Proceedings of the 1994 Winler Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

PARALLEL LOGIC LEVEL SIMULATION OF VLSI CIRCUITS

Rajive Bagrodia, Zheng Li, Vikas Jha, Yuan Chen, and Jason Cong

Department of Computer Science
University of California, Los Angeles, CA 90024

ABSTRACT

Interest in the exploitation of parallelism in circuit simu-
lation has been increasing steadily. In this paper, we study
parallel logic level simulation of combinational VLSI
Boolean networks using both conservative and optimistic
simulation algorithms. In particular, we describe a logic
level circuit simulator that uses an acyclic multi-way net-
work partiioning algorithm to decompose Boolean net-
works and an algorithm-independent simulation language
that allows a discrete-event simulation model to be exe-
cuted using a variety of simulation algorithms. The simu-
lator has been implemented on an IBM SP1 supercom-
puter and was used to simulate a set of combinational
Boolean circuits from the ISCAS85 benchmark suite. Our
results show that it is feasible to obtain speedups for even
relatively small circuits using both conservative and
optimistic methods.

1. INTRODUCTION

Circuit simulation is a critical bottleneck in the design of
complex VLSI chips. Even though the clock speed and
processing power of general purpose workstations is
improving constantly, the increase in size and complexity
of VLSI chips indicates that this problem is likely to get
worse. The simulation complexity is such that it routinely
requires a few days or even weeks to simulate processor
level designs on contemporary desktop workstations. It
has been reported that the final verification of a supercom-
puter developed by Ardent required two weeks using two
workstations [Soule, 1992]. Further, as the size of the
simulated system grows, the memory requirements may
increase beyond the limits of the main memory that is typ-
ically available on a single workstation. The need for
efficient and cost-effective circuit simulation is hard to
overstate.

A promising approach for this problem is the use of
general purpose parallel machines for circuit simulation.
This approach is referred to as parallel circuit simulation
and may be used to execute both functional and circuit-

level models on parallel architectures. Parallel circuit
simulations have significant advantages when compared
with the use of special-purpose hardware: first, unlike the
hardware solutions, these techniques are not inherently
restricted to work with specific types of elements or tim-
ing models, or to circuits of specific size. Second these
techniques are inherently scalable; the software approach
can directly track the processor technology curve and
derive immediate benefits from advances in processor net-
work designs. Further, as the interconnection technology
advances and it becomes feasible to provide low-latency
connectivity among an increasingly larger number of pro-
cessors, this increase in computational power can be
immediately hamessed by the parallel simulation
approach. Lastly, the software approach can directly sup-
port mixed-mode circuit simulations, where different
sub-circuits may be simulated using functional, logic, or
switch level models.

For parallel circuit simulation to be effective, the circuit
must contain inherent parallelism, which may available as
either synchronous or asynchronous parallelism. Syn-
chronous parallelism exploits concurrency if the circuit
has a large number of simultaneous events. However,
previous measurements by Wong [1986], and Bailey and
Snyder [1988] have reported small concurrency levels that
are unlikely to yield significant and scalable performance
improvements.

Asynchronous parallel circuit simulation introduces two
significant problems: circuit partitioning and synchroniza-
tion. The former refers to the decomposition of the origi-
nal circuit into a number of subcircuits, such that the com-
putation among the subcircuits is approximately balanced
and the communication is minimized. Although a large
number of partitioning methods have been devised, rela-
tively few have been designed specifically for parallel cir-
cuit simulation. For instance, most partitioning algorithms
ignore the direction of signal propagation and model the
network as an undirected graph. As we demonstrate in
this paper, if signal direction is included in the partitioning
algorithm, it is possible to construct acyclic partitions that
reduce synchronization overheads for some

1354

VLSI Circuits 1355

synchronization algorithms. ~ The synchronization is
required to ensure that incoming signals at cach subcircuit
are processed in their correct global order. Three primary
synchronization mechanisms have been used: the conser-
vative parallel discrete-event simulation (PDES) protocols
[Misra, 1986], the optimistic PDES protocols [Jefferson,
1985], and the recently proposed adaptive protocol that
combines the hitherto disparate protocols [Jha and Bagro-
dia, 1994].

