Proceedings of the 1995 Winter Simulation Conference

ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

INTRODUCTION TO SIMULATION

Andrew F. Seila

Terry College of Business
The University of Georgia
Athens, Georgia 30602-6255, U.S.A.

ABSTRACT

The purpose of this tutorial is to introduce the ba-
sic concepts of simulation, specifically discrete event
simulation. Reasons for using simulation as a tool for
decision making are presented, along with the process
of conducting a simulation study. Types of available
simulation software and statistical problems and con-
siderations in simulation are also reviewed.

1 WHAT IS SIMULATION?

Computer simulation is the focus of the Winter Simu-
lation Conference. This tutorial presents the author’s
view of this subject and thus represents his experience
and 1nterests. Over the past several years, excellent
introductory tutorials have appeared in the Proceed-
ings (Thesen and Travis 1991, Shannon 1992, Gogg
and Mott 1993, Pidd 1994). The reader is referred to
these for alternative views of the subject of simula-
tion.

The term “simulation” has been used to mean quite
a number of things. Usually it refers to a realization
of a representation of some larger, more complex ac-
tivity. For example, engineers build simulations of
physical systems such as a ship’s flow through water.
Aircraft pilots are trained on flight simulators which
are physical devices that recreate the response of the
craft to various actions the pilot might take, and allow
the pilot to learn how to control the aircraft. Video
games can be considered simulations. Physical sys-
tems such as manufacturing systems as well as more
abstract systems such as computer networks can be
simulated on a digital computer. All of these sim-
ulations use a model to represent the behavior of a
system that may or may not exist and that is gener-
ally much larger, costlier and more complex than the
model. The model may be physical, as in the cases of
the aircraft simulator, or it may just be represented
as a computer program, as in the case of the manu-

=1

facturing and computer network simulations. In all
cases, the key idea is that the simulation is an alter-
native realization that approximates the system, and
in all cases the purpose of the simulation is to analyze
and understand the system’s behavior under various
alternative actions or decisions.

A simulation in its simplest form is just a sam-
pling experiment that is performed using a model.
In all of the examples in the previous paragraph, we
can think of the simulation as sampling the behav-
lor of the model. In some cases, such as the aircraft
simulation, the sampling is done continuously over
time; in others, such as the manufacturing systems
and computer networks, the sampling is done only at
certain points in time. In this paper, the term simu-
lation is used to refer to a sampling experiment that
1s performed on a digital computer, and also to the
numerical, statistical and programming methodology
associated with this activity.

1.1 Systems and Models

A system is a set of interacting components, or en-
tities. Generally, the components work together to
achieve some objective. Systems we commonly en-
counter include hospitals, airport check-in and board-
ing facilities, telecommunications systems such as the
telephone network, highways and the criminal justice
system. These systems are large and complex, and
would be difficult and expensive to experiment with
directly. A model is an abstract and simplified repre-
sentation of a system. The model represents the most
important system components, and the way in which
they interact. A stochastic model is a model whose
behavior cannot be predicted with certainty, but is
subject to randomness. Most models that are an-
alyzed using simulation are stochastic. The descrip-
tion of these models includes probability distributions
for the values of variables that cannot be known with
certainty. In manufacturing systems, for example, the
times when machines will breakdown, or the lengths



of time required to repair the machines are usually
unknown. In computer communications systems, the
number of packets that will be transmitted and ex-
actly when they will be transmitted are also random.
In both cases, the model must describe the proba-
bilistic structure of these processes.

1.2 What Types of Systems can be Simu-

lated?

