Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

GTW: A TIME WARP SYSTEM FOR SHARED MEMORY MULTIPROCESSORS

Samir Das, Richard Fujimoto, Kiran Panesar, Don Allison, and Maria Hybinette

College of Clomputing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280, U.S.A.

ABSTRACT

The design of the Georgia Tech Time Warp (GTW,
version 2.0) executive for cache-coherent shared-
memory multiprocessors is described. The program-
mer’s interface is presented. Several optimizations
used to efficiently realize key functions such as event
list manipulation, memory and buffer management,
and message passing are discussed. An efficient algo-
rithm for computing GVT on shared-memory multi-
processors is described. Measurements of a wireless
personal communication services (PCS) network sim-
ulation indicate the GTW simulator is able to sustain
performance as high as 335,000 committed events per
second for this application on a 42-processor KSR-2
machine.

1 INTRODUCTION

The Georgia Tech Time Warp (GTW) system is a
parallel discrete event simulation executive based on
Jefferson’s Time Warp mechanism [Jefferson, 1985].
The system is designed to support efficient execution
of small granularity discrete-event simulation applica-
tions that contain as little as a few hundred machine
instructions per event. Small granularity arises in
many applications, c.g., cell-level simulations of asyn-
chronous transfer mode (ATM) networks and simula-
tions of wireless networks. For these applications,
even a modest amount of overhead in the central
event processing mechanism can lead to substantial
performance degradations. Because Time Warp is
widely believed to incur significant overheads that are
not found in sequential simulators, a major challenge
in the GTW design was to implement Time Warp
with a minimal amount of event processing overhead.

We assume throughout that the hardware platform
1s a cache-coherent, shared-memory multiprocessor.
Commercial machines of this type include the Kendall
Square Research KSR-1 and IKSR-2, Sequent Sym-

1332

metry, and multiprocessor workstations such as the
Sun SparcServer or SGI Challenge. We assume the
multiprocessor contains a set of processors, each with
a local cache that automatically fetches instructions
and data as needed. It is assumed that some mech-
anism 1s in place to ensure that duplicate copies of
the same memory location in different caches remain
coherent, e.g., by invalidating copies in other caches
when one processor modifies the block.

We assume that the reader is familiar with the
Time Warp mechanism described in [Jefferson, 1985].
In the remainder of this paper we first summarize the
programmer'’s interface. A more detailed description
is described in [Fujimoto et al., 1994]. We then de-
scribe the Time Warp implementation and several op-
timizations that have been included to improve per-
formance. We conclude by presenting performance
measurements for a typical application.

2 THE PROGRAMMER'S INTERFACE

Efficient execution of small granularity simulations
necessitates a simple programmer’s interface that can
be efficiently implemented. As such, the GTW exec-
utive was designed to provide a minimal set of basic
simulation primitives, while allowing more sophisti-
cated mechanisms to be implemented as library rou-
tines. For example, GTW supports an event-oriented
world view. Mechanisms for more complex (albeit
time consuming) world views such as process-oriented
simulation are built on top of the GTW executive.

2.1 LPs, State, and Events

A GTW program consists of a collection of logi-
cal processes (LPs) that communicate by exchang-
ing timestamped events (messages). The execution
of each LP is entirely message driven, i.e., any ex-
ecution of application code is a direct result of re-
ceiving a message. LPs cannot “spontaneously” be-
gin new computations without first receiving a mes-

GTW

sage. Each LP has three procedures associated with
it: the IProc procedure is called at the beginning
of the simulation to initialize the LP and genecrate
the imtial messages, the Proc procedure (also called
the event handler) is called to process each event re-
ceived by the LP, and an optional FProc procedure is
called at the end of the simulation, typically to out-
put application-specific statistics. These procedures
and the routines that they call completely specify the
behavior of the LP. Each LP is identified by a unique
integer ID.

In addition, the user must also provide a procedure
for global initialization of the simulation. This pro-
cedure is passed command line arguments and must
specify the number of logical processes, the IProc,
Proc, and FProc procedures for each LP, and the
mapping of LPs to processors. At present, all logical
processes must be instantiated during initialization,
and the mapping of LPs to processors is static.