In this paper, we present experimental results on logic
level simulation of circuits using a new acyclic partition-
ing algorithm [Cong, Li, and Bagrodia, 1994] where the
parallel simulation of the partitions is synchronized using
both conservative and optimistic algorithms. A number of
circuits from the ISCAS85 benchmark suite were selected
for simulation. Parallel execution was effective in reduc-
ing the simulation time for even the small circuits contain-
ing about 1500 gates. The next section describes related
work in the area of parallel circuit simulation. Section 3
gives a brief description of the parallel simulator and its
implementation. Section 4 describes the acyclic partition-
ing algorithm. Section 5 describes the benchmark circuits
used in the experiments and presents the results of both
sequential and parallel simulation of these circuits. Sec-
tion 6 is the conclusion.

2. RELATED WORK

Previous work on the application of asynchronous tech-
niques have been used primarily for logic simulation,
rather than switch-level simulations. Perhaps the earliest
comprehensive experimental study was by Su and Seitz
[1989], who studied the effectiveness of six variants of the
conservative simulation protocol based on dcadlock-
avoidance using null messages. They reported a factor of
2 speedup on 32 nodes and between 5-10 on 128 nodes.
Subsequently, Soule [1992] applied the conservative tech-
niques to the logic level simulation of a number of bench-
mark circuits ranging from a small 5,000 elcment 16-bit
multiplier to a large 24,600 clement multiprocessor direc-
tory cache controller. The models were executed on a 16-
processor Encore Multimax and on the Stanford DASH
multiprocessor. The researchers noted only slight speed-
ups for the various circuits and noted that the deadlock
resolution overheads limited the speedups.

Optimistic techniques have also been used for logic
simulations. The most successful parallelizations have
been obtained by Briner, et al. [1991], who evaluated the
speedups for logic simulation of circuits using an optimis-
tic protocol. Reported speedups measured on 32 nodes of
a BBN Butterfly ranged from 7 for a 3,360 transistor

circuit to almost 25 for a 30K transistor circuit. Sporrer
and Bauer [1993] used TimeWarp on a network of works-
tations for logic simulation of the ISCAS89 benchmarks
using a hierarchical, cluster-based partitioning algorithm.
On a network of 20 workstations they reported a peak
speedup of about 8, relative to a 1 processor implementa-
tion of the distributed simulator.

3. SIMULATION ENVIRONMENT

All sequential and parallel simulations reported in this
paper were executed using the Maisie simulation environ-
ment. Maisie is among the few existing languages that
supports the execution of a discrete-event simulation
model with multiple algorithms and provides constructs
to reduce the simulation overheads with both conservative
and optimistic parallel algorithms. The simulation algo-
rithms currently supported by Maisie include a sequential
algorithm, parallel conservative algorithms based on null
messages [Misra, 1986] and conditional events [Chandy
and Sherman, 1989], a new conservative protocol that
combines null messages with conditional events [Jha and
Bagrodia, 1993], and a parallel optimistic algorithm
[Bagrodia, Chandy, and Liao, 1992]. A complete
definition of Maisie may be found in [Bagrodia and Liao,
1992]. An overview of Maisie is also given in a compan-
ion paper in this volume [Bagrodia, 1994]. Conservative
implementations of Maisie with three different protocols
including the null message protocol, the conditional event
algorithm, and a new protocol that combines the preced-
ing approaches has been described in [Jha, Bagrodia,
1993]. The implementation of Maisie with the optimistic
space-time algorithm is in [Bagrodia, Liao, 1992].

4. CIRCUIT PARTITIONING AND SIMULATION

To simulate a circuit on a parallel architecture, the design
must be partitioned into a number of subcircuits, such that
each subcircuit can be simulated on a separate processor.
The partitioning algorithm can have a significant impact
on the performance of the parallel implementation, as a
sub-optimal partitioning may imply frequent and (possibly
unnecessary) communications among the processors, forc-
ing synchronization to occur much more frequently than is
nccessary for the given circuit.

4.1. Acyclic Multiway Partitioning
A number of recent algorithms have been proposed that

attempt to optimize the partitioning for circuit simulations.
Most existing partitioning algorithms model the circuit as

1356 Bagrodia et al.

an undirected graph and ignore signal direction during the
parutioning process. However, analyzing signal direction
during the partitioning process can be useful. For
instance, it is possible to use signal direction information
to construct acyclic partitions. Acyclic networks have
been shown to have much better performance than net-
works with feedbacks for queueing systems, and the same
is likely to hold for circuit simulations. In this section, we
briefly describe a class of new acyclic multi-way parti-
tioning algorithms [Cong, Li, and Bagrodia, 1994] that
were used for parallel execution of the circuit models.