Simulation has been used to analyze a very large
variety of system. For evaluating the performance
of manufacturing systems, simulation has come to
be the dominant methodology, and special modeling
tools and simulation software have been developed
just for application to these systems. The confer-
ence has a special track just for manufacturing ap-
plications and another track for general applications.
Other systems that have been simulated include
transportation systems (railroad, naval, highways
and air transportation), computer/communications
systems (multiuser, multitasking computer systems,
computer networks, telephone networks), military
systems (warfare, logistics, personnel), agricultural
systems (harvesting, logistics), public service systems
(hospitals and other medical delivery systems, pub-
lic health systems, emergency vehicle dispatch, police
dispatch and other parts of the criminal justice sys-
tem, hazardous waste management and nuclear power
safety), and business processes (financial and other
business transaction systems) among others. Simu-
lation i1s a methodology that is not specific to any
particular application areas, but can be applied to
any system that can be modeled using the modeling
concepts that we will discuss later.

2 WHY USE SIMULATION?

2.1 Simulation as a Tool for Decision-Making

All simulations are developed to determine system
performance under alternative designs or environ-
ments, with the objective of optimally designing or
operating the system. For example, we might want
to determine if it is cost-effective to purchase a high-
volume computer-controlled manufacturing machine.
If the machine will eliminate a bottleneck and in-
crease the production rate substantially, then we
should buy it, but if it just transfers the bottleneck to
another place, without increasing the overall produc-
tion rate then we should not buy it. A simulation will
allow us to estimate the production rate under both
decisions without having to experiment with the real
system.

Sella

2.2 Implementing and Evaluating Decisions

All systems have parameters that define the quanti-
tative and qualitative characteristics of the system.
These parameters can define, for example, the num-
ber of trunk lines in a communications system, the
arrival rate for calls, the mean number of busy trunk
lines, or the mean number of calls waiting. We can
classify parameters into two classes: input parame-
ters and output parameters. The number of trunk
lines and the arrival rate of calls, which are examples
of input parameters, must be specified in order to pro-
vide enough information for the simulation program
to operate.

Decisions may be represented by the values of some
input parameters. For example, if we set the number
of trunk lines to 7, then we have decided to oper-
ate the system with 7 trunk lines. In other cases,
decisions may be represented by system logic. For
example, we may wish to compare two policies for
equipment replacement or preventative maintenance.
These policies must be specified within the logic of
the system, not by just setting some parameter val-
ues. Thus, decisions may be either part of the model
input or model structure.

Output parameters are values that are determined
by the system and usually are used to specify the per-
formance of the system. For example, the mean num-
ber of busy trunk lines tells us how heavily utilized
the system is. Other output parameters might be
the mean waiting time for calls entering the system,
or the mean number of calls waiting in the system.
All of these output parameters tell us somethig about
how well the system is operating, and therefore are
the “answers” that we seek from the model. When
the simulation is running, it will produce data that
can be used to estimate the values of these output
parameters.

2.3 Simulation vs. Other Alternatives

An alternative to simulation is to use probability the-
ory to compute the output parameters. Both are le-
gitimate methods to analyze system performance, but
there are fundamental and important differences be-
tween them. Mathematical analysis is limited to a
small number of relatively simple systems; whereas,
simulation can be used to analyze any system whose
operation can be described in terms of a model.
When the mathematical approach is used, parame-
ters can usually be computed exactly, at least to the
precision of the computer. Simulation, on the other
hand, requires that we first collect data from the sim-
ulation run, then use the data to estimate the output
parameter. Thus, the best answer we can get from



Introduction to Simulation

a simulation is a confidence interval giving the likely
range of values of the parameter.