LPs may define four different types of state: (1)
state that is automatically checkpointed by the GTW
executive, (2) state that is incrementally check-
pointed using GTW directives invoked by the applica-
tion, (3) local (sometimes called automatic) variables
defined within the IProc, Proc, and FProc proce-
dures, and (4) global variables that are not check-
pointed. The fourth category is intended to hold
data structures that are not modified during the sim-
ulation. At present, the automatically checkpointed
state for each LP must occupy contiguous memory lo-
cations. lgnoring this restriction, however, the state
vector of each LP is an arbitrary data structure de-
fined within the application program.

A copy of the LP's automatically checkpointed
state is made prior to each invocation of its event han-
dler, transparent to the application. Incrementally
checkpointed variables must be individually copied
through explicit calls to GTW primitives. A vari-
able need only be checkpointed once in each event,
but must be checkpointed prior to any modification
of the variable within the cvent. Any state that is
dynamically allocated after the initialization phase of
the simulation must be incrementally checkpointed.

Two procedures are provided for message passing.
The TWGetMsg procedure allocates a message buffer
by storing a pointer to the buffer in a GTW-defined
variable called TwMsg. The TWSend procedure sends
the message pointed to by TWMsg and resets TWMsg
to Null. TWMsg is reset to Null to discourage appli-
cations from modifying messages after they are sent.
which mav lead to unpredictable results (as discussed
later, the executive performs no message copying).

1333

2.2 1/0 Events

Computations for events that are generated via
TWSend may be rolled back by the underlying Time
Warp mechanism. Application programs may also
schedule (send) events that will not be processed until
GVT [Jefferson, 1985] exceeds the timestamp of the
event, guaranteeing that the computation will not be
later rolled back. This allows application programs
to perform irrevocable operations such as I/O. Such
events are referred to as 1/0 events, although event
handlers for I/O events may perform arbitrary com-
putations, and need not perform any 1/O operations.
A different event handler may be associated with each
1/O event.

The GTW executive provides two types of I/O
events. Blocking 1/O events do not allow optimistic
execution of the LP beyond the timestamp of the I/O
event. Operationally, this means the LP is temporar-
ily blocked once a blocking I/O event becomes the
smallest timestamped, unprocessed event in the LP.
The LP remains blocked until it is either rolled back
(the LP will again block once the rolled back events
are reprocessed, if the I/O event has not been can-
celled), or until GVT advances to the timestamp of
the blocking I/O event. Once the event handler for
the I/0 event is called, the LP resumes normal opti-
nmistic execution. The event handler for blocking I/0
events can access the LP’s state vector. 1/O opera-
tions requiring input from external sources will nor-
mally use blocking /O events.

Non-blocking 1/O events do not temporarily block
LPs as described above. The event handler for these
events cannot access the state vector of the LP, since
the LP will typically have advanced ahead of the
timestamp of the 1/O event when the 1/0 event han-
dler is called. All data needed by the 1/O event
handler must be included within the message for
the event. Output operations will typically use non-

blocking 1/0 events.

2.3 Limiting Optimistic Execution

A well-known problem in Time Warp is that there
may be overly optimistic execution, 1.e., LPs may ad-
vance too far ahead of others in simulated time, pos-
sibly leading to inefficient use of memory and/or ex-
cessively long rollbacks. GTW provides mechanisms
to allow the application program to control such be-
havior.

Blocking 1/O events provide a mechanism for lim-
iting the forward progress of an individual LP. If a
blocking 1/O event 1s scheduled for an LP at sim-
ulated time T'. the LP is prevented from executing
beyond this simulated time until GVT advances to

1334

time T. Thus, overoptimism by a single LP can be
prevented by simply scheduling a *dummy” blocking
I/0O event for the LP with an event handler that does
not. perform any computation.

