Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

LANGUAGE SUPPORT FOR PARALLEL DISCRETE-EVENT SIMULATIONS

Rajive L. Bagrodia

Computer Science Department
University of Clalifornia at Los Angeles
Los Angeles, CA 90024

rajive@es.ucla.edu

ABSTRACT

A number of algorithms have been developed to sup-
port parallel execution of discrete-event simulation
models. In general, these algorithms are complex and
implementing them directly in a simulation model is
a difficult and resource-intensive programming task.
Parallel simulation languages and environments can
be of considerable help in hiding the complexity of the
underlying synchronization algorithm and providing
a simpler virtual machine to the model designer. This
tutorial is a survey of currently available software
tools that facilitate the design of parallel discrete-
event simulations.

1 INTRODUCTION

Parallel (or distributed) discrete-event simulation
refers to the execution of a discrete-event simula-
tion program on a parallel (or distributed) architec-
ture. Interest in exploiting parallelism in the ex-
ecution of discrete-event simulation models has in-
creased in a number of application areas ranging
from network simulations, personal communication
systems, digital circuits, and parallel architectures.
This has partly been fueled by the increasing avail-
ability of low cost parallel architectures like the multi-
processor, shared-memory, desktop workstations and
low-end distributed- and shared-memory multicom-
puters. However, parallel simulations are still being
utilized primarily in the research community, with
only a limited penetration in the commercial model-
ing and sequential simulation community [Fujimoto,
1993]. A major impediment to the widespread use of
parallel simulation is the complexity of implement-
ing efficient parallel simulations, coupled with the
paucity of tools that allow analysts who are unfa-
miliar with the intricacies of parallel simulation algo-
rithms to explore its potential.

A number of algorithms have been defined for the

1324

parallel execution of simulation models [Fujimoto,
1990]. The next section gives a quick overview of
the two primary classes: conservative and optimistic.
A simulation tool may either be tailored to a specific
(class of) synchronization protocol, or be capable of
executing models with diverse protocols. The former
category includes tools like TWOS [Jefferson, et al.,
1987] that are designed to only use the Time Warp
synchronization protocol, and SPEEDES [Steinman,
1991] that is designed to work with a set of optimistic
protocols; the advantage of committing to a specific
(class of) protocol is that typically the data struc-
tures in the underlying simulator can be tailored to
exploit the specific features of the protocol. The lat-
ter category includes multi-algorithm environments
like Maisie [Bagrodia and Liao, 1994], SPECTRUM
[Reynolds, 1989] and YADDES [Preiss, 1989] that
support both conservative and optimistic protocols.
As the viability of specific protocols to support ef-
ficient parallel execution of models in different ap-
plication domains is still not well understood, it is
perhaps desirable to develop tools that give analysts
some flexibility in the choice of synchronization pro-
tocols.

Parallel simulation tools may also be classified
based on the generality of their programming in-
terface. Available tools range from operating sys-
tems dedicated to support of parallel simulations to
domain-specific tools. An operating system typically
provides a kernel that exports the needed function-
ality via a set of function calls. Section 3 describes
TWOS [Jefferson, et al., 1987] as a typical example.
At the next level of abstraction are parallel simulation
languages (PSLs) and libraries that provide program-
mers with a set of well-defined constructs to design
(parallel) models. These tools are described in sec-
tion 4. At the end of the spectrum are domain-specific
tools that are designed to serve a specific application
area like logic simulation of VLSI circuits. Such soft-
ware obviously has limited applicability in areas out-

Language Support 1325

side the specific application domain that it targets.
Domain-specific tools are discussed in section 5. We
conclude the paper with a brief discussion of topics
for future research in section 6.

2 Parallel Simulation Protocols

In a parallel discrete-event simulation, the system
being simulated is modeled by a number of logical
processes (LP) that interact by exchanging times-
tamped event messages. Each LP must eventually
process incoming messages in their global timestamp
order. Enforcing this requirement, referred to as the
causality constraint, is the central problem in effi-
cient execution of parallel simulations. Two primary
approaches have been suggested to solve the synchro-
nization problem: conservative and optimistic.

