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ABSTRACT

The word “derivative” has led a ubiquitous existence
in the news in recent years. This paper gives a tu-
torial on financial derivatives and the use of Monte
('arlo simulation techniques for their pricing. We pro-
vide the basic financial terminology and key concepts
n the field, focusing on options pricing, in particular.
Although no prior knowledge of finance is assumed in
the exposition, previous experience with stochastic
simulations - generation of random inputs and basic
statistical output analysis - is requisite.

1 INTRODUCTION

My major research area is derivative estimation.
However, derivative meant in the calculus sense is not
what caused Orange County nor Barings Bank to go
under. A derwative, simply put and for the purposes
of this tutorial, is a financial instrument (or contract)
whose value is derived from the values of other instru-
ments, possibly ¢ven derivatives themselves or some-
thing more basic like the price of a stock, the value of
astock index. or the price of a commodity. We will re-
fer to the underlying instrument(s) as the underlying
asset(s). Its proper full name is derivative security.
Derivatives in the differcntial caleulus sense are also
important in finance as the so-called “Girecks,” but to
avold confusion, will heneeforth be referred to them
as sensdirities when necded.
The pricing of a financial derivative via Monte
(‘arlo simulation can be divided into two basic steps:
1. simulation of the underlving financial asset(s)
and perhaps other non-stationary parameters
(e.g., interest rate and stock price volatility)
2. evaluation of the function of those asset(s).
The second step s merely the definition of the pir-
ticular derivative. It is the first step with which we
are most concerned. In practical terms, Monte Carlo
simulation is most likely to be the preferred pricing
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technique when one or more of the following charac-
teristics 1s present:

e complicated dynamics characterizing the under-
lying stochastic processes;

o dependence of the contract on multiple state
variables;

e path-dependent contracts.

Aside from the stock dynamics itself, modeling inter-
est rates and stock price volatilities as stochastic pro-
cesses are two of the most common additional com-
plications. Dependence on multiple state variables
generally refers to dependence on a number of dif-
ferent underlying assets. Path dependence considers
functions of the entire asset price history versus just
the value at a single point in time.

Some key concepts/elements crucial in derivatives
pricing include the following:

o differential equations (partial, stochastic):

no riskless arbitrage;

o risk-neutral measure;

e geometric Brownian motion;
o Black-Scholes pricing model;
o the "(ireeks.”

We will try to provide a rudimentary understanding
of cach of these through examples.

The two most prevalent types of derivative secu-
ritics are options and futures contracts. In this tu-
torial, we will consider only option contracts, which
can be found as traded securities on the public stock
exchanges (c.g., on the Chicago Board Options Ex-
change (CBOE)) or as privately contracted between
fwo or more parties (c.g., a contract between an air-
line and a jot fuel supplier to hedge against fluctua-
tions in fuel prices). In particular, we will with little
loss of generality, assume that the underlying asset is
a stork.
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2 SOME BASIC BACKGROUND

The key components for pricing a stock option con-
tract are the strike price, the expiration date, the
current stock price, the stock volatility, the risk-free
interest rate, and the dividends (if any). Without
loss of generality, we will define the “current” time as
time 0. We begin by defining the following variables:

o S5y 1s the stock price at time ¢,

e Sp is the initial stock price,

e 7 is the annualized riskless interest rate (com-

pounded continuously),

e u 1s the drift rate of the stock,

e o is the volatility of the stock,

e I is the strike price of the option contract,

o T is the lifetime (expiration date) of the option
contract,

e J; is the net present value of the return of the
option at epoch t,

o (' denotes the net present option value.