A second, coarser, mechanism for limiting opti-
mistic execution is provided by the GTW executive.
This mechanism is called a simulated time barrier.
The application program may define a simulated time
beyond which no LP is allowed to execute. The time
barrier remains in effect until a new time barrier is
set, presumably at a higher (later) simulated time.
By continually updating this time barrier, e.g., by pe-
riodically scheduled 1/O events, the application can
implement certain window based simulation mecha-
nisms such as the Bounded Time Warp synchroniza-
tion protocol [Turner and Xu, 1992].

A third mechanism to control too frequent calls to
the fossil collection mechanism is also provided. This
mechanism 1s described later.

3 IMPLEMENTATION OF TIME WARP

We now shift attention to the implementation of the
GTW executive. In the following, certain data struc-
tures are said to be “owned” or “reside” on a specific
processor. In principle, no such specification 1s re-
quired because all memory can be accessed by any
processor in the system. However, the GTW design
assumes each data structure has a unique “owner” (in
some cases, the owner may change during execution)
in order to ensure that synchronization (e.g., locks)
is not used where it is not needed, and memory ref-
erences are localized as much as possible. Because
synchronization and non-local memory references are
usually very expensive relative to local memory ref-
erences on most existing multiprocessor platforms,
considerations such as this are important in order to
achieve acceptable performance. For instance, on the
KSR-2, hundreds or even thousands of machine in-
structions can be executed in the time required for a
single lock operation.

3.1 The Main Scheduler Loop

Time Warp, as originally proposed by Jefferson, uses
three distinct data structures: the input queue that
holds processed and unprocessed events, the output
queue that holds anti-messages, and the state queue
that holds state history information (e.g., snapshots
of the LP’s state) [Jefferson, 1985]. GTW uses a sin-
gle data structure, called the cvent gueue, that com-
bines the functions of these three queues. Direct can-
cellation is used, meaning whenever an event compu-
tation schedules (sends) a new event. a pointer to the

Das et al.

new event 1s left behind in the sending event’s data
structure [Fujimoto, 1989]. This eliminates the need
for explicit anti-messages and the output queue. Each
event also contains a pointer to state vector informa-
tion, i.e., a snapshot of the portion of the LP’s state
that is automatically checkpointed, and pointers used
by the incremental checkpointing mechanism.

In addition to an event queue, each processor main-
tains two additional queues to hold incoming mes-
sages from other processors. Thus, each processor
owns three distinct data structures:

o The message queue (MsgQ) holds incoming pos-
itive messages that are sent to an LP residing
on this processor. Messages are placed into this
queue by the TWSend primitive. The queue is im-
plemented as a linear, linked list. Access to this
queue is synchronized with locks.

e The message cancellation queue (Can(@)) is sim-
ilar to the MsgQ except it holds messages that
have been cancelled. When a processor wishes to
cancel a message, it enqueues the message being
cancelled into the CanQ of the processor to which
the message was originally sent. Logically, each
message enqueued in the CanQ can be viewed as
an anti-message, however, it is the message it-
self rather than an explicit anti-message that is
enqueued. This queue is also implemented as a
linear, linked list. Access to this queue is syn-
chronized with locks.

o The event queue (Ev@Q) holds processed and un-
processed events for LPs mapped to this proces-
sor. As noted above, each processed event con-
tains pointers to messages scheduled by the com-
putation associated with this event, and point-
ers to state vector information to allow the event
computation to be rolled back. The data struc-
tures used to implement the event queue will be
discussed later. The EvQ may only be directly
accessed by the processor owning the queue, so
no locks are required to access it.

After the simulator is initialized, each processor
enters a loop that repeatedly performs the following
steps:

1. All incoming messages are removed from the
MsgQ data structure, and the messages are filed,
one at a time, into the EvQ data structure. If a
message has a timestamp smaller than the last
event processed by the LP, the LP is rolled back.
Messages sent by rolled back events are enqueued
into the CanQ of the processor holding the event.

GTW

2. All incoming cancelled messages are removed
from the CanQ data structure, and arc processed
one at a time. Storage used by cancelled mes-
sages is returned to the free memory pool. Roll-
backs may also occur here, and are handled in es-
sentially the same manner as rollbacks caused by
straggler positive messages, as described above.