Conservative algorithms [Misra, 1986] do not per-
mit any causality error: each object in the simulation
processes an incoming message only when the under-
lying synchronization algorithm can guarantee that it
will not subsequently receive a message with a smaller
timestamp. This constraint may introduce deadlocks,
which are typically avoided by using null messages.
A null message is a timestamped signal sent by an
LP to indicate to other LPs a lower bound on the
timestamp of its future messages. If an LP sends a
null message with timestamp T at simulation time t,
T >=t, we say that the LP has a lookahead of (T-
t). In general, the larger the lookahead of an LP, the
better its performance with conservative protocols.
Efficient implementation of null messages is also fa-
cilitated if each LP maintains the set of its source
and/or destination LPs. (Otherwise, null messages
may be needlessly broadcast to all LPs). Conserva-
tive implementations are generally simple to develop
and basically need support to implement null message
transmission and lookahead specification.

In optimistic protocols [Jefferson 1985], an LP is
allowed to process events in any order; however, the
underlying synchronization protocol must detect and
correct violations of the causality constraint. The
simplest mechanism for this is to have each LP peri-
odically save (or checkpoint) its state. Subsequently,
if it is discovered that the LP processed messages in
an incorrect order, it can be rolled back to an appro-
priate checkpointed state, following which the events
are processed in their correct order. The rollback
may also require that the LP unsend or cancel the
messages that it had itself sent to other LPs in the
system. An optimistic algorithm is also required to
periodically compute a lower bound on the timestamp
of the earliest global event, also called the Global
Virtual Time or GVT. As the model is guaranteed

to not contain any events with a timestamp smaller
than GVT, all checkpoints timestamped earlier than
GV'T can be reclaimed. Thus the primary facili-
ties needed to implement optimistic methods include
checkpointing, message cancellation, rollback and re-
computation, and GVT computation.

Recently, a new protocol has been suggested that
allows each LP to individually select either the con-
servative or the optimistic execution mode [Jha and
Bagrodia, 1994]. This protocol defines a local metric
called EIT (for Earliest Input Time) for each LP. Con-
servative LPs can process all events that are times-
tamped earlier than its EIT, whereas optimistic LPs
can use EIT to reclaim memory. A separate global
control mechanism is defined to allow each LP to pe-
riodically update its EIT. The global control mecha-
nisms could use algorithms similar to the ones used
to compute GVT, or be based on null messages, or
even use a combination of the two techniques.

3 Operating Systems

The Time Warp Operating System or TWOS devel-
oped at JPL [Jefferson, et al., 1987] is among the
earliest operating systems for parallel simulation. A
more recent example is the MIMDIX system [Madis-
etti, et al., 1992] that has been implemented on a
BBN Butterfly and the GTW [Das, et al., 1994] im-
plemented on a the Kendall Square Research KSR-1.
TWOS and GTW both implement the Time Warp
synchronization protocol, whereas MIMDIX imple-
ments an optimistic protocol based on the notion of
probabilistic synchronization.

The TWOS system is a complete implementation of
the Time Warp optimistic synchronization protocol.
The programming interface supported by TWOS is a
standard process-based model, where processes com-
municate using timestamped messages. Each process
is required to be deterministic and the process is not
allowed to use heap storage. Because interactions of
an optimistic system with the outside world cannot
be rolled back, input output is handled by special
TWOS processes that delay outputs until the com-
putation has converged to a time greater than the
timestamp of the output.

TWOS messages are classified into event and query
messages. A message is designated to be a query only
if the code executed on its arrival at a process does
not modify the local state of the process, and the only
externally visible effects are the transmission of other
query messages and/or a single reply message to the
sender of the query. A message that is not a query
message 1s an event message.

The body of a TWOS process consists of two pri-

1326

mary sections that are distinguished syntactically:
the event message section which contains code to be
executed on the arrival of an event message and the
query-message section for processing query messages.

The programming interfaces provided by TWOS
were designed to enhance the transparency of the un-
derlying synchronization protocol and provide only a
limited interface to the simulator. The interface in-
cludes calls to send and receive messages and to read
the current value of simulation time. In particular, no
interface is provided to the programmer to modulate
the behavior of the simulator by modifying various
parameters like the frequency of checkpointing, GVT
computation, or message cancellation strategy.