2.4 Reasons for Using Simulation

Simulation is one of the most frequently used system
analysis methods. There are a number of reasons for
this. First, simulation can be used to analyze mod-
els of arbitrary complexity. The complexity of the
model is limited only by the ability of the modeler and
the methodology to represent the system’s complex-
ity, and the computer’s capacity to load and run the
simulation program. The investigator’s primary in-
terest might be to experiment with the system model
in order to find the design that maximizes one or
more performance measures, or simply to study the
behavior of the system. Experimenting with the real
system is often out of the question because of the cost
to implement system changes, or the potential dan-
ger that could result from some policies being tested.
Often the modeling effort is useful in itself. The pro-
cess of model development requires the system to be
studied and understood well. This study frequently
uncovers problems that were unknown or not under-
stood before. Relative to other methodologies, simu-
lation can carry more credibility with decision mak-
ers. For example, an animation, which is a visual
representation of the model, can be used to demon-
strate that the model actually approximates system
performance. Thus, a simualtion feels more “real”
than other methods for system analysis. Finally, the
same set of simulation methods can be used to an-
alyze any stochastic system, regardless of structure
or complexity. If a mathematical approach is used,
it must usually be tailored to the particular system
being modeled.

3 STEPS IN A SIMULATION STUDY

The process of using simulation to analyze a system
can be divided into the following logical steps:

1. Problem Statement and Objectives. A
clear, concise statement of the decision prob-
lem, or the reason for developing the simulation
model, should be given first. The modeler should
know what types of decisions are anticipated and
what system is involved. These two items will
dictate virtually every other aspect of the mod-
eling and analysis process.

2. Systems Analysis. The modeler must thor-
oughly understand the operations of the system
to be modeled. If the system exists, this can
involve a careful study including observation of

©

system operations and interviews with the per-
sons managing the system. At this point, sys-
tem components and their interactions should
be identified and described as a prelude to the
model building stage. All potential input pa-
rameters and random variables involved in the
model should also be identified here.

. Analysis of Input Distributions. Each ran-

dom variable in the model must be examined,
and the form of its distribution and the distribu-
tion parameters be determined.

. Model Building. Here, we actually construct

the model by deciding which details of the system
to include in the model and which to exclude.
The model must be a simplified representation
of the system, but we want to include enough
detail to provide a good approximation of the
system behavior.

. Design and Coding of the Simulation Pro-

gram. Once the model has been specified, it
must be implemented in the form of a computer
program. The nature of this step will depend
greatly upon the specific software used to imple-
ment the model. We will discuss the simulation
software in a later section.

. Verification of the Simulation Program.

Verification is the process of making sure that the
simulation program is a faithful representation of
the intended model. This is basically a “debug-
ging” process, but it can be complicated by the
fact that the simulation program involves ran-
dom variates whose values cannot be predicted
in advance.

. Output Data Analysis Design. Our ultimate

plan is to use the simulation program to estimate
one or (usually) more system performance mea-
sures, i.e., output parameters. Before this can
be done, we have to decide exactly what data
will be collected from the simulation run(s) and
what statistical procedures will be used to com-
pute the performance measures.

. Validation of the Model. Before the model

can be used for decision making, we must make
sure that it adequately approximates the behav-
ior of the intended real system. Model validation
is the process of making sure that this is the casec.
Usually, this step involves collecting data from
the real system as well as the simulation, and
comparing the two to make sure they do not dif-
fer substantially. At the conclusion of this step,



10

the model should be usable as a tool to evaluate
decisions concerning the system.

9. Experimental Design. In order to use the
model to analyze decisions relating to the sys-
tem, we must decide exactly what simulation
runs will be done, using which parameter val-
ues and how long these runs will be. This, of
course, depends upon what decisions are to be
evaluated. The result of this step will be a de-
sign for the simulation production runs in the
next step.

10. Making Production Runs. Once the exper-
imental design has been set, the actual produc-
tion runs can be performed to produce the out-
put data. At this point, this step is usually a me-
chanical act. It is usually a good idea to store the
data from the production runs on files so the runs
will not have to be repeated if there is a change
in the procedures used to analyze the data.

11. Statistical Analysis of Data. Now that the
data is available and the statistical procedures
have been specified, we need to apply them to
actually compute the performance measures we
seek. It is important here to compute not only
point estimates for these performance measures
but also error estimates, since the estimates are
computed from a sample of data and therefore
are subject to sampling variation.