3. A single unprocessed event is selected from the
EvQ, and processed by calling the LP’s event han-
dler (Proc procedure). A smallest timestamp
first scheduling algorithm is used, i.e., the unpro-
cessed event containing the smallest timestamp
1s selected as the next one to be processed.

3.2 The Event Queue Data Structure

The event queue data structure actually contains sev-
eral data structures. Each LP contains a list of the
processed events for that LP. This list is sorted by
receive timestamp and is implemented using a linear
doubly-linked list data structure. When fossil collec-
tion occurs, the portion of this list that is older than
GVT is located by searching from high to low times-
tamps, and the events to be fossil collected are moved
as a block to the processor’s free list. Thus, the fossil
collection procedure need not scan through the list of
events that are reclaimed.

All unprocessed events for all LPs mapped to this
processor are stored in a single priority queue data
structure. Using a single queue for all LPs eliminates
the need for a separate “scheduling queue” data struc-
ture to enumerate the executable LPs, and allows
both the selection of the next LP to execute, and lo-
cation of the smallest timestamped unprocessed event.
in that LP to be implemented with a single dequeue
operation. This reduces the overhead associated with
“normal” event processing, and as discussed later,
greatly simplifies the GVT computation. A drawback
with this approach, however, is that migration of an
LP to another processor by a dynamic load manage-
ment mechanism is more difficult.

The G'TW software may be configured to imple-
ment the priority queue holding unprocessed events
as either a calendar queue [Brown, 1988], or a skew
heap [Sleator and Tarjan, 1986]. The calendar queue
provides constant time enqueue and dequeue oper-
ations, but has a linear time worst-case behavior,
and may perform poorly in certain situations. We
have found the skew heap to be somewhat slower
than the calendar queue for most applications, but
it has logarithmic amortized worst case behavior
and is not prone to the performance problem cited
above. An empirical comparison of event list data

1335

structures for Time Warp simulations is described in
[Ronngren ¢! al., 1993].

In addition to the aforementioned data structures.
each processor also maintains another priority queue
called the 1/0 queue that holds 1/O events (as well
as some non-1/0 events, as described momentarily)
for LPs mapped to that processor. The 1/O queue
15 implemented as a linear linked list. 1/O events are
scheduled in exactly the same way as ordinary events,
l.e., they are enqueued in the unprocessed event prior-
ity queue, via the MsgQ if the sender and receiver are
on different processors. This simplifies cancellation of
I/O events. Just prior to calling an event handler. the
GTW executive first checks to see if the event is an
I/O event. 1/O events are placed in the 1/O queue,
and the call to the event handler is deferred until
later. If the event is a blocking I/O event, the LP is
also marked as “blocked.” All events for blocked LPs,
both I/O and non-1/O events, are similarly diverted
to the I/O queue when they are removed from the
unprocessed event queue. If a blocked LP is rolled
back, it becomes unblocked, and the LP's events in
the I/O queue are returned to the unprocessed event
queue. The fossil collection procedure processes 1/0
events with timestamp less than or equal to GVT,
and unblocks blocked LPs.

3.3 Buffer Management

The principal atomic unit of memory in the GTW
executive is a buffer. Each buffer contains the stor-
age for a single event, a copy of the automatically
checkpointed state, pointers for the direct cancella-
tion mechanism and incremental state saving, and
miscellaneous status flags and other information. In
the current implementation, each buffer utilizes a
fixed amount of storage.

Each processor maintains a list of free buffers, i.e.,
memory buffers that are not in use. A memory buffer
is allocated by the TWGetMsg routine, and storage for
buffers is reclaimed during message cancellation and
fossil collection.

The original implementation of the GTW software
(version 1.0) used recever-based free pools. This
means the TWGetMsg routine allocates a free buffer
from the processor recciving the message. The sender
then writes the contents of the message into the
buffer, and calls TWSend to enqueue it in the recejv-
ing processor's MsgQ. This approach suffers from two
drawbacks. First, locks are required to synchronize
accesses to the free pool, even if both the sender and
receiver LP are mapped to the same processor. This
is because the processor’s free list is shared among all
processors that send messages to this processor. The

1336

second drawback is concerned with caching eflects, as
discussed next.