The message passing routines provided by TWOS
are relatively ‘bare bones’ as compared with the in-
terface supported by most languages. Routines are
provided to send and receive event and query mes-
sages at specific future (simulation) time. Thus
SendEventMessage(ReceiveTime, Receiver, Text)
will cause a message containing text to be delivered
to process Receiver when its simulation time reaches
ReceiveTime. In general, TWOS requires that the
ReceiveTime of a message be strictly greater than
the simulation time at which it is sent. Routine
ReadEventMessage(k,msg) is used to remove the k"
message with timestamp equal to the current simu-
lation time from the event message queue and return
it in variable msg. Similar routines are provided for
query messages. The simulation time of a process is
set transparently by the simulator to the timestamp
on the earliest message in its event queue; the pro-
cess can read this value by calling the system routine
VirtualTime(V Time) which sets the value of param-
eter VTime to the local simulation time of the LP.

The TWOS system has been used to execute a
number of applications, including a war game simula-
tion programmed using 130 processes that was found
to yield a speedup of almost 10 on 32 nodes of a Cal-
tech Mark III Hypercube. It was subsequently used
in conjunction with the Modsim language to execute
other models; the MODSIM/TWOS environment is
described in the next section.

4 Languages and Libraries

The primary approaches used to design general pur-
pose parallel simulation software include the follow-
ing:

e Library based approaches represented by sys-
tems like YADDES [Preiss, 1989], OLPS
[Abrams, 1988], and SPEEDES [Steinman,
1991]. These systems typically provide simula-

Bagrodia

tion and parallelism capabilities via calls to li-
braries implemented in standard sequential lan-
guages like C or C++. Their primary advantage
is that the user does not have to learn a new
language. A major drawback is that because no
translator is used, the library routines must pro-
vide less functionality than is possible in a lan-
guage, or they tend to become ungainly.

¢ Enhance sequential (simulation) languages with
primitives for parallel simulation; examples in-
clude MAY [Bagrodia, et al., 1987], Sim++
[Baezner, et al., 1990] and Maisie [Bagrodia and
Liao, 1990]. The ability to use a translator al-
lows languages to provide a more succinct and
‘natural’ interface for the programmer as com-
pared with simulation libraries. Both Maisie and
Sim++ were influenced by the May simulation
language, particularly in their choice of process
scheduling, communication and synchronization
constructs. Whereas Sim++ is used to execute
models synchronized with the Time Warp proto-
col, Maisie was designed to provide efficient sup-
port for both conservative and optimistic proto-
cols.

¢ Add simulation capability to parallel languages:
examples include ModsimII [Bryan, 1989] that
is derived from Modula-2 and SCE [Gill, et al.,
1989], which is based on Ada.

o High-level notations based on declarative, equa-
tional, or logic programming environments:
these include the environment based on UNITY
and a notation based on Temporal logic. While
such environments offer the potential for a high-
level specification that can subsequently be exe-
cuted with little or no modification using a va-
riety of synchronization protocols, there is little
experimental evidence as yet to support the via-
bility of this approach for programming (in con-
trast to specifying) parallel simulations.

In the remainder of this section, we describe three
systems, one from each of the first three categories:

SPEEDES, Maisie, and ModsimlI.

4.1 SPEEDES

SPEEDES (Synchronous Parallel Environment for
Emulation and Discrete Event Simulation) is a C4++
based simulation environment that implements a
set of optimistic synchronization protocols including
Time Warp and a windowing algorithm called Breath-
ing Time Buckets. In this paper, we restrict our

Language Support 1327

attention to the programming interface provided hy
SPEEDES, a simulation environment built on (44,

A SPEEDES simulation consists of simulation ob-
Jects and events. An event is created as a ('+4 object
(the authors use the term ‘a fully cncapsulated ob-
Ject’), when a message is sent to a simulation object.
A distinguishing feature of SPEEDES is that unlike
most optimistic systems, it requires the user to ex-
plicitly checkpoint the state of a simulation object.
Rather than checkpoint the entire state, SPEEDES
uses incremental state saving where only those vari-
ables that are modified by an event are saved using a
technique that the authors refer to as Delta Erchange.

An event is initialized by copying the data from the
corresponding message that was used to create the
event. It 1s then processed as follows: the event ex-
ecutes the corresponding method (presumably deter-
mined by the message) but does not modify the state
of the object; rather the specific variables modified by
the event are stored within the event itself. Future
messages generated by the object are also stored in
the event rather than forwarded to other objects. In
the next step. the values computed in the previous
phase are exchanged with the simulation object, such
that the event now has the old values and the object
contains the new values. (Note that an additional
exchange will restore the state of the object.) In the
final phase, the messages stored in the event are either
canceled, if the event itself is canceled, or forwarded
to other objects and the event itself is garbage col-
lected.