A call option on a stock gives the right to buy the
stock at a specified price (the strike price) within a
specified period of time (the erpiration date). A put
option on a stock gives the right to sell the stock. A
European option can only be exercised at the expi-
ration date T', whereas an American option can be
exercised at any time up to and including the expi-
ration date. In addition, one can either buy (long)
or sell (short) the option itself, creating the following
four basic (undiscounted) positions:

long call: (S — K)*;
long put.: (K = 5p)t;
short call: —(S, - K)*;
short put.: —(R = ST,

The price of a European call is given by

-T
exp {—/0 r(t)dt} (St — I\')+}

= e TE[(Sr - K)T],
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where the second equality holds if the interest rate is
assumed constant over the hcrizon. An option which,
if it were exercised immediately, would generate a
positive cash flow is said to be in the money; oth-
erwise, it is oul of the money. Thus, for a (long) call
option, an in-the-money option at cpoch ¢ is one in
which S; > K.

The original intent of an options contract was to
reduce risk, in contrast to its present notoriety. Con-
sider the following example:

Example: I'uel oil is presently $1 per gallon. The
fuel oil distributor also offers an option contract to
purchase the fuel oil a year from the present at the
price of $1.10 per gallon , at a cost of $0.05 per op-
tion for 1 gallon. A company believes it will need 1
million gallons of fuel oil in a year, but cannot afford
to purchase the fuel at the present time, due to cash
flow constraints, for example. It might buy a mil-
lion options, for a total of $50,000, to hedge against
a possible drastic upward turn in the price of fuel oil.

In cssence, the option provides a kind of insurance
against unexpected drastic fluctuations in the under-
lying price. If the price had in fact doubled, then
the company would have saved itself $950,000. If the
price went down, on the other hand, the company
would just choose not to exercise its option, losing
$50,000. A futures contract, in contrast, would have
committed the company to purchase the fuel at the
$1.10 price.

Presently, options attracts three types of traders:
hedgers — those just described, speculators, and ar-
bitragers. It is the second type which has caused
the furor reported in the media. Options give such
investors the ability to leverage money, as in the fol-
lowing simple example.

Example: The price of stock ABC is presently $50
per share. In addition, there is a corresponding call
option available at the strike price of $50 and expi-
ration date three months away, at a cost of $1 per
option. If the stock goes to $60 in three months,
then the holder of the stock would earn $10 per $50
invested or a 20% profit (ignoring transaction costs),
whereas the exerciser of the option would earn $9 per
$1 invested or a 900% profit!

These investors then speculate on future movements
of indicators such as stock prices or broader indices,
world currency exchange rates, or national interest
rates. The third class of traders are arbitragers,
traders who look for discrepancies in different markets
which allow them to obtain a riskless profit through
simultaneous transactions in these markets.

Example: If the exchange rate between the United
States and (ircat Britain is $2 per pound, and stock
ABC is selling for $50 a share in the U.S. and 20
pounds a share in Britain, there is an obvious differ-
cnce of $10 a share that an arbitrager could exploit.
for a riskless profit. This is an example of the concept
of riskless arbitrage.

A major assumption that is made in derivatives pric-
mg is the absence of riskless arbitrage. In essencc,
this is a statement of market efficiency, for if such
an opportunity were to exist, it would be quickly
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exploited and thus subsequently eliminated through
market movements. In practice, there may be minute
opportunities that disappear once transaction costs
are figured.

There are very few closed-form analytical results,
the most famous onc being the Black-Scholes for-
mula to be discussed shortly. Oftentimes, approxima-
tions based on variations of thesce model are also pro-
posed. However, for all practical purposes, numerical
methods must be employed to do derivatives pricing.
There are basically three diflerent approaches taken:

e numerical analysis of the partial differential

cquations characterizing the derivative (finite
difference methods);

e binomial trees;

e Monte Carlo simulation.

The former two are beyond the scope of this tutorial.
Good references include Hull (1993), Stoll and Wha-
ley (1993), Gibson (1991), and Cox and Rubinstein
(1985). Only the book by Hull (1993) includes any
discussion of Monte Carlo simulation, despite the fact
that the technique is widely used in practice.

