Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

TOWARDS “ON THE FLY” PERFORMANCE MODELS FOR CONSERVATIVE
ASYNCHRONOUS PROTOCOLS

Mary L. Bailey
Shane Walker

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

ABSTRACT

In this paper we present a simple model of commu-
nication costs for conservative asynchronous simula-
tions using a bus structure. Not only is this a use-
ful communication structure in practice, but it places
some constraints on communication which make it
more amenable for “on the fly” characterizations.
Overall, the model shows promise when evaluated
using test cases not involved in the model building.
Most of the characterizations can be computed us-
ing simple formulas parameterized with variables ob-
tained from the input program. A few characteriza-
tions are more complex, but these can be estimated
by applying a sequence of simple functions.

1 INTRODUCTION

There are a large number of application areas where
simulations are of prime importance in understand-
ing aspects of physical systems. In many of these, the
time taken by sequential simulation is far too great.
In these cases parallel or distributed simulation may
provide a viable solution - accurate simulation in a
reasonable time frame. Thus there has been much ac-
tivity in the parallel simulation community to provide
general protocols for accurate and efficient implemen-
tations.

There are two major types of simulation protocols
for parallel simulation, conservative and optimistic,
that differ in the way simulation time advances. Con-
servative protocols only permit execution of correct
computation, that is an event is processed only if it
can be guaranteed that it is a correct next event. Par-
allel conservative protocols range from synchronous
protocols with a single global clock and all logical pro-
cesses advancing in lock-step, to asynchronous proto-
cols with many local clocks and logical processes ad-
vancing at different rates (Bryant 1977, Chandy a.nd
Misra 1979). Optimistic protocols allow speculative

1431

event processing, and provide some mechanism for
undoing computation if the speculation was erroneous
(Jefferson 1985). There are applications where each
protocol outperforms the other (Lipton and Mizell
1990), and it is often not clear which protocol is pre-
ferred until both have been tried.

Over the past few years there has been research
predicting the execution time of the optimistic strat-
egy (Felderman and Kleinrock 1991, Gupta, Akyildiz,
and Fujimoto 1991, Lin and Lazowska 1990), and re-
search 1n using formal models to compare the two
strategies (Bailey and Lin 1993, Lipton and Mizell
1990). We are interested in predicting the execution
time for conservative asynchronous protocols using
simple models, models that can be computed quickly.
To date, the only models for these protocols assume
self-initiating systems, instead of the more common
message-initiating systems (Nicol 1991). Because we
want to use simple models, we have restricted our fo-
cus in this paper to a single application domain, dis-
tributed memory parallel programs, and a single com-
munication structure, busses. Busses are a common
structure in processor designs and are natural struc-
tures whenever a single channel connects more than
two logical processes. Moreover, restricting communi-
cation to busses makes the overhead characterizations
more straightforward than for general point-to-point
communication because the effects of the communi-
cation topology are less varied.

In this paper we present our formulaic characteri-
zations of communication costs using the bus commu-
nication primitive and the conservative asynchronous
protocol. A crucial aspect of these characterizations
is that they are functions of variables that can typi-
cally be obtained from the input programs. We then
evaluate the accuracy of the characterizations using
two test programs. In all cases the model predictions
are within 15% of the actual costs, and the vast ma-
jority are within 10%.

1432 Bailey and Walker

2 THE EMPIRICAL SYSTEM

The CPoker simulator, our experimental system, 1s
implemented on a shared memory multiprocessor, the
Sequent Symmetry, and uses a conscrvative asyn-
chronous protocol with deadlock avoidance. The
implementation is optimized for a shared memory
multiprocessor, so the resulting characterizations are
most relevant to shared memory implementations, al-
though we expect the general form of many of the
characterizations to also hold for distributed mem-
ory multiprocessors. A CPoker program consists of a
set of logical processes (LPs) that communicate via
specified communication channels. Currently CPoker
supports two types of point-to-point communication
primitives. The first type, Read or Write, supports
sending or receiving messages on a specific communi-
cation channel. The second, MultiRead, supports re-
ceiving messages from one of a set of communication
channels (Bailey and Pagels 1991). This second type
of communication is critical for many common sim-
ulation programs, such as queuing networks, where
messages need to be processed in time stamp order,
independent of sender.

In addition to the point-to-point communication
primitives, CPoker supports analogous primitives for
bus communication structures. A bus connects three
or more LPs, and each LP can read from or write to
the bus at various times. Multiple simultaneous read-
ers are permitted; each will recelve the same message
provided that they are all ready to read when the data
is written to the bus. When an LP wishes to perform
a write, it must gain control of the bus. Once control
is granted, the writer has exclusive write privileges
during its transaction. After the reader(s) have fin-
ished reading the data, the writer is signaled and the
bus is released. If multiple writers want control of
the bus, the writer with the earliest request is given
priority. If there arc multiple writers with the ear-
liest request time, the one with the smallest bus id
will be selected. BusRead, BusWrite, and MultiBus-
Read are the bus communications analogous to Read,
Write, and MultiRead.