12. Implementation. If all of the previous steps
have been successful, we are ready to use the
results to determine which decisions provide su-
perior performance. Sometimes the model will
be used for a one-time decision; other times, it is
being developed so it will be available for other
decisions, perhaps on a regular basis. When this
is the case, the model must be implemented so
it can be used routinely in the future.

13. Final Documentation. Often, the step of doc-
umenting the project, especially the model, is
overlooked. However, this may be the most im-
portant part of the process. Even if further use
of the model is not anticipated, it is important
to document the model so that any future ap-
plications of the model can be effected without
having to recreate it.

4 MODELING METHODOLOGY

Since the systems that are modeled are generally
quite complex and dynamic, i.e., they change with

Seila

time, special techniques have been developed to rep-
resent their structure and dynamics. In this section,
we will discuss the characteristics of these models,
classify them and review some of the methods for rep-
resenting system models.

4.1 System Modeling

The system state is a collection of variables and pos-
sibly other information from the model that includes
all information necessary for the model to operate
over time. The major task in developing a simulation
of a system is to come up with a model that captures
the behavior of the system. Thus, the modeler must
first select a representation for the system state. In
some simple models, the system state could be a col-
lection of variables. For example, in a simple queue-
ing system, variables representing the number of cus-
tomers in the queue and the status of the servers (idle
or busy) would suffice. More realistic models, how-
ever, need a much richer representation for the system
state in order to capture the complexity of the model.
Most modeling approaches use the “entity-attribute-
set” paradigm. In this view, a system is composed of
entities. For example, in a hospital, the entities might
be patients, doctors, nurses, operating rooms, X-ray
equipment, etc. Entities have attributes which are
items of information about the entity. A patient may
have the attributes age, sex and type of illness. A
doctor might have the attributes specialty and shift
worked. Attributes are used to determine how the
entities interact when the system model operates. A
set (or queue) is a collection of entities, usually enti-
ties waiting for some resources so that their progress
through the system can continue. Normally, sets be-
long to the system as a whole. For example, a hospital
may have a set of patients waiting for surgery, a set of
patients waiting for treatment in the emergency room
and a set of patients occupying rooms. The system
state then includes all entities present, the values of
all of their attributes, their set memberships and any
other system variables that may be defined.

4.1.1 Continuous, Discrete and Combined
Systems

‘The modeler has two choices about how time can be
represented - as a continuous variable or as a dis-
crete variable. Some modeling approaches treat time
as a continuous variable and express system changes
in terms of a set of differential equations involving
the system state variables. In this case, the simula-
tion program numerically integrates the differential
equations to compute the sample path of the system



Introduction to Simulation 11

state. See chapter 15 of Pritsker (1986) for further
discussion of continuous models.

For many systems the system state changes only
at discrete points in time when an event occurs to
cause a change. For example, in a hospital, the sys-
tem state changes when a new patient arrives. The
number of patients waiting for admission increases
by 1, the newly arrived patient may join a queue and
other actions occur to accomodate the patient. Other
events that cause system changes are, for example,
the discharge of a patient, the placing of a patient in
a room, the beginning of surgery for a patient, the
end of surgery, etc. Between any two events, the sys-
tem state remains constant even though people are
moving and services are being rendered. Thus, to
represent the changes in the system, we only need to
describe the actions that occur in each event. This
type of model is called a discrete-event system model.

It is possible to have a combined discrete-event and
continuous system model in which the values of some
variables are controlled by differential equations and
for others the values are changed at the moments that
events occur. For example, in a steel mill, an event
occurs to cause the steel to begin heating, but the
temperature of the steel is determined by a set of
differential equations that depend upon the amount
of power applied, the starting temperature and some
random variables. The event involving pouring the
steel cannot occur until the steel exceeds a specified
temperature. Thus, the variables that change contin-
uously over time and those that change only in events
are interdependent.

