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ABSTRACT

Stochastic approximation is a simulation optimiza-
tion technique that has received much attention re-
cently. Traditional finite difference-based stochastic
approximation schemes require a large number of sim-
ulations when the number of parameters of interest is
large. We apply simultaneous perturbation stochas-
tic approximation (SPSA), which requires only two
simulations per gradient estimate, regardless of the
number of parameters of interest. We report simula-
tion experiments conducted on a single-server queue,
comparing the algorithm with finite differences and
with perturbation analysis (PA). We then consider a
transportation problem and formulate it as a stochas-
tic optimization problem to which we propose to ap-
ply SPSA.

1 INTRODUCTION

Consider the problem of optimizing some perfor-
mance measure of a discrete event system (see, e.g.,
Cassandras 1993 or Fu 1994). Under suitable con-
ditions, optimization requires finding the zero of the
performance measure gradient. Techniques such as
perturbation analysis or likelihood ratio provide an
efficient means of computing the performance mea-
sure gradient from a single sample path of the system.
Such techniques, however, require detailed knowledge
of the systemn dynarmics and model. For example, one
must usually assume known the form of the input
distributions. For some important discrete event sys-
tems that arise in practice — for example, complex
transportation networks — such information is often
unknown, in which case direct estimation of the gra-
dient is not possible.

This paper cousiders a stochastic approximation
technique for optimizing DEDS under minimal as-
sumptions on the system of interest. To be more spe-
cific, let 8 € © C R? denote a vector of controllable
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(adjustable) parameters and w the stochastic effects.
Let L(#,w) denote the sample path performance of in-
terest and J(0) = E[L(,w)] expected system perfor-
mance. The problem is to find argmin{J(8) : § € ©}.
The stochastic approximation algorithm for solving
VJ =0 is given by the following iterative scheme:

(1)

where g, represents an estimate of the gradient VJ
at 0,, and {a,} is a positive sequence of numbers
converging to 0.

Direct gradient estimates are the most efficient.
However, in many cases this may not be feasible, in
which case gradient estimates based on (noisy) mea-
surements of the performance measure itself are the
only recourse. The purpose of our work is to see if
simultaneous perturbation stochastic approximation
(SPSA) can optimize discrete event systems at signif-
icant reductions in computations over the standard
approach based on finite differences (FD).

SPSA uses the simultaneous perturbation (SP)
method to estimate the gradient (Spall 1992, Spall
and Cristion 1994) and stochastic approximation
(SA) to find the zero of the gradient. The SP method
does not require detailed knowledge of system dy-
namics and input distributions. Rather, it only re-
quires measurements (which may contain measure-
ment noise) of the performance measure. In fact,
in each stochastic approximation update step SPSA
requires only two measurements of the performance
measure to calculate a gradient estimate, regardless
of p (the dimension of the vector of parameters).
This contrasts sharply with the method of finite dif-
ferences for estimating gradients, where the number
of required function evaluations is at least p. Thus,
SP requires substantially less data — in our applica-
tion, meaning significantly fewer simulations — than
finite differences for estimating gradients in high di-
mensions. In real systems, where data acquisition can
often be expensive and time-consuming, this reduc-

0(n+1) = 0(,-,) — angn,
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tion in computation translates into a cost savings.
The SP technique has been applied to nonlinear
control problems using neural networks (Spall and
Cristion 1994). Ilere, we illustrate its application to
discrete-event systems, by considering a single-server
queueing problern and a transportation problem.

2 SIMULTANEOUS PERTURBATIONS

Let e; denote the unit vector in the ith direction,
and t, the simulation “duration” (e.g., number of
customer completions in a queueing simulation) of
the nth iteration. Let {A;,...,Ap} be a set of i.i.d.
perturbations satisfying the conditions given in Spall
(1992), and define the vector A = [A;...A,]. We took
the A;’s to be symmetric Bernoulli in all of our sim-
ulation experiments. Let (g.); denote the ith com-
ponent of §,. Then, the simultaneous perturbation
(SP) estimator is given by

IO+ enAwF) = T (Bny — D w])
(Gn): = Yen i '

2)
Compare these estimators with symmetric difference
(SD) estimators. Symmetric differences require a dif-
ferent pair of estimates in the numerator for each pa-
rameter, thus requiring 2p simulations, whereas in
SPSA, the same pair is used in the numerator for
all parameters, and instead the denominator changes;
thus, only two discrete-event simulations are required
at each iteration.

In the stochastic approximation implementation
given by (1), both SP and SD estimators also require
a positive sequence {¢,} converging to 0 at an appro-
priate rate. In our experiments, we took a, = a/n (a
to be selected), ¢, = ¢/n%?5 (c to be selected). For
the single-server queue example, we considered four
different gradient estimates: SP, FD, SD, and IPA
(infinitesimal perturbation analysis).