3 MODEL CHARACTERIZATION

Each of the three bus communication primitives, Bus-
Read, BusWrite, and MultiBusRead are character-
ized separately, although there are many similarities
between the three. First, the general form of the
code is quite similar in all three, with non loop and
wait-loop sections in each. Second, all primitives use
context switches and null messages in the routines.
Since the cost of sending a null message or incurring

a context switch is independent of the communication
primitive, these are characterized separately, but the
number of each of these does differ in the three prim-
itives.

In all of the characterizations, we use factorial de-
signs to determine the significant variables (or input
parameters) in the communication costs. Each vari-
able is mecasured using two values, and Yate’s algo-
rithm 1s used to determine the critical variables. Box,
Hunter and Hunter (1978) contains more detailed in-
formation on factorial designs. In our experiments,
we consider up to 8 different variables in the designs:
the number of readers per bus (Rdrs), the number of
logical processes (LPs), the number of physical pro-
cessors (Procs), the bus length (BL), the lookahead
(LA), the number of busses connected to each LP
(BC), whether Read or MultiRead is used (RdTyp),
and whether the workload is balanced among the LPs
(Bal).

Due to space limitations, we cannot discuss the
individual characterizations for each communication
structure. However, we will show most of the for-
mulas for BusRead to provide some indication of the
structure and style of the characterizations.

There are three parts to BusRead. First, the LP de-
clares that it is performing the read. Second, the LP
waits until it knows which LP is the writer so that it
takes the correct data at the correct simulation time.
Here a wait-loop 1s executed until the determination
can take place; at each iteration a context switch oc-
curs and null message may be sent. Third, one of
the readers signals the writer so that the writer can
continue.

The first and third parts constitute the non wait-
loop costs (RdNonLp). The second part, the wait
loop cost, 1s further divided to make the analysis more
straightforward. First, it is modeled as a linear func-
tion of the number of iterations, excluding the cost
of context switches and null messages (RdWaitLp).
Next, the number of iterations is computed (Rdlter).
Third, the total cost of context switches in BusRd
is computed (RACSCost). Finally, the cost of null
messages sent in BusRd 1s computed (RANMCost).

Figure 1 shows formulas for all BusRead costs, ex-
cept for the number of wait-loop iterations. The num-
ber of iterations is the most difficult quantity to esti-
mate, since this is where the non-deterministic nature
of a parallel program impacts the code. Slight timing
variances can cause an extra iteration of the loop, and
the total number of iterations is quite small (typically
between 1 and 5). If the number of busses connected
to each LP is more than one, then a constant of 1.1
1s sufficient to model Rdlter except when there is a
small number of LPs per processor (fewer than 10).

Towards “On the Fly” Performance Models 1433

224 + 7.5BL + 209(Rdrs — 1)

RdNonLp = Rdrs + 15BC. (1)
~50+ 12.5BL
RdWaitLp = 140+ 7.5BL + <_B+L——1_> (BL — Rdrs) + (5 + 22.5BL)Rdlter. (2)
RdCSCost = 68(Rdlter +1). (3)
RANMCost = (204 10BL + 100/BC + 5(log(BL/4) + 1)) NoRdN Ms. (4)
3 f Rdr=BL -1
NoRdNMs = { 2 otherwise,. (5)

Figure 1: Formulas for BusRead Costs

In this case, there is too little computation on each
processor and estimating the exact number of itera-
tions is too complex. In reality, the workload is too
small to take advantage of the amount of parallel pro-
cessing, a situation that is not expected to occur in
practice. If there is one bus connected to each LP,
the number of iterations is a function of Procs, Bal,
LPs, Rdrs, BL, and LA. We begin with a baseline
formula for Rdlter, which is a function of Rdrs, BL,
and LA, and assume that Procs = 5, LPs = 256,
and Bal = balanced. We then independently apply
correction formulas for each of Procs, LPs, and Bal if
their values differ from the baseline assumptions. The
baseline formula together with the corrections gives
an estimate for RdIter. Thus, Rdlter is not a simple
formula, but is a sequence of simple computations
maintaining the “on the fly” characterization.

4 MODEL EVALUATION

The model was evaluated using several test programs
not involved in the characterizations. We will present
the results of two of these here. The first test pro-
gram, MixedBus, uses a number of different sized
busses simultaneously. The second, MixedRead, uses
a combination of BusRead and MultiBusRead.
MixedBus uses three different sized busses with
each LP connected to exactly one bus (so no Multi-
BusReads are used). More specifically, in an 8x8 LP
grid, there are 4 busses of length 8, 4 of length 6,
and 2 of length 4. A single grid uses 64 LPs, while
4 grids require 256 LPs. Twenty-seven different in-
stances of MixedBus were run, varying different pa-
rameters. Those parameters varied include the num-
ber of processors (5 and 11), the number of readers on
each bus (1, half, all but one), the lookahead (3 val-
ues), and the number of LPs (64 and 256). Figure 2
shows the accuracy of the model for this experiment.
Three quantities were measured in the evaluations,

50 -
L
w 40F
S C
g L
2 300 BusRead
K L J BusWrite
S r [] Total
5 0
=] L
> C

16 5 0 5 10 5
Accuracy (Percentage)