In practice, even variables that change continu-
ously are evaluated only at discrete, usually equally-
spaced, points in time since digital computers cannot
represent continous functions numerically. Thus, we
can consider even the continuous-time approach to be
a special case of the discrete-event methodology, with
the events denoting an updating of the values of the
continuous variables.

4.1.2 Discrete-Event System Modeling

The dominant simulation modeling methodology is
discrete-event system modeling. There are three ba-
sic ways this methodology is implemented 1n practice:
the event scheduling approach, the activity scan-
ning approach and the process interaction approach.
While each of these methods has its own special way
of looking at system dynamics, every discrete-event
system can be modeled using any of the three meth-
ods.

The event scheduling approach represents model
changes by identifying all types of events that may

change the system state. For each type of event an
event routine implements the actions to bring about
the system changes. Events occur instantaneously.
For example, in a hospital model, the events “ar-
rival of a patient”, “beginning of surgery”, “end of
surgery” and “discharge of patient™ might be identi-
fied as the types of events that can occur. The mod-
eler’s job is to identify exactly what changes to the
system occur in each type of event and provide the
logic to effect those changes.

An activity is a period of time between two events,
usually involving some action on an entity. For exam-
ple, in a hospital, “surgery” is an activity which starts
with the “beginning of surgery” event and ends with
the “end of surgery” event. The time between the
two events is the duration of the activity “surgery”.
Thus, for the activity scanning approach, our atten-
tion 1s on the activities that occur over time, rather
than the events that start and end these activities.
Some people find this a more natural way to think
about system operations.

A process 1s a sequence of events and/or activi-
ties that are logically connected. I'or example, we
can think of the process by which the surgery patient
receives treatment in a hospital. First, the patient
arrives to the hospital, then waits for surgery to be-
gin. Next comes the surgery activity, followed by a
recuperation period and ending with the discharge
event. All events and activities relate to the same
patient, but the patient processes for individual pa-
tients interact because patients are waiting for the
same resources (admission clerks, doctors, operating
rooms, etc.). Many modelers find this the most nat-
ural point of view for modeling, and most simulation
languages adopt this approach.

Models can be expressed verbally or diagrammati-
cally. Diagrammatic descriptions attempt to provide
the same information as verbal descriptions but in a
visual form. Event graphs (Schruben 1995) show the
relationships among events using the event scheduling
approach; GPSS flow diagrams are a visual represen-
tation of the process interaction approach as imple-
mented by the GPSS simulation language. Visual
model descriptions use the brain’s visual informa-
tion processing capabilities, which are older and more
highly developed than our verbal information process-
ing capabilities, to quickly describe the model.

5 SIMULATION SOFTWARE

Simulation software must be able to represent the sys-
tem state and its changes over time. All discrete event
simulation software packages have several character-
istics in common. First. they are all able to represent



12

entities, attributes and sets. All can create and de-
stroy temporary entities, store them in one or more
queues (sets), change the values of attributes, and
represent resources used by the entities.

The dynamics of discrete-event simulations are im-
plemented by creating a list of scheduled events, i.e.,
events that are known to occur at some time in the
future. Even though a time may be random, once
the value has been sampled from its distribution, it is
known. The execution of the simulation is controlled
by a timing routine, which selects the next event to
occur and executes the appropriate event routine, ac-
tivity actions or process actions for that event.

The following categories of simulation software dif-
fer in the interface with the user, the graphical capa-
bilities and the ease of use. The choice of software,
therefore, is primarily a matter of taste.

