Proceedings of the 1994 Wainter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

USING A SHOT CLOCK TO DESIGN AN EFFICIENT
PARALLEL DISTRIBUTED SIMULATION

John T. Douglass and Brian A. Malloy

Department of Computer Science
Clemson University
Clemson, SC 29634

ABSTRACT

Parallel discrete event simulation represents an im-
portant area of research because large simulations are
prohibitively expensive to execute on a sequential ma-
chine. Though simulation programs seem to have
substantial amounts of parallelism, workable tech-
niques to efficiently parallelize these programs have
been elusive. In this paper, we show that by increas-
ing the granularity of computation that each proces-
sor performs, the degradation in performance due to
expensive communication can be mitigated. We sim-
ulate a network traffic low problem using PVM to
construct our parallel system. To further reduce the
cost of communication, we use a novel windowing
technique called a shot clock. The initial value of
a shot clock is a lookahead value and expiration of
a shot clock triggers actions which dictate the gran-
ularity of the messages passed in the system. The
finest grained message is a single car and the coars-
est grained message is a queue of cars. We achieve a
speed up of 6 using PVM on a network of 16 work-
stations. Our experiments show that we can achieve
better speed up using a system with faster communi-
cation.

1 INTRODUCTION

Parallel discrete cvent simulation (PDES) refers to
the execution of a single simulation program on a
parallel computer. PDES is an important area of
research because large simulations are prohibitively
expensive on a sequential machine (Righter 1989).
Though simulation programs appear to have substan-
tial amounts of parallelisin, workable techniques to
efficiently parallelize simulation programs have been
elusive. The main bottleneck in the parallel simula-
tion is the need for frequent communication among
the processors due to the maintenance of global sys-
tem time and the data dependencies that exist among

1362

the various events in the system.

In conservative simulations, a processor does not
execute an event e at simulation time ¢, until all mes-
sages with time stamp less than t, have been pro-
cessed. This sequencing of events is known as the
local causality constraint and adherence to this con-
straint guarantees that the execution of event e is
correct. Since the sequencing constraints that dic-
tate the relative order in which events must be ex-
ecuted are highly data dependent, successful conser-
vative algorithms must take advantage of lookahead,
the ability to predict what will or will not happen in
the simulated future.

The problem with the conservative approach is that
without a large lookahead value, very little paral-
lelism in the simulation program can be exploited.
The degree of lookahead becomes crucial if the par-
allel computer exacts a high cost for communication.
A software package that allows the user to construct
a parallel machine using a network of workstations is
Parallel Virtual Machine (PVM). PVM provides soft-
ware support for a message passing system composed
of a network of heterogeneous workstations. The ad-
vantages of PVM are that it is readily available, easy
to use and allows the user to construct a parallel ma-
chine from existing sequential hardware. The disad-
vantage of PVM is that since communication between
the processors of the virtual machine occurs across
the local area network it is expensive. Therefore, un-
less the granularity of parallelism 1s coarse, any gain
achieved from executing the program in parallel may
be completely eroded.

In this paper, we present the design and implemen-
tation of a parallel distributed simulation for a traffic
flow problem. The parallel computer is constructed
using PVM on a network of Sun workstations. We
investigate the effects of increasing the granularity of
computation on each processor by assigning increas-
ing number of traffic lights per processor. Also, since
communication is expensive with PVM, we investi-

Shot Clock

gate the effects of reducing the frequency of commu-
nication by increasing the granularity of the messages.
To increase the grain of the messages, we pack more
cars in each message using a novel windowing tech-
nique that we call a shot clock. The shot clock is ini-
tialized to the size of the lookahead in the simulation;
expiration of the shot clock triggers actions which dic-
tate the message granularity, where the finest grain is
a single car in the traffic flow problem and the coars-
est grain is a queue of cars.

Our results show that in a system where commu-
nication cost is high, such as a virtual machine using
the local area network for communication, the effects
of this high cost can be mitigated by increasing the
amount of computation that each processor performs.
We show further that increasing the granularity of
messages and reducing the frequency of communica-
tion can have a positive influence on the speed up
achieved in the parallel system. We were able to
achieve a speed up of 6 on a parallel system of 16
workstations connected using PVM. This speed up is
a lower bound on the potential speed up using our
shot clock technique since other workstations were
active during the experiments and since we recorded
wall time rather than processor time. Our experi-
ments indicate further that, using our notion of a
shot clock, we can achieve better speed up using a
system with faster communication.