In cache-coherent multiprocessor systenis using in-
validate protocols, receiver-hased free pools do not
make effective use of the cache. Buffers in the free
pool for a processor will likely be resident in the cache
for that processor, assuming the cache is sufficiently
large. This 1s because in most cases, the buffer was
last accessed by an event handler executing on that
processor. Assume the sender and receiver for the
message reside on different processors. When the
sending processor allocates a buffer at the receiver
and writes the message into the buffer, a series of
cache misses and invalidations occur as the buffer is
“moved” to the sender’s cache. Later, when the re-
ceiver dequeues the message buffer and executes the
receiver's cvent handler, a second set of misses oceur,
and the buffer contents are again transferred back to
the receiver's cache. Thus, two rounds of cache misses
and invalidations occur with each message send.

A better solution is to use sender-based free pools.
The sending processor allocates a buffer from its local
free pool, writes the message into it, and enqueues it
at the receiver. With this scheme, the free pool is
local to each processor, so no locks are required to
control access to 1t. Also, when the sender allocates
the buffer and writes the contents of the message into
it, memory references will hit in the cache in the
scenario described above. Thus, only one round of
cache misses and interprocessor communications oc-
cur (when the receiving processor reads the message
buffer).

The sender-based pool creates a new problem. how-
ever. Each message send, in effect, transfers the
ownership of the buffer from the sending to the re-
celving processor, because message buffers are always
reclanmed by the receiver during fossil collection or
cancellation. Memory buffers accumulate in proces-
sors that receive more messages than they send. This
leads to an unbalanced distribution of buffers, with
free buffer pools in some processors becoming de-
pleted while others have an excess. To address this
problem, cach processor is assigned a quota of Ny
buffers that it attempts to maintain. After fossil col-
lection, the number of buffers residing in the pro-
cessor is checked. If this number exceeds Ny, g, the
excess buffers are transferred to a global free list.
On the other hand, if the number of buflers falls be-
low Ny — A (A1s a uscr defined parameter), addi-
tional buffers are allocated from the global pool. This
scheme is not unlike one implemented in SMTW, a
Tine Warp executive derived from GTW version 1.0
[Gomes, 1993). In GTW, counters associated with
each event list allow determination of the number

Das et al.

of buffers reclaimed on each fossil collection without
scanning through the list of reclaimed buffers.

3.4 Avoiding GVT Thrashing

In GTW, fossil collection is invoked when a pro-
cessor's free buffer pool becomes depleted. If fos-
sil collection fails to reclaim memory, cancelback
[Jefferson, 1990] is called. If cancelback also fails, the
simulation is terminated and an error message pro-
duced.

In some situations, excessively frequent calls to fos-
sil collection may occur. We refer to this behavior as
GVT thrashing. GVT thrashing can occur if the pro-
cesses mapped to one processor advance significantly
far ahead of the others in simulated time. When
this occurs, fossil collection may only reclaim a few
free buffers on this processor (the Ny, ; parameter in-
cludes both buffers in use as well as unused buffers).
When the computation resumes, the local buffer pool
will soon be exhausted again, resulting in another
call to fossil collection. Such frequent calls to fossil
collection can significantly degrade the performance
of the entire system. We have observed GVT thrash-
ing in simulations of personal communication services
(PCS) networks, resulting in poor performance or
large variations in execution time from one run to
the next.

To avoid GVT thrashing, overoptimistic processes
are occasionally blocked. The size of the free buffer
pool is checked after each fossil collection. If this size
is too small (specifically, less than Fyrceq % Npyy where
Fireer € 1.0 1s a user defined parameter), the pro-
cessor 1s blocked, in order to allow other processors
time to advance. While blocked, the processor esti-
mates the number of buffers that would be reclaimed
if it were to invoke fossil collection immediately. This
1s accomplished by estimating GVT by “snooping”
on other processors to determine the timestamp of
the last event removed from their unprocessed event
queue. Using this estimated GVT, the processor esti-
mates the number of buffers it could reclaim, assum-
Ing its processed events are uniformly distributed over
simulated time. If this number exceeds the threshold
Fireev * Nous (Frreea < 1.0 1s also specified by the
user), the processor becomes unblocked and initiates
a request for fossil collection, causing the true GVT
to be computed, and fossil collection to occur.