3 SINGLE-SERVER QUEUE EXAMPLE

Consider a single-server queue with Poisson arrivals
and service times {rom a uniform distribution (an
M/U/1 queue). The goal is to minimize a customer’s
mean steady-state system time T', under penalty costs
on the service timne. Specifically, we wish to determine
the values of the two parameters = (0,,60,) in the

uniform service time distribution U(6, — 82,6, + 6)
to minimize the objective function

J(0) = E[T] = c101 — 202, 0 €0, (3)

where ¢; and ¢ are costs on reducing the service time
mean and “variability,” respectively, © = {(8,,60,) :

0 <8, <6, <1/A}, and X is the arrival rate. This
example was considered in Fu and Ho (1988).

We compare the SP estimator with finite difference
estimators (both one-sided and symmetric) and with
perturbation analysis (PA) estimators, which require
only a single simulation per estimate. We present
simulation results for implementation in the SA algo-
rithm given by (1) to minimize the objective function
(3), with the estimate of the gradient given by

~ OE[T
— (6—[9]>e” — C1€1 — Cz€2. (4)

We considered six cases. Table 1 gives the values of
c1 and cg, the resulting optimal values and the corre-
sponding values of the objective function and the two
partial second derivatives, from which the value of a
1s determined, as described in the next paragraph. As
noted in Fu and Ho (1988), for some values of ¢; and
o, the theoretical optimal solution could lie arbitrar-
ily close to the boundary of the constraint set. A min-
imum at which dJ/d# = 0 exists if ¢; > 6c3+ 3¢y + 1.
Our cases were selected such that this condition held,
for which the minimum occurs at

C=2c-32-1 (5

o — (1 1 3C2> 1
Ve Ve X

Further implementation values are as follows: A =
I; ¢ = 0.001; starting point: 6, = 0.5,6, = 0.3;
observation length per iteration: 100 customers;
40 independent replications; number of iterations
per replication: 1000 (total budget of 100,000 cus-
tomers/replication); value of a: geometric mean of
second derivatives (approximated to one significant
figure). In general, of course, the parameter a could
not be calculated “optimally” in advance, since the
objective function is unknown.

Since analytical results are available, performance
of the algorithms was simply measured by the per-
formance measure J(6,), lower being better. The re-
sults are summarized in Table 2. The headings SDSA,
FDSA, and PASA refer to stochastic approximation
algorithms based on symmetric differences, one-sided
(forward) finite differences, and perturbation analy-
sis, respectively; J" refers to the (true) rminimum.
The table gives the mean of the estimated minimum
+ standard error, based on 40 independent replica-
tions, for the algorithm after 500 customers simulated
and after 1000 customers simulated. In terms of sim-
ulation budget, the n = 1000 case of SPSA corre-
sponds approximately to the n = 500 case of SDSA,
since each iteration of SDSA requires twice (p = 2) as
many simulations as each iteration of SPSA. In this
limited set of cases, SPSA performs comparably to
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Table 1: Optimization Cases for M /U/1 Queue (A = 1)
optimal

Case c co 6y 6 J* 62‘1‘/(9012 92J* /00 a

1 1.28125 0.00125 0.2 0.003 -0.03125 1.953 0.4167 1.0

2 1.28969 0.075 0.2 0.180 -0.03969 1.974 0.4167 1.0

3 2.5 0.002 0.5 0.003 -0.5000 8.000 0.6667 0.4

4 2.6536 032 05 0480 -0.6536 8.614 0.6667 0.4

5 13.0 0.005 0.8 0.003 -8.000 125 1.6667 0.1

6 15.535 1.3 0.8 0780 -10.535 150 1.6667 0.1

Table 2: SA Results: J as a function of the number of iterations
Case SPSA SDSA FDSA PASA
J* 500 1000 500 1000 500 1000 500 1000

1 -0.029890 -0.029391 -0.030901 -0.031060 -0.030900 -0.031058 -0.030900 -0.031058
-0.03125 | £+ 0.000340 + 0.000353 + 0.000240 + 0.000139 | + 0.000240 + 0.000140 £ 0.000238 £ 0.000139
2 -0.039420 -0.039648 -0.039018 -0.039316 -0.039112 -0.039414 -0.039194 -0.039451
-0.03969 | £ 0.000119 & 0.000031 &+ 0.001873 +£ 0.001171 | &+ 0.001379 + 0.000734 #£ 0.001306 =+ 0.000707
3 -0.490221 -0.490450 -0.498311 -0.498733 -0.498367 -0.498773 -0.498296 -0.498720
-0.5000 + 0.005581 £+ 0.004888 + 0.001458 + 0.001091 | £ 0.001251 £ 0.000929 4+ 0.001482 £ 0.001111
4 -0.652158 -0.652730 -0.652633 -0.652782 -0.652394 -0.652603 -0.652387 -0.652607
-0.6536 4+ 0.001316 £+ 0.000787 £+ 0.001122 4 0.0007%1 | £ 0.001831 £ 0.001367 =+ 0.001876 =+ 0.001368
5 -7.840566 -7.823904 -7.911220 -7.903313 -7.911106 -7.903152 -7.910641 -7.902878
-8.000 + 0.100562 £ 0.107669 =+ 0.045980 £+ 0.040336 | £ 0.046555 £ 0.040226 + 0.046049 +£ 0.040332
6 -10.345714 -10.328994 -10.380064 -10.359260 -10.379407 -10.358351 -10.378743 -10.358410
-10.535 + 0.089023 4+ 0.084015 &+ 0.083043 + 0.077733 | £+ 0.083706 4+ 0.078061 + 0.083636 £ 0.077930

the other techniques. Compared to the finite differ-
ences, it does so with half as many computations.