The next section of this paper presents background
and reviews work related to conservative parallel dis-
tributed simulation. Section 3 presents our approach
using a shot clock and section 4 presents the PVM im-
plementation. Section 5 illustrates our results while
section 6 draws conclusions and presents ideas for fu-
ture work.

2 BACKGROUND

The protocols used to design and implement parallel
simulation programs fall broadly into two categories:
conservative and optimistic. We begin this section
with a brief overview of these two protocols. We then
present the highlights of PVM, the software package
that enables our construction of a parallel machine
using a network of workstations.

2.1 Protocols for Parallel Simulation

The protocols currently used to parallelize a simula-
tion program fall into two general categories: conser-
vative and optimistic. Excellent surveys of these ap-
proaches can be found in Fujimoto (1990) and Righter
(1989).

In conservative simulations, a processor does not

1363

execute an event e at simulation time ¢, until all mes-
sages with time stamp less than ¢, have been pro-
cessed. This sequencing of events is known as the
local causalily constraint and adherence to this con-
straint guarantees that the execution of event e is
correct. There are numerous conservative algorithms
that differ primarily in the manner in which they com-
municate this guarantee. Some approaches execute
synchronously (see Nicol 1993, Lubachevsky 1989a)
while other approaches are asynchronous (e.g., Nicol
1988). In optimistic simulations, a processor may ex-
ecute events in any order and violations of the lo-
cal causality constraint are corrected by rolling back
the processor to a state where the constraint holds.
The optimistic approach, such as Time Warp (Jeffer-
son 1985), has shown to produce substantial speed up
due to parallelism (Madisetti and Hardaker 1992, Fu-
jimoto 1990, Baezner, Rohs and Jones 1992, Unger et
al. 1990). An excellent variation of the Time Warp
approach can be found in Madisetti, Walrand, and
Messerchmitt (1988).

There are disadvantages to each protocol. For the
conservative approach, the local causality constraint
dictates the relative order in which events must be
executed. Each processor maintains a local system
time whose value is the lowest time stamped mes-
sage of any communicating processor. However, since
the events in a simulation are highly data depen-
dent, there is little opportunity to exploit parallelism
because the frequency of communication needed to
maintain the constraint enforces a virtual lock step
execution. Successful conservative algorithms must
take advantage of lookahead, or the ability to predict
what will or will not happen in the simulated future.
Thus, if a processor, p;, knows that it will not receive
a message from another processor until time ¢;, then
all pending messages with time stamp less than ¢; can
be processed.

A disadvantage of the optimistic approach is the
overhead incurred due to the maintenance of all nec-
essary information to perform a roll back. This state
saving information must be maintained even if a roll
back is never performed. Also, a roll back on one
processor may incite a roll back on another processor,
leading to cascading roll backs. An excessive number
of roll backs may erode the gains accrued by paral-
lelization of the simulation program.

2.2 PVM

PVM (Parallel Virtual Machine) , Geist et al. (1993),
is a software package! that provides support for the

lavailable through anonymous ftp from netlib2.orml.gov in
the pvm3 directory

1364 Douglass and Malloy

construction of a parallel computer using a network of
workstations. PVM supports a message passing com-
munication paradigm that can accommodate more
than 25 platforms, ranging from a Cray/YMP to an
80386 personal computer running the Unix operating
system. Messages may be passed between any of the
machines supported; data conversions, for platforms
which use different data representations, are trans-
parent to the user.

There are two communication protocols supported
by PVM, allowing the programmer to choose be-
tween dynamic TCP sockets or UDP communicalion
through the PVM daemon. TCP refers to Transmis-
sion Control Protocol which provides connection ori-
ented communication across a network. UDP refers
to User Datagram Protocol, this protocol is a con-
nectionless transport protocol. The default commu-
nication protocol is UDP communication. In UDP
communication, user processes make PVM library
calls. The PVM daemon receives this information
and mediates the communication. In the dynamic
TCP socket communication, the user makes the same
library calls as in the UDP approach, however on
the first communication between two processes, a
TCP socket is established by daemons running on
each of the machines. Once established, this socket
is used for all subsequent communication between
the two processes so that the daemons are not in-
volved in the mediation. The initial communication
using the dynamic TCP sockets is significantly more
expensive than subsequent TCP communication or
any UDP communication because of the overhead
incurred to establish the sockets. However, subse-
quent TCP communication is far less expensive than
UDP communication; thus, if communication occurs
many times over the course of a program than TCP
socket communication is significantly more efficient
than UDP communication. The results of our exper-
imentation demonstrate the savings of repeated TCP
communication.