3.5 Computing GVT

Algorithms for computing GVT in general distributed
computing environments have been proposed. e.g.,
see [Lin, 1994, Mattern, 1993). GVT computation

GTW

can be greatly simplified, however, in a shared-
memory multiprocessor. In GTW, an asyvnchronous
algorithm (1. e., no barrier synchronizations) is used
that is interleaved with “normal™ event processing.
The algorithm requires neither message acknowledge-
ments nor special “GV'T messages.” All interproces-
sor communication is realized using a global flag vari-
able (GVTFlag). an array Lo hold each processor's lo-
cal minimum, and a variable to hold the new GVT
value.

Any processor can initiate a GV'T computation by
writing the number of processors in the system into
GVTFlag. This flag is viewed as being “set™ if it holds
a non-zero value. A lock on this variable ensures that
at most one processor initiates a GVT computation.

Let Tyt be the instant in real time that GVTFlag
is set. Here, GV'T 1s defined as a lower bound on the
timestamp of all unprocessed or partially processed
messages and antl-messages in the system at Ty 7.
Messages are accounted for by requiring that (1) the
sending processor is responsible for messages sent af-
ter Tgy7. and (2) the receining processor is respon-
sible for messages sent prior to TGy 7. To implement.
(1), each processor maintains a local variable called
SendMin that contains the minimum timestamp of
any message sent after GVTFlag is set. GVTFlag is
checked after each message or anti-message send, and
SendMin is updated if the flag is set. To implement
(2). each processor checks GVTFlag at the beginning
of the main event processing loop, and notes whether
the flag was set. Then, as part of the normal event
processing procedure, the processor receives and pro-
cesses all messages (anti-messages) in MsgQ (CanQ),
and removes the smallest timestamped event from
the unprocessed event queue. If GVTFlag was set at
the beginning of the loop. the timestamp of this un-
processed event is a lower bound on the timestamp
of any event sent to this processor prior to Tgyvr.
The processor computes the minimum of this times-
tamp and SendMin, writes this value into its entry
of the global array, decrements GVTFlag to indicate
that it has reported its local minimum, and resumes
“normal” event processing. The sel. GVTFlag is now
ignored until the new GVT value is received.

The last processor to compute its local minimum
(the processor that decrements GVTFlag to zero) com-
putes the global minimum, and writes this new GVT
value into a global variable. Each processor detects
the new GVT by observing that the value stored in
this variable has changed, and performs a local fos-
sil collection. If the same value is computed by two
successive GVT computations, the cancelback mech-
anism is invoked. A GVT transaction number (a sec-
ond field of GVTFlag) is also used to prevent succes-

1337

sive GV'T computations from interfering with each
other.

The overhead associated with this algorithmis min-
imal. When GVT is not being computed, GVTFlag
must. be checked, but this overhead is small because
the flag is not being modified, and will normally reside
in each processor’s local cache, assuming the cache is
sufficiently large. No synchronization is required. To
compute GV'T, the principal overheads are updating
GVTFlag and SendMin, and the global minimum com-
putation performed by one processor.

3.6 Other Optimizations

A variety of other optimizations are incorporated into
the GTW executive in order to minimize the amount
of overhead associated with processing each event.
These optimizations are discussed next.

3.6.1 Local Message Sends

The TWSend routine first checks if the destination LP
is mapped to the same processor as the sender. If
they are the same, TWSend simply enqueues the mes-
sage in the unprocessed event queue, bypassing MsgQ,
and thus avoiding synchronization overheads. Thus,
local message sends are no more time consuming than
scheduling an event in a sequential simulation.