The ingredients for valuation of a call option based
on a single stock via Monte C'arlo simulation translate
roughly into the following:

1. simulate the stock price dynamics, S;,0 <t < T

2. evaluate e =7 (f(S;,0 <t <71)— K)¥,
where f is some function and 0 < 7 < T represents an
exercise time. The interest rate and volatility param-
eters 7 and ¢ may also be stochastic processes which
need to be simulated. Options based on multiple
stocks would simply involve simulating a set of stocks
and allowing f to depend on the multiple paths. We
discuss some specific examples now.

Examples:

e TSy — K)t
TS, = KT

European,

American

T
et / Sydl — W)t
JO

Aslan,

e~ (S —min{s,0< 1< Tt lookback.

In order to estimate the value of an European option,
one would simply simulate the stock until time T, re-
turning Sp — A if Sp > K and 0 otherwise. This
would be repeated a sufficient number of times with
a different random number seed for simulating the
stock, with confidence intervals formed. The Ameri-
can option problem is more difficult, because there
are early cxercisc option decisions which must be
made. Assuming this could be determined, then the
procedure is similar to European option valuation.

Fu

However, alternative methods have been proposed,
as well, that avoid making these decisions explicitly.
In the Asian option valuation, one would need to ac-
cumulate stock prices at various points along the sim-
ulation, and use that to compare to the strike price;
thus, this is a path-dependent contract well-suited to
Monte Carlo simulation. Otherwise, the procedure
is identical to the Iluropean option valuation. Simi-
larly, in the lookback option is also path dependent,
as the “strike price” in the payoff function here is not
the usual a priori specified constant, but rather the
minimum of the simulated stock price over the entire
horizon.

Thus, what remains is a description of simulating
the dynamics of a stock price and other parameters.
The celebrated Black-Scholes model prices a Euro-
pean option on a non-dividend-paying stock whose
price S; assumed to follow the dynamics given by the
stochastic differential equation

dS; = pSydt + 05,dZ;4, (1)
where dZ, is the standard Wiener process, also known
as Brownian motion. This equation also serves to de-
fine the usual meaning of drift and volatility. The sec-
ond term in the equation is called geometric Brownian
motion, because dS;/S; follows Brownian motion as
opposed to just Sy itself (which would not be appro-
priate, as it would allow negative values for S; unless
a reflective boundary were added). Risk-neutral val-
uation justifies setting g = r, i.e., in a risk-neutral
world, the expected return on all securities must equal
the risk-free interest rate. The justification of this is
one of the most important results in option pricing
(see, e.g., Cox and Ross 1976 or Harrison and Pliska
1951 for a more technical martingale argument).
Monte Carlo simulation of a stock following the
dynamics of (1) is done by updating the stock price
at t + At from the price at ¢ in the obvious way via
AS; = S AL+ 05,2V AL, (2)
where Z ~ N(0,1) is a standard normal random
variable, and the appropriate size of At must be de-
termined. The flexibility of simulation, however, al-
lows one to easily handle other price dynamics, when
the choice of geometric Brownian motion does not
seem justified. The use of geometric Brownian mo-
tion, however, leads to analytical tractability, as the
stochastic differential equation (1) can be solved ex-
actly. The solution is found by an application of Ito’s
Lemma, ylelding a lognormally distributed random
variable

Sy = Soexpl(r — o?/2)t + 0 \/12]. (3)
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Note that the expected (compounded) return over a
finite period is r — ¢?/2 versus the differential rate r
expressed in (1), and that the starting price Sp is a
scale parameter for the stock price S,.

If one were interested in only a single point, such
as the terminal price Sp in the case of a Buropean
option, then only a single random number would have
to be generated for every replication estimate. If,
however, one were interested in multiple points, say
1 <ty < ... < t, = T(tg = 0), then the result
(3) must be implemented in the correct (Markovian)
manner:

Incorrect: Generate Z; ~ N(0,1) 1.i.d.