The cost of the communication in PVM, regardless
of the protocol used, is high. Since PVM is running
on a network of machines all contending for the use
of the network, the time needed to pass a message is
many times that of messages being passed in a ded-
icated multiprocessor. Reducing communication in
programs running in PVM is therefore a crucial con-
sideration.

3 THREE MODELS THAT USE A SHOT
CLOCK

Our approach to parallelizing the traffic flow prob-
lem is influenced by PVM, the software package that

we utilize to construct our parallel machine. PVM is
readily available and easy to use but exacts a high
cost for communication, especially if other worksta-
tions are vying for access to the connecting network.
Thus, the three factors listed below focus on reduc-
ing communication cost and guided the design of our
simulation program:

1. Increasing the amount of computation per pro-
cessor will help to offset the cost of communica-
tion in a system where communication is expen-
sive.

2. Reducing the frequency of communication will
positively influence speedup.

3. Reduction of null messages will positively influ-
ence speedup.

A major goal of this work is to measure the effects
of the above factors on a parallel simulation given
that the target multiprocessor exacts a high cost for
communication. A second goal is to obtain as much
speedup as possible by parallelization of the simu-
lation program and to investigate the scalability of
the parallelization using PVM. Our approach is based
on a windowing protocol (Nicol 1993, Chandy and
Sherman 1989, Lubachevsky 1988) where scalabil-
ity results have been proven for this approach (Nicol
1993, Lubachevsky 1989b, Lubachevsky, Shwartz,
and Weiss 1989). In a windowing protocol, processor
p; at simulated time t;, is guaranteed not to receive a
message with timestamp less than some future time,
say t; + f. In this case, processor p; is said to have
a lookahead of size f. In our work, we refer to our
windowing protocol as a shot clock where the initial
value of the shot clock is the lookahead value. If cur-
rent simulation time is t; and the lookahead value is
f, then the shot clock is said to ezpire at simulated
time t; + f. In our model, expiration of the shot clock
triggers actions which address factors two and three
listed above. Our model is explained in the following
sections.

3.1 Overview of the Approach

In addition to establishing the three factors listed
previously, this work investigates the degree of in-
fluence the above factors might have on the abil-
ity of a parallel simulation to achieve good speed up.
For factor one, we increase the computation on each
processor to mitigate the effects of expensive com-
munication by designing and implementing a param-
eterized traffic flow network. The parameter to the
network constructor is the size of the local grid. The
advantage of the parameterized network is that the

Shot Clock 1365
) s1 S0 s1
56 s7 @ss-—>ss 7 @sa« -
___I $2 GRID 0 3 $2 GRID | 3
$9 @ S10 @ SIl < s9 @ S10 @ S11 <-em
s4 s5] s ss

| |

| !

Figure 1: Two sample grids of size 2 by 2. Each grid is mapped onto a processor; in this example, GRIDO is
mapped to processor pg and GRID1 is mapped to processor p;.

flexibility permits easy scale to an increasing number
of lights per processor, therefore an increase in the
computation performed by each processor.

Figure 1 illustrates a sample traffic network com-
posed of two 2 by 2 grids, labeled GRID0 and GRID1.
Each grid is mapped onto a processor; in this exam-
ple, GRIDO is mapped to processor pp and GRID1 is
mapped to processor p;. GRIDO contains four traffic
lights labeled L0, L1, L2 and L3, and twelve street
segments labeled SO through S11. In the implemen-
tation, the lights are represented by a three valued
flag indicating that the light is red, green or yellow
and the street segments are represented by queues of
cars. Street segments serve as both sources and sinks
since traffic can flow in both directions. For example,
the north end of street segment S0 serves as both a
source where cars generated at random intervals are
permitted to travel south on the segment, and as a
sink where cars traveling north on street segment SO
are consumed when they reach the end of the seg-
ment. Street segments have a fixed size and for some
segments, cars leaving the street must be passed to
other processors for further travel. For example, cars
traveling east on street segment S8 of GRIDO must
be passed to processor p; when they reach the end of
the street; these cars correspond to messages in the
parallel model. Thus, a message must be passed to
processor p; when a car traveling east reaches the end
of street segments S8 and S11; similarly cars traveling
south on street segments S4 and S5 must be passed
to another processor when they reach the end of the
street. If the simulation program is executed on four
processors, then cars traveling east on street segments
S8 and S11 are consumed when they reach the end of
the street; if more than four processors are used then
cars must be passed as messages when they reach the
end of street segments S8 and S11.