Incremental state saving is also supported by an-
other mechanism referred to as the rollback queur
which may be used by a simulation object to directly
save the changes in its state; however this technique is
also claimed to be significantly more expensive for in-
cremental state saving than the delta exchange men-
tioned previously. Support for lazy cancellation is
also provided, but once again it relies on the user to
provide the appropriate functions that can be used
to compare the incrementally saved states. Although
incremental state saving is likely to yicld solid per-
formance benefits for many applications, reliance on
the programmer to provide the code for the delta ex-
change in every event adds significant complexity to
program design and maintenance.

The performance of the SPEEDES environment
has been evaluated using a proximity detection prob-
lem, where it was found to yield a speedup of almost
20 on 32 nodes of a Caltech Mark III Hypercube using
the SPEEDES implementation of the Time Warp syn-
chronization protocol, where the speedup was mea-
sured against an optimized one node implementation
of SPEEDES. Good speedup measurements have also

been reported for a variety of queueing networks us-
ing their windowing protocol.

4.2 Maisie

Maisie [Bagrodia and Liao, 1994] is a (-based
discrete-event simulation language. With few mod-
ifications, a Maisie program may be executed using
a variety of simulation protocols that include a se-
quential algorithm, parallel conservative algorithms
based on null messages [Misra, 1986]) and conditional
events [Chandy and Sherman, 1959a]. a new conserva-
tive protocol that combines null messages with condi-
tional events [Jha and Bagrodia, 1993]. and a parallel
optimistic algorithm [Chandy and Sherman, 1959b;
Bagrodia, ¢t al., 1991]. Maisie is also the first lan-
guage to support semantic optimizations — the use
of application semantics to reduce the overhead of
both conservative and optimistic parallel simulation.
A Maisie program is a collection of entity defini-

tions and (' functions. An entity definition (or an
entity type) describes a class of objects. An entity
instance, henceforth referred to simply as an entity.
represents a specific object in the physical system and
may be crcated and destroyed dynamically. An en-
tity is created by the execution of a new statement
and 1s automatically assigned a unique identifier on
creation. For instance, the following statement cre-
ates a new instance of a manager entity and stores its
identifier in variable rl.

rl = new manager{10};
Entities communicate with each other using buffered
message-passing. Maisie defines a type called mes-
sage, which 1s used to define the types of messages
that may be received by an entity. Definition of a
message-type 1s similar to a struct; the following de-
clares a message-type called req with one parameter
(or field) called count.

message req {int count; };
Every entity 1s associated with a unique message-
buffer. A message is deposited in the message buffer
of an entity by executing an invoke statement. The
following statement will deposit a mnessage of type reyg
with timestamp clock()+1t, where clock is the current
value of the simulation clock, in the message buffer
of entity ml.

invoke ml with rcq(2) [after (]
If the after clause is omitted. the message 1s times-
tamped with the current simulation time. An en-
tity accepts messages from its message-buffer by ex-
ecuting a wait statement. The wait stalement has
two components: an optional wait-time (¢,.) and a re-
quired resume-block. If t. 1s omitted, it 18 sct 1o an
arbitrarily large value. The resume-block is a set of

1328

resume statements, cach of which has the following
form:

mtype(m;) [st b;] statement;;

where m; is a message-type, b, an optional boolean
expression referred to as a guard, and statcment; is
any (' or Maisie statement. The guard is a side-effect
free boolean expression that may reference local vari-
ables or message parameters. If omitted, the guard is
assumed to be the constant {ruc. The message-type
and guard are together referred to as a resumc condr-
tion. A resume condition with message-type m; and
guard b; 1s said to be enabled if the message buffer
contains a message of type m,, which if delivered to
the entity would cause b; to evaluate to true; the cor-
responding message 1s called an enabling message.

With the wait-time omitted, the wait statement is
essentially a selective receive command that allows
an entity to accept a particular message only when
it is ready to process the message. For instance, the
following wait statement consists of two resume state-
ments. The resume condition in the first statement
ensures that a req message is accepted only if the re-
quested number of units are currently available (the
requests are serviced in first-fit manner). The second
resume statement accepts a free message:

wait until
{ mtype(req) st (units >= msg.req.count)

/* signal requester that request is granted */
or mtype(free) /* return units to the pool */

}

Maisie also provides a number of pre-defined func-
tions that may be used by an entity to inspect its mes-
sage buffer. For instance, the function qsize(m;) re-
turns the number of messages of type m, in the buffer.
A special form of this function called gempty(my)
is defined, which returns true if the buffer does not
contain any messages of type my, and returns false
ofherwise. In general the resume condition in a wait
statement. may include multiple message-types, each
with its own boolean expression.