We begin with an extension of the Fidducia-Mattheyses
algorithm [Fidducia and Mattheyses, 1982], referred to as
the K-FM algorithm. This algorithm starts with a ran-
domly generated, balanced, initial partition and subse-
quently moves gates among the partitions. At each step,
gates that can be moved to another partition are identified.
A gate is feasible for moving, if moving it to another par-
tition will not violate the balance constraint. Among all
feasible gates in a partition, the gate with the highest gain
is selected, where the gain of a gate is defined to be the
amount of reduction in the cut size that results from mov-
ing the gate to the other partition. When all feasible
moves have been inspected, the best partition encountered
during the current pass is saved as the initial partition for
the next pass. The algorithm terminates when a pass
makes no improvement to the partitioning solution.

The preceding partiioning algorithm can be used to
generate acyclic partitionings by imposing additional con-
straints that maintain an acyclic dependency graph. This
extension, referred to as K-AFM uses an initial acyclic
partitioning based on a random topological ordering of the
initial circuit. The criteria for choosing a feasible move in
the K-AFM algorithm is modified to select a gate that
maximizes gain under both acyclic and area constraints.
However, experimental results on the ISCAS benchmarks
indicate that this algorithm did not yield significant
improvements on the cut sizes for the partitions [Cong, Li,
and Bagrodia, 1994].

The next algorithm used clustering prior to the parti-
tioning phase to improve the cut size. The circuit was first
clustered using the maximum fan-out free cone (MFCC)
(Cong and Ding, 1993] strategy and the preceding K-
AFM algorithm was then applied to the clustered network.
The resulting algorithm is referred to as the K-MAFM
algorithm. Compared to existing algorithms, the K-
MAFM algorithm was found to produce significant reduc-
tions in the cut size of the partitions.

4.2. Gate Level Simulation

The ISCAS benchmark includes simple circuits that con-
tain only combinational elements; each element is
assigned a constant rise and fall time, with all instances of
a given element assigned the same rise and fall times. A
given circuit is decomposed into a set of partitions as
described in the previous section. The input lines in each
partition either correspond to primary inputs or outputs
from another partition. In the simulator, each partition is
programmed as a Maisie entity called partition. A driver
entity is also defined which is responsible for initiating
the simulation, creating the partition entities and terminat-
ing the program. The simulation is executed for a given
number of input vectors; for each vector, the driver packs
the signals that correspond to the primary inputs for a
given partition into a single message and sends the mes-
sage to the corresponding entity. The partition entity is
described next.

The gates and lines that belong in a given partition are
represented by appropriate data structures within the
corresponding entity. Each entity contains two event-lists,
called the in_event_list and owt_event_list, respectively.
At each simulation instance say ¢, the entity first processes
events with timestamp ¢ in the in_event lisz. Each event
corresponds to a change in the signal value for a given
line; if the new value changes the output of the
corresponding gate, an event is scheduled at the appropri-
ate future time. If the output line belongs to the same par-
tition, the event is inserted into the in_event list and is
inserted in the out_event_list otherwise. When the entity
has exhausted all events with timestamp ¢ from its internal
list, it checks to determine if the out_event_list contains
any outgoing events with timestamp ¢; if so, it propagates
them to their destination entities. All outgoing events
from one partition to another are packed together and sent
as a single message. Note that if the underlying simula-
tion algorithm was known to be optimistic, the output sig-
nals could be transmitted at the time they are generated
(and subsequently canceled using rollbacks if necessary;
the impact of this modification has not yet been
evaluated). After processing events from its
out_event_list, the entity schedules a conditional timeout
event corresponding to the earliest timestamp in its
in_event_list. Note that it is possible for the entity to
receive an input message from some other partition prior
to receiving the timeout event, in which case the input
event is processed as described above and the timeout
event is rescheduled.

VLSI Circuits 1357

5. EXPERIMENTAL RESULTS

The benchmark examples were selected from the
ISCASSS suite, a set of combinational circuits that include
the signal direction information. Table 1 shows the
characteristics of the benchmark circuits in terms of the
number of gates, number of PIs, number of nets, and
number of edges. Although these circuits are relatively
small, they were easily available; experiments with larger
circuits are in progress.