A drawback of our parameterized network is that
the regularity imposed by the parameterization pre-
cludes replication of an actual traffic network; streets
in our network are the same length, have traffic in
both directions, do not permit one car to pass another
and there are no freeways. The number of lights per
processor and the number of processors are restricted
to be perfect squares. Work is underway to inves-
tigate the effects on the parallel model when these
limitations are removed. The parameterized traffic
flow network is used in all three models presented in
this paper.

To investigate the effects of factors two and three
listed previously, we designed three models of sim-
ulation. These models differ by the composition of
the messages that each processor passes and by the
actions that a processor perform when a shot clock
expires.

3.2 Model One: send one car in each message

In the first model, a processor p; maintains a shot
clock for each boundary segment which can have
inter-processor communication. For example, if
GRIDO0 and GRID1 are assigned to processors pg and
p1 respectively, then processor py must maintain a
shot clock entry for street segments s8 and S11 since
these segments neighbor processor p;. A street seg-
ment is a segment of road connecting two lights; for
example, street segment s7, shown in Figure 1, con-
nects lights L0 and L1.

Algorithm SimulateTraffic shown in Figure 2,
overviews the simulation process which runs on
each processor. The input to the algorithm is
the MaxSimTime, which is specified in a common
startup file which all processes may access. The
simulation continues until the local clock exceeds

1366 Douglass and Malloy

algorithm SimulateTraffic
input MarSimTime
output Simulation of this local grid

begin SimulateTraffic
LocalTime =0
while LocalTime <= MazSimTime loop
while more null messages in the receive buffer loop
process the null message
end while
while more car messages in receive buffer loop
process the car message
end while
if proceed does not violate causality constraint
then
update lights
process segments by
1. gen cars for source
2. consume cars for sink
3. pass cars to neighboring processors
4. move cars to adjacent segments
increment local time
end if
end while
end

Figure 2: General algorithm executed by each pro-
cessor to simulate a traffic network

MazSimTime.

The first of the two inner while loops processes
null messages. A null message consists of two parts:
a destination segment and a time stamp. The times-
tamp in this case specifies how much the receiver’s
local clock is allowed to proceed (the window for this
segment) by guaranteeing that no subsequent mes-
sages (car or null) with a smaller timestamp will be
received for that segment.

The second of the inner while loops processes car
messages. In this instance, a car message consists
of a destination segment and the car structure. The
processing of the car message consists of unpacking
the message and inserting the car onto the proper
queue of the destination segment. The shot clock
entry for that segment is then updated to reflect the
receipt of the car.

After the processing of the messages from other
processors is complete the local causality constraint
is verified. If the local clock is less than the times-
tamp of the last message received on all boundary
segments then the simulation is allowed to proceed.
If the simulation can proceed, each of the segments in
the local grid is processed sequentially. For segments
which are boundaries of the global system, cars are
either generated based upon a user specified probabil-
ity, or consumed. Cars are passed on segments which
are internal to the local grid, and cars are passed be-

algorithm PassBetween
input SegNo, ProcNum
output Cars/null messages passed to neighbor processor

begin PassBetween
determine destination (SegNo, ProcNum)
if the queue for this segment is not empty
for each car whose queue time has expired loop
pack destination segment
pack car structure
send message to proper processor
end for
end if
if the shot clock has expired and no cars were sent then
pack destination
pack time stamp
send null message to proper processor
end if
end

Figure 3: Algorithm used in Model One to pass cars
from one processor to another processor

tween processors.