If two or more resume conditions in a wait state-
ment are enabled, the timestamps on the correspond-
ing enabling messages are compared and the message
with the carliest timestamp is removed and delivered
to the entity. If no resume condition is enabled, a
timeout message 1s scheduled for the entity ¢, time
units in the future. The timeout message i1s canceled
if the entity receives an enabling message prior to ex-
piration of {,; otherwise, the timeout message 1s sent
to the entity on expiration of interval t.. Thus the
wait statement can be used to schedule conditional
events. A hold statement is provided to uncondition-
ally delay an entity for a specified sitmulation time.

Bagrodia

The Maisie simulation environment has been im-
plemented on a network of workstations and on dis-
tributed memory multicomputers like the IBM SP1.
Maisic implementations have yielded good specdups
for queuing network benchmarks with both conser-
vative and optimistic algorithms, with speedups ap-
proaching close to linear for large grain computations
[Jha and Bagrodia, 1993; Bagrodia, ¢t al.. 1991]. As
reported in a companion paper in this volume, the
IBM SP1 implementations have been used for gate
level circuit simulations of circuits from the ISCASE5
benchmarks. For the largest circuits in the bench-
mark (which contained less than 3000 gates), the sim-
ulations yielded a speedup of almost 4 on 8 nodes of
an IBM SPI1 with both conservative and optimistic
algorithms. Experiments with larger circuits are in
progress.

Recently, an object-oriented extension of Maisie
has been designed. This extension, called MOOSE
for Maisie-based ~ Object-Oriented Simulation
Environment [Waldorf and Bagrodia, 1994] uses in-
heritance to derive parallel implementations of an ob-
ject that may exploit specific knowledge about the
application, architecture, or simulation algorithm to
improve its efficiency.

4.3 ModsimlII

ModsimII[Bryan, 1989] is an object-oriented simula-
tion language based on Modula-2. Like Modula-2.
it was designed to support programming-in-the-large
and uses block structure, strong tvping and code en-
capsulation. The primary components of a ModsimlI
program are objects. An object contains state vari-
ables (called ficlds) and functions (called methods).
The fields in an object may only be modified by its lo-
cal methods (in object-oriented terminology, all fields
are considered to be private). Each method has two
parts: de finition part which is the public interface
to the method and defines the name and parame-
ter list, and the rmplementation part which contains
the function body and is accessible only to derived
objects. Modsimll supports multiple inheritance.
Modsimll provides construct for dynamic object
creation, termination, communication and synchro-
nization. The statement N EVWWOBJ(obj_name) is
used to create a new instance of object obj_name.
However ModsimlI does not provide explicit facilities
to group objects together to either share a common
OS thread as in Sim++ or a common processor as
in Maisie. The methods of the new object may he
executed using either the ask or tell statements. An
ask statement has remote procedure call semantics
similar to the standard method invocation of object-

Language Support 1329

oriented languages; this statement does not involve
passage of simulation time. In contrast, a tell state-
ment is used to schedule a method invocation at the
current or future simulation time. Like the Maisie in-
voke statement, tell statements are non-blocking. For
instance, the statement
TELL obj TO func(actuals) IN time

schedules the execution of method func at the ob-
ject obj at simulation time ('LOC'K + time, where
CLOCNK is the current simulation time. The /N time
component of a TELL statement may be omitted, in
which case, the method is scheduled for execution at
the current simulation time. Note that unlike Maisie,
a ModsimlII object cannot use a guard to temporar-
ily disable the execution of a given method or to se-
lect internally among multiple methods that may be
scheduled for execution at a given simulation time.
All scheduling decisions are made by the ModsimlI
scheduler and are transparent to the programmer. A
11" AIT statement is also provided to allow an object
to suspend itself in simulation time or until a specified
method in another object has been executed.