The sequential and parallel results reported in this paper
were executed on 16 nodes of an IBM 9076 SP1 parallel
computer. The IBM SP1 is a distributed memory
machine that consists of a set of RS/6000 workstation pro-
cessors connected by a high speed switch. Each node has
a main memory of 128 megabytes and is connected to a 1
Gigabyte disk that is used for temporary file storage. The
sequential experiments were executed on a single node of
the IBM SP1 using a global event-list implementation of

Ciruit No. of gates No. of PIs No. of nets No. of edges
C2670 1193 233 1426 1983
C3540 1667 50 2167 2911
C5315 2307 178 2485 4331
C6288 2418 32 2450 4800
Table 1. Benchmark Circuits.

partition | ¢5315 | c6288

unpartitioned 1 64.1 122.8

2 34.5 69.0

K-MAFM 4 22.0 37.4

8 19.4 26.2

16 15.1 17.4

2 36.7 64.3

K-FM 4 224 56.0

8 20.0 35.5

16 16.6 29.9

4 342 38.1

K-AFM 8 254 26.2

16 20.4 14.8

Conservative 1 60.4 113.2

Optimistic 1 583 | 141.4

Table 2. Execution Time (secs) (Sequential Algorithm)

Maisie, where the event-list was implemented as a splay
tree. The parallel experiments were executed using the
conservative and optimistic algorithms described in the
previous section.

S.1. Sequential Simulation Experiments

The benchmark circuits were partitioned using each of the
three algorithms described previously and the execution
time for the sequential runs was measured as a function of
k, the number of partitions, for k=2,4,8, and 16, respec-
tively. Each experiment was executed for 250 simulation
time units. Table 2 shows the impact of the partitioning
algorithm on the execution time for two of the benchmark
circuits.

As seen from Table 2, the execution time decreases
almost monotonically as the number of partitions increase.
The speedup obtained for the sequential implementation
was as much as 1.86 for 2 partitions, 3.6 for 4 partitions,
4.68 for 8 partitions, and 8.3 for 16 partitions. As the
number of partitions for a given circuit increases, the size
of in_event_list for each partition decreases and the total
time spent in list-management activities including inser-
tion, deletion, and search decreases leading to improve-
ments in the cxecution time. A similar phenomenon was
noticed in the simulation of the shark’s world model,
where model decomposition was found to improve the
performance of the sequential implementation [Bagrodia
and Liao, 1990].

For a given number of partitions, the acyclic clustered
partitioning (K-MAFM) yielded the best performance.
The superior performance of this algorithm was primarily
because it generated partitions with the smallest cut-sizes,
and it had the fewest signals sent across the partitions. The
undirected K-FM partitions resulted in solutions with a
larger cut-size, but each message exchanged between the
partitions was packed with fewer signals than with the K-
MAFM partition resulting in more total message
exchanges than in the K-MAFM algorithm. This caused a
significant degradation in the performance of the K-FM
implementation. Although the cut size for the acyclic K-
AFM algorithm was much larger than that of the K-
MAFM algorithm, its performance is better than the cyclic
K-FM algorithm because it typically had a higher number
of signals packed in each message. The larger cut-size of
the K-AFM also implicd that the internal event-list in each
partition contained a larger number of entries, which
degraded its performance in comparison to that of the
clustercd acyclic algorithm. Note that the topology of the
original circuit also influenced the relative performance of
the two acyclic algorithms.

1358 Bagrodia et al.

5.2. Parallel Simulation Experiments

The Maisie model was subsequently refined for parallel
execution. The only change required to the sequential
model was to distribute the partition entities among avail-
able processors.

We begin with a detailed look at the two largest cir-
cuits in the benchmark suite, namely, c6288 and c5315.
The circuits were partitioned using the K-MAFM, K-FM
and K-AFM algorithms and the timings were measured
for parallel implementations using 4, 8, and 16 partitions.
The results are tabulated in Tables 3 and 4 and displayed
graphically in figures la-e. The legend for the graphs is
given separately in Figure 1a. The timings clearly demon-
strate the considerably better performance of the acyclic
partitionings. For conservative implementations, acycli-
city implies less blocking for null messages and for the