The part of this processing which is of interest here
is the passing of cars to neighboring processors. Al-
gorithm PassBetween, shown in Figure 3, illustrates
how cars are passed in Model One. In this model
we check to see if there are cars on this segment’s
queue (assume in the outgoing directions). For each
car whose time on this queue has expired, i.e. the cars
which have traveled the segment’s length, an individ-
ual message is packed and sent. If no cars were sent
and the shot clock has expired then a null message is
sent. The null message specifies that no further com-
munication will come from this segment until time ¢,
where t is the local time of the sender’s grid plus time
remaining until the next car will be passed.

In Model One, cars which are passing between pro-
cessors are individually packed and sent in messages.
Furthermore, if there are cars on the queue which are
not ready to be sent, i.e. their time on the queue has
not expired but the shot clock has run down, a null
message is sent to the appropriate processor with a
timestamp which is the arrival time of the car at the
front of the queue. Our experiments revealed that
Model One produced no appreciable speedup and, in
many instances including the large cases, was demon-
stratably slower than the sequential approach!

Using PVM on the ethernet to perform message
passing, communication delay is significant. The lack
of performance gain for Model One can be attributed
to the scheme of passing cars in individual messages
while also passing what might be unnecessary null
messages; this, together with the relatively high com-
munication delay of PVM produced little or no speed

Shot Clock

up. Thus, we now present coarser grained approaches
in Models Two and Three, in order to reduce the cost
of communication.

3.3 Model Two: send the queue in each mes-
sage

The second approach incorporates two improvements.
The first improvement in Model Two is to reduce the
number of null messages. The second improvement
for Model Two is the packing of the car messages.
Once cars arrive on the sending queue, there is no
need for the car to wait until it’s time on the queue
has expired. The car can be passed immediately as
long as the timestamp in the message is appropriately
adjusted to make it appear as if the car had been sent
at the proper time. Further, there is no need to send
each car in an individual message. Any car which
is available can be packed together into one message
and sent.

3.4 Model Three: send the queue only when
the corresponding shot clock expires

The average number of cars being sent per message in
Model Two was 2.1. The overall number of messages
being passed was still exceedingly high, translating
into a pvm process which controls the communication
still grabbing nearly 15% of the CPU time. In Model
Three, we applied the shot clock to the car messages
so that no car message is sent until the shot clock
has expired. In contrast, the second approach passed
cars as soon as they entered the queue on the sending
side, whether or not the shot clock had expired.

4 THE IMPLEMENTATION

We implemented the three models presented in the
previous section but, to provide a basis for compari-
son, we first implemented Sequential Model, a sequen-
tial version of the traffic flow problem. In the Sequen-
tial Model, we maintain an array of data structures
and local grid information is kept in this structure.
This implementation was then extended in several
ways to obtain the three models.

In the Sequential Model, when a car travels from
one street segment on a local grid to a street segment
on another local grid, the car is simply removed from
one queue and inserted into another queue. To imple-
ment the parallel version for the models, travel from
a street segment on one local grid to a street seg-
ment on a different local grid requires a message to
be passed from one processor to another. Therefore,
using PVM, information about the car being passed

1367
algorithm ConstructLocalGrid
input LocalGridSize
output Initialize data structures storing local grid layout

begin ConstructLocalGrid
EastWestVal = LocalGridSize
1=0
while i < LocalGridSize? loop
for j =0 to LocalGridSize — 1 loop
val =i+
LightNumber = val
Segment North of Light is numbered val
Segment South of Light is numbered val+
LocalGridSize
Segment West of Light is numbered val+
LocalGridSize? + EastWestVal
Segment East of Light is numbered val+
LocalGridSize? + EastWestVal + 1
end for
EastWestVal = EastWestVal + 1
t =1+ LocalGridSize
end while
end

Figure 4: Algorithm to construct a local grid.

was packed into a message and sent to the appro-
priate processor. Similarly, the receiving processor
needed to unpack the information, and insert the car
into the proper street segment. This code is added to
the main loop of the simulation program.

When comparing the performance of the sequen-
tial and various parallel approaches physical wall time
was used rather than processor time. There are two
main reasons for this. First, since communication
through PVM is implemented through a daemon pro-
cess, the overall processor time for the simulation
would need to take into account the processor time of
the daemon. There is no easy and convenient way to
do this. Secondly, when running an application the
most important time is how long it takes to see the
result; this is the wall time. The experiments in this
paper were run on a network of SUN SLC worksta-
tions.