Return S;, = Spexp((r — o2/2)t; + o /1; Zi).

Correct: Generate Z; ~ N(0,1) 1.1.d.

Return S;, = Spexp[(r — o /2)t; + 0 3"\ _; /AL Zj],

where At; =t; —¢;_1.

Although both methods give the appropriate distri-

bution, only the second method correctly preserves

the property of independent increments, as well.
Equations analogous to (1) are often used to model

non-stationary stochastic interest rates and volatili-

ties (cf. Hull and White 1987, Johnson and Shanno

1987), e.g.,

do = uaadt-{-aaadea),
dr = y,rdt—}-cr,-rdZt(”,

with the subscripts and superscripts indicating the as-
sociated drift, volatility, and Brownian motion com-
ponents.

In the Black-Scholes model, the interest rate and
stock volatility are assumed to remain constant, so
the only stochastic process is the stock price itself.
Under these assumptions, the following partial dif-
ferential equation can be derived by using a hedging
argument to be described later:

0C 450 4 Lprg 00

ot TS 20 T 052
where (' is the value of the option contingent on the
stock price .S. To solve for the European call option,
for example, we would apply the boundary condition
('=(S—HK)* att =T, which leads to one of the ana-
lytical closed-form Black-Scholes valuation formulas:

C = So®(dy)— Ke "Td(dy),

where
P In(So/R)+ (r+0*/2)T
1 - U\/T )
In(So/K)+ (r —o?/2)T
= dy—oVT,
T e

and ®(-) is the standard normal c.d f.

dQ:

3 SENSITIVITY ESTIMATES

The concept of hedging risk was touched on earlier.
Hedging positions in options is of crucial importance
to financial institutions. By keeping certain positions,
a portfolio can e made relatively insensitive to large
changes in the parameters affecting the option, such
as the asset price and volatility and the interest rate.

Example: The delta of an option (or a derivative
sccurity in general) is defined as the sensitivity of
the option price with respect to the underlying asset,
AC'/8S. Assume that the present delta of a call stock
option is 0.5, with the price of the option $1 and the
underlying stock price $50. Then, an investor who
has sold 10 option contracts (sold in increments of
100, for an option to buy 1000 shares total) could
hedge by buying (0.5)(1000)=500 shares of the stock,
so if the stock price goes up by $1, the long position
would gain $500, offsetting (approximately) the loss
from the short call option position. Such a position
is called a delta neutral position, and the strategy is
called delta hedging.

Using this terminology, the Black-Scholes partial
differential equation (4) was derived using a delta-
neutral position and setting the return on that po-
sition equal to the risk-free interest rate, assuming
no riskless arbitrage opportunities. Because the delta
changes over time, the hedge has to be rebalanced pe-
riodically (continuously in the Black-Scholes model).

In any case, it is clear that similar hedging strate-
gies can be pursued with respect to other parame-
ters, as well. A summary of the most commonly used
“(irecks” in hedging are the following:

ac
W )
aA e
as 95%”
ac
ot
ac
Ja
Aac’
=

A =

The implication for simulation is that gradient esti-
mation techniques such as the likelihood ratio method
and perturbation analysis (cf. Ho and Cao 1991,
Glasserman 1991) can be used here to obtain better
and more efficient estimates. Derivation of such al-
gorithms were developed in Broadie and Glasserman
(1993) and Fu and Hu (1995).
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4 VARIANCE REDUCTION

Variance reduction techniques are very fruitfully em-
ployed in the pricing of financial derivatives. The pri-
mary techniques employed are techniques well-known
and utilized in stochastic discrete-event simulation:

e common random numbers;

e antithetic variates;

e control variates;

e importance sampling
The use of antithetic variates needs little further dis-
cussion, as it 1s implemented in the usual straightfor-
ward way, by employing pairs of random numbers in
the simulation replications. We will discuss the other
three techniques in more detail by providing examples
of their use.