K-MAFM, 4 —o—
K-FM, 4 -+-
K-AFM, 4 -8--
K-MAFM, 8 -X---
K-FM, 8 &=
K-AFM, 8 -%-
K-MAFM, 16 -0--
K-FM, 16 -+
K-AFM, 16 -&-

Figure 1a Legend Used for Figures 1b-e

¢5315 on n nodes c6288 on n nodes
partition
n=4 n=8 n=16 n=4 n=8 n=16
k=4 8.88 - - | 15.49
K-MAFM k=8 1041 4.7 - 9.64 6.47
k=16 2027 | 1391 4.44 | 10.05 | 6.354 31
k=4 12.66 - - | 2276
K-FM k=8 2097 | 11.28 -] 2951 | 27.12
k=16 4897 | 3156 | 7.01 | 49.43 | 3344 | 11.78
k=4 | 10.704 - - | 18.05
K-AFM k=8 19.21 6.c2 - | 1025 6.33
k=16 2194 | 1394 | 483 8.28 5.89 3.64

Table 3. Execution Time using Conservative Algorithm

¢5315 on n nodes 6288 on n nodes
partition
n=4 n=8 n=16 n=4 n=8 n=16
k=4 | 16.59 - - | 3467
K-MAFM k=8 | 41.01 7.47 - 347 | 1259
k=16 | 56.88 | 25.97 691 | 2268 | 1425 6.20
k=4 | 43.18 - -] 6139
K-FM k=8 | 51.28 | 25.95 - | 6699 [58.77
k=16 | 43.06 | 36.97 | 23.09 | 38.33 | 38.88 | 24.13
k=4 | 15.70 - - | 3361
K-AFM k=8 | 52.32 8.29 - | 3583 9.81
k=16 | 7591 | 38.23 9.32 | 2692 | 16.53 6.56

Table 4. Execution Time using Optimistic Algorithm

optimistic implementations, it reduces the probability of
rollbacks leading to better performance. The table also
includes that given n processors, an n-partition yielded
the best performance. Thus, unlike the sequential imple-
mentation, having multiple partitions on a processor does
not yield better performance.

Figure 2 plots the self-relative speedup for both conser-
vative and optimistic algorithms for the ¢5315 and c6288
circuits. The self-relative speedup was defined as
tpar (n 0)/tpar (1,1), where t,5-(n,n) is the execution time
for the n -partition n-processor parallel implementation of
a given circuit and f,q-(1,1) is time for the 1-processor
implementation for the cormresponding conservative or
optimistic model. The times for the 1-processor conserva-
tive and optimistic implementations are included at the
bottom of Table 2.

Table 5 shows the performance of the two smaller cir-
cuits in the benchmark. The table only reports the perfor-
mance of the n -partition, n -processor mapping using the
K-MAFM partitioning algorithm, as this configuration
was found to be the most efficient for the larger circuits.
For both conservative and optimistic runs, the best speed-
ups are obtained using 8 processors. The speedups for
the smaller circuits are better than those for the larger cir-
cuits described earlier, particularly for the optimistic
implementation. The primary reason for this is the con-
siderably lower state saving overhead for the small cir-
cuits.

In Figure 3, we plot the speedups obtained for the k-
partition parallel implementation. The speedup is defined
as tpar (N 11) tseq (1), wWhere fpar (nn) is the execution time
for the n -partition n-processor parallel implementation of

Execution Time

Figure 1b Execution Time for c¢5315 (Optimistic)

Execution Time

Figure 1d Execution Time for c6288 (Optimistic)

Figure 2 Self-relative Speedup for ¢5315 and c6288

€0
70
60
50
40
30
20
10

70
60
50
40
30
20
10

Speedup

VLSI Circuits

No.

4 8 12
of Partitions

16

*':-::--.w-—-" JRREE

No.

40

30

20

10

4 8 12
of Partitions

16

Execution Time

Execution Time

oo
o O

= NN W
O O o

50

L 2 I V% TR -
O O O o

Speedup

L T T T
Opt (c5315) ——
Cons (c5315) —+- -
Opt (c6288) -8--
Cons (c6288) M- .7
5 .o
i X -
...~"‘ B' .
,"x LammmmmemmTTT +
" ’d,.;'
r: g
1 1 1
0 4 8 12 16
No. of Processors

Figure 3 Speedups w.r.t Corresponding Sequential Runs

4 8 12

No. of Partitions

16

7 ITons (c5315)

[~ TN €) B e)

N W

4 8 12

No. of Partitions

16

1 L
Opt (c2670)
Cons (c2670)
Opt (c3540)
HCons (c3540) -
Opt (¢c5315)

Opt (c6288)

[Cons (c6288) -+--- .