ModsimII uses the TWOS operating system to
synchronize the execution of parallel ModsimlII pro-
grams. Although the simulator has been used to ob-
tain speedups with large-grained computations with
an object count in the thousands, it was eventually
unable to execute a division level combat model. As
reported in Rich and Michelsen [1991], the primary
problem was the inability to explicitly map multi-
ple ModsimlIl objects into a single TWOS process.
The default was to treat each (possibly fine-grained)
ModsimII object as a TWOS process which caused
large checkpointing and context-switching overheads
to be incurred needlessly. The absence of Sny hooks
from ModsimlII into the underlying simulator was also
found to be a major problem, as it made it impossible
to control or alter the scheduling or thread manage-
ment strategies used by TWOS.

5 Domain-specific Simulators

Parallel simulators that are targeted to specific appli-
cation domains are also becoming popular. Two ar-
eas that show particular promise and recent research
activity are digital circuit simulations and parallel ar-
chitecture simulations.

A number of studies have investigated the viability
of asynchronous parallel circuit simulations [Su and
Seitz, 1989; Briner, et al., 1991; Soule and Gupta,
1992]. The most successful applications have nused op-
timistic protocols with reported speedups measured
on 32 nodes of a BBN Butterfly ranging from 7 for
a small adder to almost 25 for a 31000 gate circuit

[Briner, et al., 1991). MIRSIM [Chen and Bagro-
dia, 1994] is a recent effort in the design of parallel
circuit simulators for use by circuit designers. MIR-
SIM is a parallel Maisie implementation of IRSIM, an
event-driven logic level simulation that incorporates
a simple linear model of MOS transistors to compute
transition delay of logic state. MIRSIM has been im-
plemented with both conservative and optimistic syn-
chronization algorithms.

Two recent efforts in the area of parallel archi-
tectural simulators are the Wisconsin Wind Tunnel
(WWT) [Reinhardt, et al., 1993] and the LAPSE
[Dickens, et al., 1994] simulators. WWT was de-
signed to specifically evaluate cache-coherent shared-
memory systems on the Thinking Machine C'M5. It
uses direct execution for all load and stores that hit
in the local cache; cache misses are trapped by using
the ECC bits in the CM$5 causing an interrupt han-
dler to be invoked which initiates the simulation of
the corresponding cache miss event in logical time.
The execution on multiple processors is synchronized
by using a semi-synchronous conservative algorithm
with a fixed window size.

LAPSE is a parallel simulator that uses a message-
passing multicomputer to simulate the performance
of parallel programs running on larger configurations
of message-passing multicomputers. LAPSE also uses
direct execution to ‘simulate’ sequential code (code
between communication points) and traps calls to
the message communication library. However, un-
like WWT, the traps are generated at compile time
by redirecting calls to the message-passing library in
the application code as calls to appropriate LAPSE
routines that simulate the corresponding event. It
uses a conservative appointment-based protocol to
synchronize the execution of the simulator on mul-
tiple processors. The simulator was found to yicld a
self-relative speedup (i.e., speedup is measured with
respect to an implementation of the parallel simulator
on 1 node as opposed to measuring speedups against
a sequential implementation) of up to 47 for the sim-
ulation of a variety of numerical applications.

6 Research Issues

The area of parallel simulation languages and envi-
ronments is clearly in its infancy. Much remains to be
done in the design of general purpose parallel tools, in
their application to specific domains, and in the iden-
tification of application characteristics that could be
exploited by specific synchronization protocols. e
conclude this paper with a brief look at a few areas
that offer opportunities for research and development.

1330

Shared variable languages "The inclusion of
shared variables in PSLs is of significant potential
benefit. [First, many applications are not ‘naturally’
decomposed into a sct of miessage communicating LPs
that do not share any memory. Second, from an ef-
ficiency viewpoint, the absence of shared data might
imply duplication: for instance initial system config-
urations that are most conveniently stored as global
write-once data, often need to be duplicated in the ab-
sence of shared memory support in the PSL. The pri-
mary problem in supporting shared memory in a PSL
is that efficient implementations of shared memory on
distributed memory machines (called virtual shared
memory or distributed shared memory) use mem-
ory consistency models that are considerably weaker
than the sequential consistency typically assumed by
a PSL. Efficient mappings from the sequential con-
sistency to weaker consistency models is an active re-
search area in the parallel computing community, but
few transparent solutions are known. The coherence
problem is further compounded by the need to main-
tain timestamp ordering for all references to shared
memory, particularly when the set of LPs that can
potentially access specific variables is not known. Re-
cent work by Mehl and Hammes [1993] provides sone
insight into the techniques to combine distributed
shared memory with parallel simulation. Much still
remains to be done towards efficient integration of
shared memory programming primitives in PSLs.