It might be noted that if one ignores state sav-
ing, GVT, and fossil collection overheads, the exe-
cution of the GTW executive on a single processor
will be virtually identical to that of a sequential sim-
ulator. If only one processor 1s used, MsgQ and CanQ
will always be empty, so the central loop of the execu-
tive degenerates to repeatedly dequeuing the smallest
timestamped unprocessed event, and processing that
event. No synchronization is required.

3.6.2 Message Copying

The GTW executive performs no message copying,
neither in sending nor receiving messages. This al-
lows efficient execution of applications using large
messages. It is the application program’s responsi-
bility to ensure that the contents of a message are
not modified after the message it sent, and the con-
tents of received messages are not modified by the
event handler. Ax noted earlier, the message passing
interface is designed to minimize errors in the former
case.

3.6.3 Batch Event Processing

The scheduling loop always checks MsgQ and CanQ
prior to processing each event. Rather than check-

1338 Das et al.

ing these queues before cach event, an alternative ap-
proach is to check these queucs prior to processing a
batch of B cvents, thereby amortizing the overhead
of each queue check over many events. If there are
not B events available to be processed, the queue is
checked after processing those that are available.

The batch processing approach reduces queue man-
agement overheads somewhat, but may lead to more
rolled back computation because, in effect, the arrival
of straggler and anti- messages 1s delayed. Thus, it 1s
clear that B should not be sct to too large a value.
The appropriate size of the batch and the effect of
this technique on performance is currently under in-
vestigation.

3.6.4 Keeping State Vectors Local

Earlier it was noted that (1) message buffers include
state vector information, and (2) message buffers mi-
grate from one processor to another on message sends.
This leads to some inefficiency in that the state vec-
tor portion of the message buffer will also migrate
from one processor to another, leading to unneces-
sary cache misses and invalidations when the receiver
accesses the state information.

To minimize the above effects, the portion of the
buffer that holds state information does not migrate
to the receiving processor on message sends. Instead,
each message send to a remote processor first strips
the memory that holds the state vector information
from the buffer, and adds it to a free list of state vec-
tor memory kept within the sending processor (each
processor maintains such a pool). When a processor
receives a message, memory for state vector informa-
tion (residing in the receiver's cache, assuming the
cache is sufficiently large) will be allocated at the re-
ceiver, and attached to the incoming buffer. In this
way, memory for state vector information remains
within the processor, maximizing the efficiency of the
caching mechanism.

4 PERFORMANCE MEASUREMENTS

The benchmark used here 1s a simulation of a per-
sonal communication services (PCS) network, a wire-
less network providing communication services to
mobile PCS subscribers (see [Carothers et al., 1994]
for details). The service area is partitioned into
sub-areas or cells, with cach cell containing a re-
celver/transmitter and a fixed number of channels.
The simulator collects statistics such as the number
of calls that must be dropped when a portable moves
from one cell to another

All simulations were performed on a Kendall

Square Rescarch KSR-2 multiprocessor. We estimate
a single KSR-2 processor to be approximately 20%
faster than a Sun Sparc-2 workstation, based on mea-
surements of sequential simulations. FEach KSR-2
processor contains 32 MBytes of local cache mem-
ory and a faster, 256 KByte sub-cache. Data that is
not in the sub-cache and local cache are fetched from
another processor’s cache, or if it does not reside in
another cache, from secondary storage via the virtual
meniory system. Processors are organized in rings,
with each ring containing up to 32 processors. All
experiments described here use a single ring, except
the 32 and 42 processor runs that use processors from
two different rings.

The simulated P('S network contains 2048 cells (a
64 - 32 grid) and over 50,000 portables. The average
computation time of each event (excluding the time to
schedule new events) is about 30 microseconds. The
LPs in the PCS simulation are “self-propelled,” 1.e.,
they send messages to themselves to advance through
simulated time. Communications is highly localized
with typically over 90% of the messages transmitted
between LPs that are mapped to the same processor
(many of these are messages sent by an LP to itself).