5 PERFORMANCE

Our experiments investigate the effects of the three
factors listed in section 3. The first factor focuses on
increasing computation to offset communication. Ta-
ble 1 illustrates the results of our experiments, using
Model Three, to determine the effects of increasing
the computation performed by each processor to mit-
igate the effects of expensive communication. Recall
that with Model Three, the entire queue is packed
into a message and a message is sent only when the
shot clock expires. The first row in the table is a head-

1368 Douglass and Malloy

ing indicating that, for both the Sequential Model
(using one workstation) and for Model Three (us-
ing 16 workstations), our simulation program con-
tained first 64 lights, then 144 until finally the last
column shows the results for the program containing
576 lights. The second row of the table shows the
execution time in minutes for the Sequential Model
and the third row of the table shows the execution
time in minutes for Model Three. The fourth row
shows the speed up® achieved for Model Three us-
ing 16 workstations over the Sequential Model using
a single workstation. For example, comparing the
results in the first column, the Sequential Model re-
quired 10.1 minutes to execute the simulation pro-
gram containing 16 lights, while Model Three (the
parallel version) required 3.2 minutes to execute the
parallel program containing 16 lights; this is a speed
up of 3.19.

This fourth row of Table 1 verifies our hypothesis
that for a parallel system with expensive communi-
cation between processors, increasing the amount of
computation on each processor can offset the high
cost for communication. In the case of the simulation
program containing 16 lights, a speed up of 3.19 was
achieved in the parallel version. However, in the case
of the simulation program containing 576 lights, we
were able to achieve a speed up of 5.7 in the paral-
lel version. Furthermore, we were able to achieve in-
creasingly better speed up as the simulation programs
contain more lights, and therefore more computation
per processor.

Tables 2, 3 and 4 illustrate a comparison of the
three models described in section 3. Also, we com-
pare the execution of Model Three using both UDP
and TCP communication. Section 3 describes factors
2 and 3, which claim that reducing the frequency of
communication and reducing null messages can pos-
itively influence speed up. By comparing the three
models, we verify factors 2 and 3.

2Speed up is the ratio of the execution time for the sequen-
tial program as compared to the execution time for the parallel
program.

No. of Lights | 64 144 256 400 576
Seq Model 195 36.2 579 759 1289
Model Three | 5.8 9.9 129 16.3 226
Speed-up 3.33 365 446 465 5.70

Table 1: Execution time (in minutes) for the
Sequential Model (1 processor) and for Model
Three (16 processors), with increasing number
of lights used in the simulation program

No. of Lights 64 144 256 400 576
Model One 389 53.6 76.7 89.8 108.6
Model Two 18.7 323 393 483 59.6
Model ThreeU | 10.2 18.6 27.0 34.1 34.5
Model ThreeT | 5.8 9.9 129 163 226

Table 2: Comparison of execution time (in min-
utes) on 16 processors for each of the mod-
els; also, we compare Model Three using both
UDP and TCP communication

Null Msgs cars/msg
Model One 10241 606382 1.0
Model Two 1495 290958 2.1
Model ThreeU | 1462 126556 4.8
Model ThreeT | 1476 126527 4.8

Table 3: Comparison of total messages sent us-
ing each model for a simulation program con-
taining 576 lights when executed on 16 proces-
sors

Table 2 illustrates five different executions for each
of the models using PVM on a network of 16 work-
stations. The first row of the table illustrates the
number of lights contained in each of the simulation
programs, row two illustrates the time in minutes for
execution using Model One, and row three illustrates
the time in minutes for execution using Model Two.
Rows four and five illustrate the time in minutes for
execution using Model Three with the model in row
four using UDP communication and the model in row
five using TCP communication.

Our results indicate that using a shot clock may
produce better speed up for a multiprocessor system
where communication is not as expensive as in the
PVM system. Table 3 shows that the average num-

No. of Lights 64 144 256 400 576
Model One 0.50 0.67 0.75 086 1.19
Model Two 1.04 1.12 147 157 2.16
Model ThreeU | 1.91 194 2.14 223 3.74
Model ThreeT | 3.33 3.65 4.46 4.65 5.70

Table 4: Comparison of speedup on 16 proces-
sors for the models; also, we compare Model
Three using both UDP and TCP communica-
tion

Shot Clock

ber of messages sent for Model Three using UDP and
TCP communication in PVM was the same. How-
ever, Table 4 shows that Model Three using TCP
communication performed better than Model Three
using UDP communication. Since TCP communica-
tion requires less overhead than UDP communication,
our shot clock technique may perform better in a sys-
tem that exacts a lower cost for communication.