5.1 General Purpose Languages and Simula-
tion Libraries

Perhaps most of the simulation programs that have
ever been written were implemented using a general
purpose language such as FORTRAN, Pascal, C, Al-
gol, etc, augmented by a library of routines to imple-
ment the list processing, event list and random vari-
ate generation capabilities. Law and Kelton (1991)
give an elementary collection of routines, which they
called SIMLIB, for this purpose. Seila (1988) has de-
veloped a more extensive package called SIMTOOLS,
that implements the event scheduling approach and
the process interaction approach, for use with Pascal.
Other packages have been developed for C, Pascal,
Modula-2 and C++. This approach is very natu-
ral when used with modern object oriented languages
such as C++ because the language can be very eas-
ily extended to include the simulation capabilities.
See the other references in the bibliography for other
packages of this sort that are available. This approach
has the advantages that it is relatively lnexpensive
and the programmer does not have to learn a new
language or new software system, but it often does
not include the advanced graphical capabilities that
are part of the other software packages.

5.2 Simulation Programming Languages

Starting in the 1960’s, a generation of simulation pro-
gramming languages developed which include capa-
bilities for discrete-event simulation. One of the ear-
liest of these was SIMULA, which was, and is, an
advanced object-oriented language implementing the
process interaction approach. Indeed, this language
was very influential in the developement of mod-
ern object-oriented languages such as C4++. Other

Seila

early languages were GPSS and SIMSCRIPT. In fact,
these languages developed contemporaneously with
general-purpose languages and have all of the capabil-
ities of general-purpose languages. These languages
have evolved into modern versions and are widely
used today. Tutorials on these and other simulation
programming languages are given in the Software/
Modelware Tracks. Simulation programming lan-
guages have the advantage that they allow the pro-
grammer to more naturally express the simulation ac-
tions in the language, rather than calling subproce-
dures to do the simulation actions. Some also include
sophisticated graphical capabilities.
Simulation

5.3 Interactive Programming

Systems

Interactive simulation programming systems are an
attempt to automate the process of translating a
graphical model description into a simulation pro-
gram. Examples of such systems are SIGMA
(Schruben 1995) and CAPS/ECSL (Clementson
1991). In each of these systems, the analyst devel-
ops a graphical model representation, and the soft-
ware converts this representation into a simulation
program using a general-purpose language. The ana-
lyst has the opportunity to further edit the program
before running it. Thus, interactive simulation pro-
gramming systems are really a means to automate the
development of a simulation program using a general
purpose language. We should note, however, that
the modeler expresses the simulation model graphi-
cally, so from the model implementation perspective,
we start with a graphical model representation and
end with a running simulation, and do not need to
be concerned with the intermediate program if we do
not wish to.

5.4 Visual Interactive Modeling Systems

The most recently introduced software for simula-
tion utilize the graphical capabilities of modern com-
puter workstations. These systems allow the model to
be developed interactively and graphically, and then
do model checking and execution directly from the
graphical model or through an intermediate repre-
sentation in a simulation language. ProModel and
its derivatives (ServiceModel and MedModel), Arena,
Witness and SIMFACTORY are examples of this cat-
egory of simulation software. Some of these systems
are called “data-driven simulators” because they are
built on a generic network simulation model, and the
user just provides data to specify the characteristics
of each node in the network. It would be naive to
leave the description at that, or to imply that all



Introduction to Simulation 13

of these systems work in the same way. The im-
portant characteristic is that the user uses icons on
screen to represent the system in a way that closely
resembles the physical system. Thus, the model ab-
straction phase is largely obscured. Several of these
packages are demonstrated in tutorials in the Soft-
ware/Modelware tracks.

5.5 Simulation Program Verification

Regardless of the type of software that is used to im-
plement the model, the analyst must make sure that
the structure and logic of the implemented simulation
corresponds to the intended model. For simulation
programs this “debugging” process is complicated by
the complexity of the system and the dynamic and
uncertain nature of the operation of the program.
Several techniques have been adopted to help the pro-
cess. Random variates can be replaced with specific,
known values so the response of the model can be pre-
dicted exactly and the program output can be com-
pared to the predicted response. As with most com-
plex software, simulation programs should be devel-
oped in modules that can be tested individually (the
divide-and-conquer approach). Finally, animations of
the systems are often useful to compare program op-
erations to expected model behavior.