12 1

No. of Partitions

6

1359

Figure 1c Execution Time for ¢5315 (Conservative)

Figure 1e Execution Time for c6288 (Conservative)

(using K-MAFM)

1360

Sequential Conservative Optimistic

Partition

€2670 | 3540 | c2670 | c3540 | 2670 | c3540
1 29.2 50.3 | 12229 | 21.873 | 11.92 | 23.742
2 17.2 283 5.05 8.97 521 10.07
4 10.9 20.1 253 5.26 3.05 6.26
8 113 13.0 247 319 3.01 5.16
16 9.9 13.4 2.56 3.29 5.89 5.61

Table 5. Execution Time for ¢2670 and ¢3540
(using K-MAFM, one entity on one processor)

a given circuit and f,4(n) is the execution time for the
corresponding n-partiion sequential implementation. As
noted from the graph, for the bigger circuits, the speedup
improves monotonically as the number of processors is
increased to 16. For the two smaller circuits, the speedup
increases initially, but decreases beyond 8 processors
because of the additional communication overhead.

Table 6 summarizes the speedups obtained using both
conservative and optimistic algorithms as compared with
the best sequential implementation. For each circuit, the
lowest parallel execution times were identified for both
conservative and optimistic methods. This time is
included in the column titled f,.,(n); the number in the
parenthesis refers to the number of processors that were
used to obtain the optimal time. The column titled
trest(n algo) includes the best time obtained for the
sequential execution of that circuit across all sequential
implementations considered in this paper. The parentheses
indicate the partitioning algorithm and the number of par-
titions that yielded the best sequential time. We note that
overall the conservative algorithm performed better than
the optimistic implementations.

As checkpointing costs were found to be the biggest
source of overhead for the optimistic implementations, we
experimented with a number of alternative checkpointing

Bagrodia et al.

frequencies. For the acyclic partitioning using K-MAFM
and K-AFM, checkpointing after every 15 events was
found to yield the best performance, whereas for the
undirected partitioning, checkpointing after every 5 events
was found to yield the best performance. The reported
times used the checkpointing frequency that optimized the
performance.

6. CONCLUSION AND FUTURE RESEARCH

In this paper, we have demonstrated the feasibility of
obtaining speedups in parallel logic simulation of circuits
on distributed memory architectures using both conserva-
tive and optimistic methods. The experiments reported in
this paper were restricted to relatively small circuits with
less than 3000 gates. Extensions of this work to larger
circuits, including circuits that contain sequential ele-
ments, is in progress. The impact of algorithm-specific
optimizations, including programmer-specified lookahead
and aggressive optimistic execution is also being investi-
gated.

ACKNOWLEDGMENTS

This work is partially supported by the California MICRO
program with Cadence, Hewlett-Packard, and Zycad, by
ARPA/CSTO under Contract J-FBI-93-112, and by the
NSF Young Investigator Awards under ASC-9157610 and
MIP-9357582.

REFERENCES

Bailey M. and Snyder L. 1988. An Empirical Study
of On-Chip Parallelism Proceedings of the 25th
ACMIIEEE Design Automation Conference

Bagrodia R. 1994. Language Support for Parallel
Discrete-Event Simulations 1994 Winter Simula-
tion Conference

Bagrodia R., Chandy K., and Liao W. 1992. A Uni-
fying Framework for Distributed Simulations ACM

Conservative Optimistic
Circuits thest (N ,algo)
tpar(n) | speedup | fpor(n) | speedup
c2670 9.9(16,K-MAFM) 2.47(8) 4.01 3.01(8) 3.29
c3540 13.0(8,K-MAFM) 3.19(8) 4.08 5.16(8) 2.52
cS315 15.1(16,. K-MAFM) | 4.44(16) 3.40 | 6.91(16) 2.18
c6288 14.8(16,K-MAFM) 3.1(16) 4.77 | 6.20(16) 2.39

Table 6. Speed-up w.r.t. the Best Sequential Execution Time

VLSI Circuits 1361

Transactions on Modeling and Computer Simula-
tions

Bagrodia R., and Liao W. 1992. Transparent Optim-
izations for Optimistic Simulations Proc. 1992
Winter Simulation Conference

