 126.97 | 118.21
2 124.31 | 120.22
3 126.68 | 122.45
4 122.66 | 122.68
5 127.23 | 119.40

Table 2: Average Operating Cost/Month

One can also cast the problem as a hypothesis test
and assess the significance of the test statistic through an
approximate randomization test. To this end, the null
hypothesis is that there are no differences between the
two policies in terms of the average total operating
costs per month. The test statistic is defined to be d =
laverage costl - average_cost2|. For the above data, the
value of the original test statistic is given by d = 4.98.
The next task is to determine whether this difference is
significant. Since there are only 10 data points resulting
in 252 different permutations, a complete enumeration is
possible.  For illustration purposes, we apply the
approximate randomization test by randomly generating
199 permutations from the set of all possible
permutations.  The estimated significance level is
computed to be 0.030, also leading to the rejection of
the null hypothesis of no difference at 90% confidence
level.

3.5 Threshold Bootstrap

Kim et al. (1993) discuss bootstrapping techniques
applicable to autocomrelated data. They identify three
such approaches in the literature. In the first approach,
an ARIMA model is fit to the data and pseudo-series are
created by resampling residuals and adding them to the
fitted model. In the second approach, the data series is
divided into adjacent blocks of fixed length and pseudo-
data are created by concatenating blocks chosen by
resampling without replacement. This is referred to as
the moving block bootstrap. In the third approach, the
data series are resampled by concatenating blocks whose
starting point is chosen at random and whose length is
geometrically distributed with some mean p. This is
called the stationary bootstrap .

Kim et al. (1993) develop the binary bootstrap,
which resamples from the runs of zeros and ones that
comprise any binary series. By using runs rather than
blocks, they avoid the problem of selecting the block
size. Encouraged by the success of the approach, they
generalize the method to non-binary data. The technique
is as follows:

0. Generate a time series with N values.

1. Select a threshold value (eg, the sample mean).

2. Divide the series into runs that are either above or
below the threshold.

3. Create a bootstrap replication by concatenating runs
resampled with replacement. Truncate if the total length
exceeds N.
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4. Compute the desired statistic.
5. Repeat steps 3 and 4 B times.
6. Analyze the statistics as if they were coming from
independent replications.

Limited experimentation with the technique reveals a
promising performarce.

4 CONCLUSIONS

Techniques that make the minimum of assumptions
about the underlying characteristics of the output senes
are particularly useful for simulation analysis. This
tutorial discussed robust non-parametric techniques with
immediate applicability to such crucial steps in
simulation as sampling, experimental design, and output
analysis.

The principal advantage of randomization tests, or
resampling techniques in general, is the flexibility they
provide in selecting the most appropriate test statistic for
the case under study. Only mild assumptions are needed
concerning the distribution of the sample of
observations. Moreover, the present computing
technology provides ample power to widely use these
computationally intensive methods.
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