6 ANALYSIS METHODOLOGY

Probability and statistics play a dominant role in sim-
ulation methodology. In this section we will review
the statistical methods that are very important in the
practice of simulation.

6.1 Input Data Analysis

The term “input data analysis” refers to techniques
to estimate parameters of the populations associated
with random variables in the model and fit distribu-
tions to data collected from these populations in the
real system. Most of the simulation texts in the bib-
liography contain complete descriptions of parameter
estimation and distribution fitting methods. Often
the modeler 1s only interested in finding, from among
all possible candidates, the distribution that best fits
a given set of data. Software is available to do this
testing automatically. The Unifit II tutorial in the
Software/Modelware track is one such package.

6.2 Random Variate Generation

The term random variate is used to mean an observa-
tion sampled on the computer from a specific distribu-
tion. Most simulation modelers do not need to be par-

ticularly concerned with the details of random vari-
ate generation techniques because all simulation soft-
ware includes procedures to generate random variates
from the commonly known distributions. All random
variate generation methods begin with one or more
independent, identically distributed uniform random
variates between 0.0 and 1.0, and produce the de-
sired random variate by making a transformation on
this uniform random variate. Uniformly distributed
random variates are generated by generating a uni-
formly distributed integer between 0 and m, where
m is an upper limit related to the representation of
integers on the computer. Therefore, the correctness
and reliability of random variates depends fundamen-
tally on the quality of the random number generator.
Most popular simulation packages use random num-
ber generators that have been thoroughly tested and
documented.

6.3 Output Data Analysis

The term “output data analysis” refers to techniques
to estimate performance measures from data pro-
duced by the simulation as it runs. Unlike input
data analysis, traditional statistical techniques are
frequently not useful here. Whether traditional tech-
niques can be used depends upon the design of the
simulation runs. We could use a number of indepen-
dent replications, each of short length, or we could use
only one replication with a long run length. If all data
used to estimate performance measures are statisti-
cally independent, then classical statistical methods
can be used. However, this is frequently not the case.

If the system being simulated is stationary, the out-
put processes will have an initial transient period that
lasts until the processes settle into their stationary
distributions. Part of output analysis involves deter-
mining how much of the data to truncate at the start
before applying estimation methods. The stationary
part of the output data generally is also autocorre-
lated. The effect of autocorrelation is usually to un-
derstate the size of confidence intervals for the mean,
making the estimate appear to be much more precise
than it really is. A number of techniques have been
introduced to adjust for autocorrelation. One of the
primary techniques used is the batch means method,
in which one long output process is divided into sev-
eral shorter segments whose sample means are com-
puted and treated as a collection of mutually inde-
pendent observations. This method has proved to be
one of the most successful and robust techniques for
computing reliable confidence intervals for the pro-
cess mean from stationary output data. The tutorial
on output analysis later in this volume reviews this



14

method as well as other techniques for analyzing sim-
ulation data and provides additional references for
this topic.

Frequently, the objective of data analysis is to com-
pare two or more system designs to determine which
provides better performance. Statistical methods for
ranking and comparison are available to determine
the reliability of the rankings produced by the sim-
ulations. System optimization methods seek to ad-
Just one or more decision variables to optimize sys-
tem performance. This is a new but promising area
of research.

6.4 Validation

A model can be validated only if the real system ex-
ists. Techniques for validation are primarily statisti-
cal in nature and involve comparing the distributions
of data from both the real system and the simulation
to assure that they do not differ substantially. Two-
sample tests for comparing distributions are available
for this. Means, variances and other moments can
also be compared and tested statistically. An infor-
mal technique for validation that has been used is to
produce a report from the simulation that is identical
in form to a report produced for the real system. The
new report is then presented to someone who man-
ages the real system and the manager is asked to see
if she can detect whether it is from the real system
or the simulation. Presumably, if they cannot detect
that the report is from the simulation, the simulation
1s valid.