The mobility (rate that portables move from one
cell to another) was varied, and set to 1/5 (high), 1/9
(medium) and 1/25 (low) times the average call hold-
ing rate. Figure 1 shows the average number of events
committed by the simulator per second of real time,
also referred to as the event rate, for different num-
bers of processors. Performance declines as mobility
increases because this results in more communication
between LPs, and more rollbacks.

Each data point represents the average perfor-
mance of three executions, representing over six mil-
lion committed events. The event rate for a conven-
tional, sequential simulator with no parallel process-
ing overheads and the event list implemented using
a splay tree was approximately 8700 events per sec-
ond on a single KSR-2 processor. Compared to this
sequential simulator, GTW obtains speedups as high
as 38 using 42 processors, or an absolute performance
of 335,000 committed events per second.

5 CONCLUSION AND FUTURE WORK

The GTW executive incorporates several techniques
to enable efficient parallel execution of small-grained
simulation programs. Some techniques, e.g., the data
structures used to implement the event queues and
batch processing of events, are also applicable to
message-based machines. Others, e.g., the buffer
management mechanism, GVT algorithm, and main-
taining locality of state vector information, are spe-

GTW

Event Rate (in 1000 events/sec)
350 T T

1339

300 |

250

200

150 -

100 |-

50

low mobility ©—
medium mobility +
high mobility 88—

1 8 16

24 32 42

No. of Processors

Figure 1: Performance of the PCS network simulation on GTW version 2.0

cific to cache-coherent shared-memory machines.

Performance measurements and optimizations to
the GTW executive continue, and we expect sub-
stantial performance improvements beyond those re-
ported here will be obtained. Features under inves-
tigation include optimized management of memory
buffers, the addition of dynamic load management,
and support for process-oriented world views. Other
work focuses on developing application libraries and
integration of the GTW system with other simula-
tors in heterogeneous, distributed, computing envi-
ronments.

ACKNOWLEDGEMENTS

Chris Carothers and Yi-Bing Lin developed the PCS
application.

REFERENCES

Brown, R. 1988. Calendar queues: A fast 0(1) prior-
ity queue implementation for the simulation event set
problem. Communications of the ACM, 31(10):1220-
1227, October.

Carothers, C. D., R. M. Fujimoto, Y-B. Lin, and P. Eng-
land. 1994. Distributed simulation of large-scale PCS
networks. In Proceedings of the 1994 MASCOTS Con-
ference, January.

Fujimoto, R. M., S. R. Das, and K. S. Panesar. 1994.
Georgia Tech Time Warp (GTW version 2.0) program-
mer’s manual. Technical report, College of Computing,

Georgia Institute of Technology, Atlanta, GA, July.

Fujimoto, R. M. 1989. Time Warp on a shared memory
multiprocessor. Transactions of the Society for Com-
puter Simulation, 6(3):211-239, July.

Gomes, F. 1994. private communication, March.

Jefferson, D. R. 1985. Virtual time. ACM Transactions
on Programming Languages and Systems, 7(3):404-425,
July.

Jefferson, D. R. 1990. Virtual time II: Storage manage-
ment in distributed simulation. In Proceedings of the
Ninth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 75-89, August.

Lin, Y.-B. 1994. Determining the global progress of paral-
lel simulation with FIFO communication property. In-
formation Processing Letters, (50):13-17.

Mattern, F. 1993. Efficient distributed snapshots and
global virtual time algorithms for non-FIFO sys-
tems. Journal of Parallel and Distributed Computing,
18(4):423-434, August.

Rénngren, R., R. Ayani, R. M. Fujimoto, and S. R. Das.
Efficient implementation of event sets in Time Warp.
1993. In 7'" Workshop on Parallel and Distributed
Simulation, volume 23, pages 101-108. SCS Simula-
tion Series, May.

Sleator, D. D. and R. E. Tarjan. 1986. Self-adjusting
heaps. SIAM Journal on Computing, 15(1):52-59,
February.

Turner S., and M. Xu. 1992. Performance evaluation
of the bounded Time Warp algorithm. In 6™ 1Vork-
shop on Parallel and Distributed Simulation, volume 24,
pages 117-128. SCS Simulation Series, January.