6 CONCLUDING REMARKS

In this paper, we presented the design and implemen-
tation of a distributed parallel simulation of a traffic
network problem. We constructed our parallel com-
puter using PVM on a network of Sun workstations.
Since communication cost using PVM is high, we in-
vestigated the effects of increasing the granularity of
computation performed by each processor in the par-
allel execution of the simulation program. We also
investigated the effects of increasing the granularity
of messages while decreasing their frequency.

Our results show that increasing the amount of
computation that each processor performs can offset
the high cost of communication. We use a shot clock
to control the frequency and grain of the messages
passed in our parallel system. Our results show that
by packing more cars in each message and decreasing
the frequency of the messages, we can achieve better
speed up. Our results show further that in a system
with faster communication, the shot clock can achieve
even better results.

AUTHOR BIOGRAPHIES

BRIAN A. MALLOY is an Assistant Professor in
the department of Computer Science at Clemson Uni-
versity. He received an M.S. and Ph.D. from the Uni-
versity of Pittsburgh in 1984 and 1991 respectively.
His research interests include compilation techniques
for parallelism and language design techniques for
simulation.

JOHN T. DOUGLASS is a graduate student in
the department of Computer Science at Clemson Uni-
versity. He received an M.S. from Clemson University
in 1994. His research interests include program anal-
ysis, and language design techniques for parallelism.

1369

REFERENCES

Baezner, D., C. Rohs, and H. Jones. 1992. U. S.
Army MODSIM on Jade’s Time Warp. Proceedings
of the 1992 Winter Simulalion Conference 665-
671.

Chandy, K. and R. Sherman. 1989. The Conditional
Event Approach to Distributed Simulation. Pro-
ceedings of the 1989 SCS Multiconference on Dis-
tributed Simulation 93-99.

Fujimoto, R. M. 1990. Parallel Discrete Event Simu-
lation. Communications of the ACM 33:31-53.
Geist, A., A. Beguilin, J. Dongarra, et. al. 1993.
PVM 3 User’s Guide and Reference Manual. Oak

Ridge National Laboratory ORNL/TM-12-87.

Jefferson, D. R. 1985. Virtual Time. Transactions on
Programming Languages and Systems July: 404-
425.

Lubachevsky, B. 1988. Bounded Lag Distributed
Discrete Event Simulation. Proceedings of the
1988 SCS Multiconference on Distributed Simula-
tion 183-191.

Lubachevsky, B. 1989a. Efficient Distributed Event-
driven Simulations of Multiple Loop Networks.
Communications of the ACM January:111-123.

Lubachevsky, B. 1989b. Scalability of the Bounded
Lag Distributed Event Simulation. Proceedings of
the 1989 SCS Multiconference on Distributed Sim-
ulation 100-105.

Lubachevsky, B., A. Shwartz, and A. Weiss. 1989.
Rollback Sometimes Works...If Filtered. Proceed-
ings of the 1989 Winter Simulation Conference
630-639.

Madisetti, V., and D. Hardaker. 1992. Synchro-
nization Mechanisms for Distributed Event-Driven
Computation/. ACM Transactions on Modeling
and Computer Simulation January: 12-51.

Madisetti, V., J. Walrand, and D. Messerschmitt.
1988. WOLF: A Rollback Algorithm for Optimistic
Distributed Simulation Systems. Proceedings of the
1988 Winter Simulation Conference 296-305.

Nicol, D. M. 1988. Parallel Discrete-event Simulation
of FCFS Stochastic Queueing. Proceedings of ACM
Sigplan PPEALS 1988 124-137.

Nicol, D. M. 1993. The Cost of Conservative Syn-
chronization in Parallel Discrete Event Simulation.
JACM April.

Righter, R., and J. C. Walrand. 1989. Distributed
Simulation of Discrete Event Systems. Proceedings
of the IEE 77:99-113.

Unger B. W., J. Cleary, A. Dewar, and Z. Xiao. 1990.
A Multi-Lingual Optimistic Distributed Simulator.
Transactions of the Society for Computer Simula-
tion June: 121-152.