4 TRANSPORTATION APPLICATION

We consider the application of SPSA to a transporta-
tion problern, in particular to transfer optirnization in
a transit network, where the goal is to reduce waiting
time during transfers. We formulate this problem as
a DEDS optimization problemn to which we propose
to apply SPSA.

The model we consider is a transit network with
bus lines traveling in four directions on a grid: east,
west, north, and south. Transfers occur, for instance,
from a west-bound line to a north-bound line. Mul-
tiple transfers are possible. Undesirable delays occur
for passengers due to waiting for a transfer. As sum-
marized in Bookbinder and Désilets (1992), there are
two basic approaches to this problem: timed trans-
fer and transfer optimization. The former focuses on
coordinating the transfer points, and is more appli-
cable for nctworks where transfers constitute a rel-
atively smaller proportion of overall traffic, e.g., in-
tercity trains and planes. This approach would not
be appropriate for a large transit network, such as
is found in a downtown bus network, where transfers
are decentralized. In this case, transfer optimization

is usually employed, whereby the decisions to be made
have to do with the departure times of the first bus
on a line.

In transfer optimization, the following are usually
assumed to be given: the network, i.e., no re-routing
is allowed; the headways, defined as the timnes be-
tween adjacent buses on the same line (assumed to
be constant and equal); the transfer points; the pas-
senger traffic and transfers. Traffic on a route can be
given either as a point-to-point total or equivalently
as a Markovian routing matrix at each stop. Stochas-
tic elements of the network — incorporated indirecly
in Bookbinder and Désilets (1992) — include the ar-
rival process of passengers at each stop, both timing
and number; and the travel times of buses.

Let NV be the numnber of transit lines, Al be the
number of transfer points, A, be the headway for

transit line 7, i = 1,..., N, O, be the set of allowable
offset times for transit line7,i=1,...,N,0 = {9,}1\;1
be the timetable for the transit network, © = {0;}/¥,

be the allowable timetables for the transit network.
Note that a (ransfer point in the network model is
quite different from a stop in the physical real world.
In particular, if a given “single” stop occurs at an in-
tersection of two bi-directional routes and allows all
possible transfers, then this would generate eight sep-
arate transfer points in the network model.
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We wish to minimize the total expected waiting
time for transfers in the network. This problem is
usually formulated as a mathematical program, which
requires the assumption that the sets ©;,1=1,.., N
be discrete and finite, yielding the integer program:

N N
win D Cio,.

i=1j=1

where n; is the transfer flow at transfer connection k,
k= 1, ey AI, (;,'J’,-‘g = ZkEA., 7lkVVk(T’,S), r e @,‘,S €
©;, Ajj = {k: connection k goes from line i to line
7}, We(r, s) is the mean waiting time at connection
k, for offset times r € ©; and s € Oj, for lines 7 and j,
respectively. The key elements are the waiting times,
which must somehow be estimated. This problem is
equivalent to the 0-1 quadratic optimization problem:

N N
ming E E E CijrsTirZjs,
i=1j=1 r€0,s€0,

subject to Z zi,=1,1=1,...,.N,
reo,

L € {0, ]}

The 0-1 variables z;; take the value 1 if and only
if offset time s is chosen for link 7, and the equal-
ity constraints insure that exactly one of the allow-
able offset tirnes is chosen for each line. This for-
mulation is equivalent to the well-known quadratic
assignment problemn (QAP) in facilities layout plan-
ning, and hence i1s NP-complete.

A more realistic model should probably include the
following features: the feasible set of offset times is
continuous; headways need not be constant nor deter-
ministic, e.g., they could be closer during rush hours;
travel times need not be constant nor deterministic,
1.e., they are likely to be random and higher during
rush hours; the passenger arrival process need not be
deterministic. Ilowever, incorporating such factors
into a model leads to analytical intractability in de-
termining the mean waiting times, in which case the
best approach is a stochastic discrete-event simula-
tion model.

Taking ©,; to correspond to intervals [0, N;], where
K; i1s the maximum allowable offset time on transit
line 7, and assuming that the optimum (at least local)
1s found by ¥V, ¢(0) = 0, we propose to apply SPSA

to
N N
g(0) = ZZC"1JH,9)~
i=1j=1
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