Common random numbers is sensibly employed in
estimating different prices for an option which differ
in the settings of the various parameters, e.g., strike
price or interest rate, and for use in the usual finite
difference estimates of the Greeks of the last section.

Control variates have been very successfully ap-
plied for variance reduction. Boyle (1977), in the
paper which first introduced Monte Carlo simula-
tion techniques for the pricing of financial derivatives,
demonstrated dramatic efficiency improvements for
various examples.

Importance sampling can be fruitfully employed for
cases where the option is likely to be far out of the
money. This is analogous to problems in rare event
stochastic simulation, where the rare event here cor-
responds to the option finishing in the money, since
most of the time, the simulation will return 0.

5 ASIAN OPTIONS

Asian options are options on the average asset price.
This average could be arithmetic or geometric. The
latter affords the luxury of tractability in the case
that the underlying stock price follows geometric
Brownian motion. Furthermore, in theory, Asian op-
tions can bhe either continuous time or discrete time,
but in practice, only discrete time can be realized.
The growing popularity of these contracts, especially
in over-the-counter exchanges, stem from the risk re-
duction achieved by averaging over a time period, ver-
sus dependence on a single (or few) points in time.
The arithmetic version of Asian options proved dif-
ficult to price analytically until the recent work of
Geman and Yor (1993), which provided the Laplace
transform of the value with respect to the strike price.
In contrast, the geometric version is much easier to
tackle analytically, because for geometric Brownian
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motion, the expressions end up involving sums of in-
dependent normal random variables. The arithmetic
version was recently inverted by Geman and Kyde-
land (1995) using the fast Fourier transform, and by
FFu, Madan, and Wang (1995) using a simple Euler al-
gorithm. Simulation results can also be found there,
where the dramatic efficiency improvements (in terms
of reduction in the standard error of the estimates)
are demonstrated through the use of various control
variates, including the geometric average.

Again, the analytical results for this difficult path-
dependent security assumed a constant volatility and
interest rate, and were done for a single underlying
asset. Furthermore, the analysis did not yield the
price directly but a Laplace transform, for which the
numerical inversion was a non-trivial exercise. It is
not too hard to see natural extensions which would
create significant obstacles for analytical methods,
but would present no substantial additional compu-
tational burden on Monte Carlo simulation methods.

6 AMERICAN-STYLE OPTIONS

In this section, we illustrate how simulation opti-
mization techniques can be used in derivative pricing
by considering an American call option, refuting the
claim that “Monte Carlo simulation can only be used
for European-style options” (Hull 1993, p.363). Basi-
cally, if the pricing problem is viewed as an optimiza-
tion problem, there are American-style options which
can also be priced by using Monte Carlo simulation
in conjunction with gradient-based optimization tech-
niques such as those described in Fu (1994ab).

We consider a stock which distributes dividend
D; at time t;,5 = 1,...,9(T), where n(T) is the
number of ex-dividends distributed during the life-
time of the call contract. Following standard mod-
els, we assume that after each ex-dividend, the stock
price drops by the amount of the ex-dividend, i.e.,
St;» = 5,- — D;. For notational convenience, we also

denote tg = 0,ty7)41 = T. We will assume that the
ex-dividend amounts { D; } are known (deterministic).
Although an American call option can be exercised
at any time before the expiration date T, under the
assumption of a frictionless market, it is well-known
that the option should only be exercised, if at all,
right before an ex-dividend date or at the expiration
date, i.e., only at one of the ¢;’s. Thus, we can assume
that a threshold exercise policy is adopted: there is
a stock price s;(> L) associated with t; such that
the option is exercised if (and only if) S,- > s;. The
European call option can be thought of the special
case of s; = oo for all j < n(T).
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The sample performance can be written as

nT) |i-1
Jr=eTT Z H 1{S,- <s;}| 1{S,- > si}
i=1 |j=1 ’ )
n(T)
(St‘ _ [\'> er(T—t.) + H I{St- < Sj}(ST _ [\')+
. ioi ;