Bagrodia R., and Liao W. 1990. Parallel Simulation
of the Sharks World Problem 1990 Winter Simula-
tion Conference

Briner J., Ellis J., and Kedem G. 1991. Breaking the
Barrier of Parallel Simulation of Digital Systems
Proceedings of the ACM/IEEE Design Automation
Conference

Chandy K. and Sherman R. 1989. The Conditional
Event Approach to Distributed Simulation Distri-
buted Simulation Conference

Cong J. and Ding Y. 1993. On Area/Depth Trade-off
in LUT-Based FPGA Technology Mapping Proc.
30th ACMIIEEE Design Automation Conference

Cong J., Li Z., and Bagrodia R. 1994. Acyclic
Multi-Way Partitioning of Boolean Networks
Proc. ACMI/IEEE 31st Design Automation Confer-
ence

Fiduccia C., and Mattheyses R. 1982. A Linear Time
Heuristic for Improving Network Partitions
ACMIIEEE Design Automation Conference

Jefferson D. 1985. Virture Time ACM Transactions
on Programming Languages and Systems 7, 3,
page 404-4

Jha V., and Bagrodia R. 1993. Transparent Imple-
mentations of Conservative Algorithms in Parallel
Simulation Languages Winter Simulation Confer-
ence

Jha V., and Bagrodia R. 1994. A Unified Framework
for Conservative and Optimistic Distributed Simu-
lation 8th Workshop on Parallel and Distributed
Simulation

Misra J. 1986. Distributed-Discrete Event Simula-
tion ACM Computing Surveys 18, 1, page 39-65

Soule L. 1992. Parallel Logic Simulation: An
Evaluation of Centralized-Time and Distributed-
Time Algorithms PhD thesis, Stanford University

Sporrer C. and Bauer H. 1993. Corolla Partitioning
for Distributed Logic Simulation of VLSI Circuits
7th Workshop on Parallel and Distributed Simula-
tion

Su W. and Seitz C. 1989. Variants of the Chandy-
Misra-Bryant Distributed Simulation Algorithm
1989 Simulation Multiconference: Distributed
Simulation

Wong K. 1986. Statistics on Logic Simulation
Proceedings of ACMIIEEE Design Automation
Conference

AUTHOR BIOGRAPHIES

RAJIVE BAGRODIA is an Associate Professor of Com-
puter Science at UCLA. He obtained his M.A. and Ph.D.
degrees in Computer Science from the University of
Texas at Austin, in 1983 and 1987 respectively. His
research interests include distributed algorithms, parallel
languages, programming methodology and performance
evaluation. He has served as the Program Chair and the
General Chair for the Workshop on Parallel and Distri-
buted Simulation. He was selected as a Presidential
Young Investigator by NSF in 1991. He is also the reci-
pientdof the 1992 TRW Outstanding Young Teacher
award.

ZHENG LI received a B.S. in Computer Science from
Fudan University, Shanghai, China in 1991. She is expect-
ing her M.S. degree in Computer Science from UCLA,
Fall, 1994. Her research interests include VLSI circuit
partitioning and parallel simulation.

VIKAS JHA is a Ph.D. student in Computer Science at
UCLA. He obtained a B.S. in Computer Science from
Indian Institute of Technology, Delhi, in 1989, and an
M.S. in Computer Science from UCLA in 1991. His
research interests include parallel simulation and distri-
buted algorithms.

YUAN CHEN received B.S. and M.S. degrees in Com-
puter Science from National Taiwan University, Taiwan
in 1987 and 1989, respectively. Currently, he is a Ph.D
student in Computer Science at UCLA. His research
interests are Distributed Discrete Event Simulation and
Parallel Programming.

JASON CONG is an associate professor of Computer
Science at UCLA. His research interests include
computer-aided design of VLSI circuits, fauli-tolerant
design of VLSI systems, and design and analysis of
efficient combinatorial and geometric He has served on
the program committees of a number of VLSI CAD
conferences. He was the chairman of the 4th
ACM/SIGDA Physical Design Workshop. He received
the NSF Research Initiation Award in 1991 and the NSF
Young Investigator Award in 1993. He received the
Northrop Corporation Qutstanding Junior Faculty
Research Award from the UCLA School of Engineering
and Applied Sciences in 1993.