7 IMPLEMENTATION

The ultimate reward from developing a simulation
model is to gain information that can be used to m-
prove decision making with the system. In practice,
the process of developing a simulation model is costly.
Most models are a team effort and take months or
even a year or more to develop. Costs are usually
measured in tens of thousands of dollars. So, most
organizations want the results of such an investment
to be preserved. Some simulations are developed to
be used on an on-going basis for system management
and control by managers who were not necessarily in-
volved with the original model development. In this
case, documentation involves creating user’s manuals
and training managers to use the model. In all cases,
documentation of the model makes sure the benefits
of the model-building investment are not lost after
the initial model use.

Seila

ACKNOWLEDGMENTS

Many people and many books and papers on the sub-
Ject of simulation have influenced this paper. I would
especially like to thank Professors George Fishman,
Vlatko Cerié, Mike Pidd, David Goldsman and Chris-
tos Alexopoulos for many helpful discussions.

REFERENCES

Clementson, A. T. 1991. The ECSL Plus Sys-
tem Manual. A. T. Clementson, The Chestnuts,
Princes Road, Windermere, Cumbria, UK.

Fishman, G. S. 1978. Principles of Discrete Event
Simulation. New York: John Wiley and Sons.

Gogg, T. J., and J. R. A. Mott. 1993. Introduction
to Simulation. In Proceedings of the 1993 Winter
Simulation Conference, ed. G. W. Evans, M. Mol-
laghasemi, E. C. Russell, and W. E. Biles, 9-17.
Institute of Electrical and Electronics Engineers,
San Francisco, California.

Law, A. M., and W. D. Kelton. 1991. Simulation
Modeling and Analysis, Second Edition. New York:
McGraw-Hill.

Pagden, C. D., R. E. Shannon, and R. P. Sadowski.
1990. Introduction to Simulation Using SIMAN.
New York: McGraw-Hill.

Pidd, M. 1994. An Introduction to Simulation. In
Proceedings of the 1994 Winter Simulation Con-
ference, ed. J. D. Tew, S. Manivannan, D. A. Sad-
owski, and A. F. Seila, 7-14. Institute of Electrical
and Electronics Engineers, San Francisco, Califor-
nia.

Pritsker, A. A. B. 1986. An Introduction to Simu-
lation and SLAM II. New York: John Wiley and
Sons.

Schruben, L. W. 1995. Graphical Simulation Model-
ing and Analysis Using SIGMA for Windows. Dan-
vers, MA: Boyd & Fraser.

Seila, A. F. 1988. SIMTOOLS: A Software Toolkit for
Discrete Event Simulation in Pascal. Simulation
53.

Shannon, R. E. 1999 Introduction to Simulation. In
Proceedings of the 1992 Winter Simulation Con-
ference, ed. J. J. Swain, D. Goldsman, R. C. Crain
and J. R. Wilson, 65-73. Institute of Electrical and
Electronics Engineers, San Francisco, California.

Thesen, A. and L. E. Travis. 1991. Introduction
to Simulation. In Proceedings of the 1991 Win-
ter Simulation Conference, ed. B. L. Nelson, W. D.
Kelton, and G. M. Clark. Institute of Electrical

apd Electronics Engineers, San Francisco, Califor-
nia.



Introduction to Simulation

AUTHOR BIOGRAPHY

Andrew F. Seila is associate professor of management
science in the Terry College of Business at the Uni-
versity of Georgia, Athens, Georgia. He received a
B.S. in Physics and Ph.D. in Operations Research
and Systems Analysis, both from the University of
North Carolina at Chapel Hill. Prior to joining the
faculty of the University of Georgia, he was a Mem-
ber Technical Staff at Bell Laboratories in Holmdel,
New Jersey. His research interests include all areas of
simulation modeling and analysis, especially output
analysis. He has been actively involved in the Win-
ter Simulation Conference since 1977, and served as
Program Chair for the 1994 conference.