The option pricing problem can then be viewed as
an optimization problem, whereby the option value
is the point at which the expected return E[Jr(8)] is
maximized with respect to the vector of threshold pa-
rameters § = [s1,..., sp(7)]. To determine the optimal
setting of the threshold parameters, we incorporate
a gradient estimate V¢ E[Jr(6)] into a stochastic ap-
proximation algorithm, where the “best guess” of the
optimal setting 1s updated iteratively via

01 = o (0n +anTJn ), (5)

where 6, is the parameter value at the beginning of
iteration n, Vi, = [Vidn - VPJ,)]T Is an estimate
of VJ(8,) from iteration n, a, is a (positive) sequence
of step sizes, and Ilg is a projection onto @. When
finite differences are used to estimate V.J(6,), (5) 1s
called a Kiefer-Wolfowitz algorithm; when a direct
(possibly unbiased) estimator is used for V.J(6,), (5)
is called a Robbins-Monro-like algorithm. Since
the problem is a maximization problem, the stochas-
tic approximation iteration (5) is the positive version
of the recursion. The basic underlying assumption in
applying stochastic approximation is that the original
problem can be solved by finding the zero of the gradi-
ent, 1.e., by finding 6., the optimal exercise threshold
level, such that Vi E[Jr(0)] = 0. Of course, in prac-
tice, this may lead only to local optimality. The nec-
essary unbiased gradient estimator is derived by using
the technique of smoothed perturbation analysis in
Fu and Hu (1995). Simulation results reported there
indicate that the algorithm converges quite quickly,
using much less effort than is needed to simply esti-
mate an option payoff to within a penny. In other
words, the additional effort needed to estimate an
American option using Monte Carlo simulation over
what was nceded to estimate a European option was
negligible.

We note that the procedure described here is tai-
lored to a threshold-based policy, whereas the exis-
tence of multiple state variables usually implies that
the optimal policy is far more complicated. Such pric-
ing problems can often also be formulated as stochas-
tic dynamic programs, which are then solved by re-
peated use of Monte Carlo simulation in the back-
wards recursion. This approach has been pursued by

various rescarchers in the finance community, led first
by Tilley (1993), but it is clear that using a forward-
based technique like simulation for a backwards al-
gorithm can lead quickly to combinatorial compu-
tational complexity. Another simulation-based ap-
proach which has some resemblance to the binomial
method as well is taken by Broadie and Glasserman
(1995), who derive upper and lower bound estimates
for the security price that converge asymptotically to
the true price.

7 EXOTIC OPTIONS

Other types of so-called “exotic” options include the
following:
o lookback options — dependence on the maximum
or minimum of the stock price during a given
interval;

e barrier — dependence on the stock price hitting
certain barrier levels during a given interval;
e maximum or minimum of two or more stocks;
e compound options — options on options;
e Bermuda - early exercise allowed only on certain
days;
Aside from being exotic, these types of options are
also particularly difficult to price using analytical
methods, whereas it is clear that aside from the early
exercise feature, they are particularly suited to Monte
Carlo simulation, because they depend on multiple
state variables and/or are path dependent.

8 CONCLUSIONS

We have given a brief tutorial on derivatives pric-
ing via Monte Carlo simulation. Through examples,
most of the important principles for derivative pric-
ing in general have been illustrated at a very elemen-
tary level. In addition, the most fruitful areas for
applying Monte Carlo simulation have been outlined.
Although the Monte Carlo simulation technique is
widely applied in practice, most users are not expert
simulationists. Thus, this author feels that there are
many opportunities for the simulation community to
contribute to making the application to this domain
more efficient, particularly in variance reduction tech-
niques, sensitivity analysis, and path-dependent op-
tions.
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