Figure 2: Accuracy of MixedBus Costs

BusRead, BusWrite, and Total. For BusRead and
BusWrite, we measured the average cost of a single
communication, while for Total we used the cost of
one BusRead plus one BusWrite. In each case, we
took the ratio of the difference in the model predic-
tion and actual cost to the actual cost. Thus a posi-
tive percentage means that we overestimated the cost,
and a negative percentage implies that we underesti-
mated the cost. Overall, the predictions are quite
good. All predictions, except for one BusRead, are
within 10% of the actual measurements. Moreover,
for over 90% of the instances, the model predictions
are within 5% of the measured results. The one in-
stance where the accuracy of BusRead is poor (dif-
ference greater than 10%) spends very little time in-
BusRead, so that when it is combined with its corre-
sponding BusWrite, the total is within 10% accuracy.

MixedRead uses a combination of MultiRead, Bus-
Read, and BusWrite. Each LP is connected to two
busses, with half of the readers on each bus perform-
ing BusReads and the other half performing Multi-

1434 Bailey and Walker

BusRead
7] BusWrite
E] Total

Number of Instances
3]
()

TTT T TT T [TTT T[T TTIT[TTTT[TTTT]

-1 -10 -5 0 S 10 15
Accuracy (Percentage)

Figure 3: Accuracy of MixedRead Costs

BusReads. All 30 instances use 256 LPs; parameters
that vary include the bus length (4 and 8), the num-
ber of readers (2, 4, and 6), the lookahead (3 values),
and the number of processors (5, 7, 9, 11). As before
we measured the accuracy of Reads (which includes
BusRead and MultiBusRead), BusWrites, and Total.
Figure 3 shows the accuracy of the model for this ex-
periment. Here, Reads are quite accurate (within 5%)
but there are a few instances where the predictions for
BusWrite and Total differ from actual measurements
by up to 15%. No one single parameter is responsible
for this, and the predictions are sometimes too high
and other times too low. Thus it is not clear that a
simple change to the BusWrite model will result in
greater accuracy.

5 CONCLUSIONS

We have presented a model for predicting the com-
munication costs for busses that is fast, so that “on
the fly” estimates can be made. The model has been
evaluated on two test programs with good results. In
all 57 instances, the predicted communication costs
are within 15% of actual costs, with the vast major-
ity of instances within 10% of actual costs.

ACKNOWLEDGMENTS

This work is funded in part by National Science Foun-
dation Grant CCR-9212018.

REFERENCES

Bailey, M.L. and Lin, Y.B. 1993. Synchronization
Strategies for Parallel Logic Simulation. Interna-

tional Journal in Computer Simulation 3(3):211-
230.

Bailey, M.L. and M.A. Pagels. 1991. Measuring the
Overhead in Conservative Parallel Simulations of
Multicomputer Programs. In Proceedings of the
Winter Simulation Conference, 627-636.

Bailey, M.L. and Walker, S. 1994. Towards “On the
Fly” Performance Models for Conservative Asyn-
chronous Protocols. Technical Report 94-15, Com-
puter Science Department, University of Arizona.

Box, G.E., Hunter, W.G., and Hunter, J.S. 1978.
Statistics for Ezperimenters. John Wiley and Sons.

Bryant, R.E. 1977. Simulation of packet communi-
cation architecture computer systems. Technical
Report MIT-LCS-TR-188, MIT.

Chandy, K.M. and J. Misra. 1979. Distributed sim-
ulation: A case study in design and verification
of distributed programs. IEEE Trans. on Softw.
Eng. SE-5(5): 440-452.

Felderman, R.E. and L. Kleinrock. 1991. Two pro-
cessor time warp analysis: Some results on a uni-
fying approach. In Proceedings of the SCS Multi-
conference on Distributed Simulation, 3-10.

Gupta, A., Akyildiz, I.F., and Fujimoto, R.M. 1991.
Performance Analysis of Time Warp with Multiple
Homogeneous Processors. IEEE Trans. on Softw.
Eng. 17(10):1013-1027.

Jefferson, D. 1985. Virtual Time. ACM Trans. on
Program. Lang. Syst. 7(3):404-425.

Lin, Y.-B. and E.D. Lazowska. 1990. Optimality
considerations for “time-warp” parallel simulation.
In Proceedings of the SCS Multiconference on Dis-
tributed Simulation, 29-34.

Lipton, R.J. and D.W. Mizell. 1990. Time warp vs.
chandy-misra: A worst-case comparison. In Pro-
ceedings of the SCS Multiconference on Distributed
Simulation, 137-143.

Nicol, D.M. 1991. Performance Bounds on Self-
Initiating Discrete-Event Simulations. ACM
Trans. on Model. Comp. Simul. 1(1):224-50.

AUTHOR BIOGRAPHIES

MARY L. BAILEY is an assistant professor in
the Department of Computer Science at the Univer-
sity of Arizona. Her research interests include paral-
lel and distributed simulation, computer-aided design
for VLSI, special-purpose architectures, and parallel
computation.

SHANE WALKER is finishing up a master’s de-
gree in Computer Science at the University of Ari-
zona. His current research focuses on parallel and
distributed simulation.