Semantic Optimizations While keeping the sim-
ulator transparent to the programmer has the advan-
tage of presenting a simpler programming interface
to the simulationist, it makes it harder for the pro-
grammer to exploit application-specific information
to reduce execution overheads. The Maisie environ-
ment provides language level constructs to allow pro-
graminers to interact with the underlying implemen-
tation. For instance, for conscrvative algorithms, it
is possible to specify the dynamic lookahead of each
LP and to maintain connectivity information. For
optimistic simulators, constructs may be provided to
reduce the rollback distance for straggler messages
[Bagrodia and Liao. 1994]. Research in semantic op-
timizations is still in its early stages and much re-
mains to be done in terms of providing well-defined
interfaces to allow programmers to interact with the
underlyving simulator.

Application partitioning and load manage-
ment The performance of any parallel program, in-
cluding parallel simulations, is particularly sensitive
to the decomposition strategy used to distribute the
work on the multiple processors. However, available
parallel simulators provide mimimal support. for even
staiic load balancing and most do not support dy-

Bagrodia

namic load balancing or process migration. Inves-
tigation of existing algorithms, development of new
techniques designed for specific parallel simulators
and applications, and their incorporation into par-
allel simulators, all present numerous opportunities
for further research.

Program Development Environments The
model development environments that are available
with most PSLs are primitive when compared against
the development environments and user interfaces
that are available for sequential simulators. Consid-
erable work remains to be done towards providing
suitable graphical user interfaces (GUls) for model
definition and optimization for execution with specific
parallel simulators. Domain-specific parallel simula-
tors can derive particular benefit from such tools.

ACKNOWLEDGEMENTS

This research was supported by NSF PYI Award
ASC-9157610 and by the US Dept of Justice/I'BI.
ARPA/CSTO under contract J-FBI-93-112.

REFERENCES

Abrams, M. 1988. The object hbrary for parallel sim-
ulation (OLPS). In Proceedings of the 1988 Winter
Simulation Conference, 210-219, December.

Baezner, Dirk, Greg Lomow, and Brian W. Unger.
1990. Sim++: The transition to distributed simu-
lation. In Proc 1990 SCS Multiconference on Dis-
tributed Simulation, 211-213, San Diego, Califor-
nia, January.

Bagrodia, R. L., K. M. Chandy, and W-T. Liao.
1991. A unifying framework for distributed simu-
lations. ACM Transactions on Modeling and ('om-
puter Simulation, October.

Bagrodia, R. L., K. M. Chandy, and J. Misra. 1987.
A message-based approach to discrete-event simu-
lation. IEEE Transaction on Software Engineer-
ing, Vol. 13, No. 6, 205-210, June.

Bagrodia, R. and W-T. Liao. 1990. Maisie: A lan-
guage and optimizing environment for distributed
simulation In Proceedings of 1990 SCS Mullicon-
ference on Distributed Simulation, San Diego, (‘al-
ifornia, January.

Bagrodia, R. and W-T. Liao. 1994. Maisie: A
language for design of efficient discret-event simu-
lations. TEEE Transactions on Software Engineer-
ing. April.

Briner, J.. J. Ellis, and G. Kedem. 1991. Breaking
the barrier of parallel simulation of digital systems.
In Proc ACM/IEEE Design Automation Conf.

Language Support 1331

Bryan, Otis. 1989. MODSIM II - an object oriented
simulation language for sequential and parallel pro-
cessors. In Proc of the 1989 Winter Simulation
Conference, 172-177, Washington, D.C., Dec.

Chandy, K. M. and R. Sherman. 1989a. The condi-
tional event approach to distributed simulation. In
Proceedings of the SCS Simulation Multiconference
on Distributed Simulation, 93-99, March.

Chandy, K. M. and R. Sherman. 1989b. Space-time
and simulation. In Distributed Simulation Confer-
ence, Miami.

Chen, Yu-an and R. Bagrodia. 1994. Parallel
switch-level circuit simulation. Technical report,
Computer Science Dept, UCLA.

Das, Samir, Richard Fujimoto, Kiran Panesar, Don
Allision, and Ingrid Hybinette. 1994. GTW: A
time warp system for shared memory multipro-
cessors. In 199/ Winter Simulation Conference,
Washington D.C., December.

Dickens, P., P. Heidelberger, and D. Nicol. 1994.
A distributed memory lapse: Parallel simulation of
message-passing programs. In Workshop on Paral-
lel and Distributed Simulation, 32-38, July.

Fujimoto, R. 1990. Parallel discrete event simulation.
CACM, Vol. 33, No. 10, 30-53, October.

Fujimoto, R. 1993. Parallel discrete event simulation:
Will the field survive? ORSA Journal on Comput-
ing, 5(3):213-230.

Gill, D. H., F. X. Maginnis, S. R. Rainier, and T. P.
Reagan. 1989. An interface for programming par-
allel simulations. In Proceedings of 1989 SCS Mul-
ticonference on Distributed Simulation, 151-154,
Tampa, Florida, March.

Jefferson, D.. B. Beckman, and F. Wieland, et al.
1987. Distributed simulation and the time warp
operating system. In Symposium on Operating Sys-
tems Principles, Austin, Texas, October.

Jefferson, D. 1985. Virtual Time, ACM TOPLAS,
7(3):404-425.

Jha, Vikas and Rajive Bagrodia. 1993. Parallel im-
plementations of Maisie using conservative algo-
rithms. In Winter Simulation Conference, Dec.

Jha, Vikas and Rajive Bagrodia. 1994. A uni-
fied framework for conservative and optimistic dis-
tributed simulation. In 1994 Workshop on Parallel
and Distributed Simulation, Edinburgh, July.

Madisetti, Vijay K., David A. Hardaker, and
Richard M. Fujimoto. 1992. The mimdix operat-
ing system for parallel simulation. In 6th Workshop
on Parallel and Distributed Simulation (PADSY2),
1992 SCS Western Simulation MultiConference on
Parallel and Distributed Simulation, 65-74, New-
port Beach, ("A, January.

Mehl, Horst and Stefan Hammes. 1993. Shared vari-
ables in distributed simulation. In Proceedings of
the Seventh Workshop on Parallel and Distributed
Stmulation, 68-76, San Diego, California, May.

Misra, J. 1986. Distributed discrete-event simulation.
ACM Computing Surveys, 18(1):39-65.

Preiss, B. R. 1989. The Yaddes distributed discrete
event simulation specification language and execu-
tion environments. In Proceedings of 1989 SCS
Multiconference on Distributed Simulation, March.

Reinhardt, S. K., M. D. Hill, J. R. Larus, A. R.
Lebeck, J. C. Lewis, and D. A. Wood. 1993. The
Wisconsin Wind Tunnel: Virtual Prototyping of
Parallel Computers. In Proceedings of the 1993
ACM SIGMETRICS Conference, May.

Reynolds, Paul F. 1989. Comparative analysis of
parallel simulation protocols. In Proceedings of
the 1989 Winter Simulation Conference, 671-679,
Washington, D.C., December.

Rich, David O. and Randy E. Michelsen. 1991. An
assessment of the modsim/twos parellel simulation
environment. In Proceedings of the 1991 Winter
Simulation Conference, 509-518.

Soule, Larry and Anoop Gupta. 1992. An evaluation
of the Chandy-Misra-Bryant algorithm for digital
logic simulation. In 6th Workshop on Parallel and
Distributed Simulation (PADS92), 129-138, New-
port Beach, CA, January.

Steinman, Jeff. 1991. SPEEDES: Synchronous par-
allel environment for emulation and discrete event
simulation. In Advances in Parallel and Distributed
Simulation, SCS Multiconference, 95-103, Ana-
heim, CA, January.

Su, Wen-king and C.L. Seitz. 1989. Variants of the
Chandy-Misra-Bryant distributed simulation algo-
rithm. In 1989 Simulation Multiconference: Dis-
tributed Simulation, Miami, Florida, March.

Waldorf, J. and R. Bagrodia. 1994. MOOSE: A
concurrent object oriented language for simulation
International Journal of Computer Simulation, To
appear.

RAJIVE L. BAGRODIA received the B.Tech. de-
gree in Electrical Engineering from the Indian Insti-
tute of Technology, Bombay in 1981 and the M.A.
and Ph.D. degrees in Computer Science from the Uni-
versity of Texas at Austin in 1983 and 1987, respec-
tively. He is currently an Associate Professor in the
Computer Science Dept. at UCLA. His research in-
terests include parallel languages, parallel simulation,
distributed algorithms, and software design method-
ologies. He was selected as a 1991 Presidential Young
Investigator by NSF.

