Proceedings of the 1994 Winter Sunulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

MODEL DESCRIPTION IN THE INSYDE SIMULATOR FOR EVALUATING LARGE-SCALE
COMPUTER SYSTEM PERFORMANCE

Toshio Komatsu
Hirofumi Wakayama

NTT Network Information Systems Laboratories
Nippon Telegraph and Telephone Corporation
Yokosuka-Shi, Kanagawa, JAPAN

ABSTRACT

The INSYDE simulation tool was developed for use in the
performance evaluation of large, complex computer sys-
tems. This simulator is an interactive graphical type tool
in which model data is input in the form of diagrams and
tables, and the results are also output in the form of dia-
grams and tables. This paper focuses on the method used
by INSYDE to achieve highly powerful model descrip-
tion, an important issue with respect to practical use. The
practicality of INSYDE is demonstrated by applying it in
the evaluation of a number of complex, large-scale sys-
tems that are in the design stage.

1 INTRODUCTION

The increasing sophistication and complexity of computer
systems is accompanied by a demand for accurate and
timely means of predicting the extent to which perfor-
mance targets will be achieved, estimating the limits of
processing capability and identifying system bottlenecks
over the entire lifc cycle, from system planning to the op-
eration phase. Simulation is in incrcasing demand as one
such effcctive method (See Komatsu and Nose 1991). We
developed the INSYDE interactive graphical performance
evaluation tool to allow easy cvaluation by means of
simulation. With INSYDE, modecling data can be de-
scribed in the form of diagrams and tables.

We focused on practical use in the decvelopment of
this system. While, of coursc superior operability, debug-
ging functions and editing funclions were implemented,
emphasis was placed on achieving high descriptive
power. The main issues were what degree of logical com-
plexity could be expressed and to what extent intricate
conditions could be simplified.

For the description of logically complex conditions,
we are employing the following approach.

1272

Junro Nose

Productivity Innovation Promotion Headqualers
NTT Software Corporation
Yokohama-shi, Kanagawa, JAPAN

(1) Provide support for definition terms that can describe
hardware and software resources in detail.
(2) Provide support for 56 types of nodes for describing
the processing flow in the internal operation of computers.
(3) Make it possible 1o access global information, which
is shared by the entire system, and local information,
which is particular to each transaction, when deciding on
conditions.
(4) Allow conditions that cannot be represented in dia-
gram and table form to be defined by user programming.
For simple description of intricate conditions, we are
taking the following approach.
(1) Allow indirect specification of access paths by files
by using file path structure diagrams and a file table that
indicates the file storage conditions.
(2) Nodc paramcters can be specified by variables as well
as by constants.
(3) Variables whose value can be decided uniquely before
the transaction appears in the processing flow are defined
in table form.
The rest of this paper is organized as follows. Section
2 explains the special processing characteristics of com-
puter systems; section 3 provides a brief general descrip-
tion of INSYDE; section 4 presents various methods of
improving descriptive power; scction 5 presents examples
of application in the evaluation of actual systems.

2 SPECIAL CHARACTERISTICS OF COM-
PUTER SYSTEMS WITH RESPECT TO PER-
FORMANCE EVALUATION

From the modeling point of view, computer systems have
the following special properlies with respect to the appli-
cation of INSYDE.

(1) The system consists of a very large number of hard-
ware resources, including processors, file storage devices,
communication channels and tcrminals.

INSYDE

(2) The system’s hardware resources contain {rom tens to
hundreds of software resources, such as tasks, tables and
files.

(3) The ransactions in the system are highly varied (from
tens to hundreds of types) and occur in large numbers
(from thousands to hundreds of thousands of items per
hour).

(4) There are processes that are special features of com-
puter systems, such as interrupts, exclusion control, inter-
task communication and synchronization.

(5) The resources accessed, the processing amount and
other such factors vary from transaction to transaction,
even for transactions of the same type and same process-
ing flow.

From the above, we can see that there is a need to at-
tain a model description capability that can solve the prob-
lems of scale, logical complexity and intricacy of descrip-
tion. Interactive graphical simulators have been reported
in various application fields. In the communication net-
work field, there are several systems (See Bharath and
Kermani 1984, Marsan et al. 1990, and Dupuy et al.
1990). However, none of these can easily describe a de-
tailed model for the internal processes of a computer sys-
tem. While there are systems such as CAB in the computer
field (See Okada and Tanaka 1991), these systems cannot
provide a simple description for the special types of inter-
nal processes found in computer systems, such as inter-
rupt processing and inter-task communication. Complex
models are thus either impossible to describe or the de-
scription must be accomplished by user own coding. This
is the key problem with respect to descriptive power.

3 OVERVIEW OF INSYDE
3.1 Functions

INSYDE consists of four blocks. The functions of each
block are described below.

In the model definition information acquisition block
(MDEF), the format of the model conditions input in dia-
gram and table form is checked and converted to a format
that is suited to the automatic generation of a simulation
program. In the input of the processing flow, the operator
selects the desired nodes from a node menu list on the
screen, positions them as desired on the screen, and then
sets the node parameters while referring to the guidance
provided.

The automatic simulalion program generation block
(SGEN) generates a simulation program from the con-
verted data output by MDEF. At the same lime, it per-
forms a logic check on the correspondence between the
tables and diagrams.

The simulation execution block (SIML) executes the

1273

simulation program generated by SGEN. Time statistical
data for all resources and each type of transaction and wait
time statistical data are acquired automatically. For a
single execution pass, statistical data can be acquired mul-
tiple times at fixed time intervals, which makes it possible
to confirm the stability of the simulation. Also, detailed
trace data, such as the transaction number and node pa-
rameters for each node are acquired so as to facilitate vali-
dation of the modecl. Transactions are often segmented
during the flow of processing, so generation numbers and
ID numbers are assigned to make it possible to distinguish
them.

The statistical data editing block (EDIT) compiles the
statistical data obtained in SIML and edits it for display in
table or graph form. Also, to facilitate the retrieval of trace
data, trace data can be searched for and displayed by using
logical expressions involving the transaction number, the
process flow name, the node name, the resource name and
so on specified as search conditions.

3.2 Modeling Overview

An overview of the modeling process is illustrated in Fig.
1. In INSYDE, system operation is defined in the form of

Transacton Definition Table Task DehniNon Table

Name [Number | Distibuson | - [Namo | Number | °
sys| 1o ExP TA 10
T8 s
A
Device Detiniuon Table .
[Name | Number | - E
P
ws | 100 [System s g Flow | [Task g Flow) et
.. v svs: L2 7 NSO roct
HOST) 1 . . 4| spadcihicaton
“h.. @ WS .20K8 /@ |OC(SF 1) 4KB
P |
Table Daliniton Table HOST(QATA(1)) * @ [O($F-1),4KB
[Name [Number L)l(ENO(OBT&(1)
ENTER-1 . <.
Qa1 20 D AR » | s
Tt X ADD(Q1).EA", | 4
. .
T &
Vanabla Definiton szl: Lo O MAC(.4) . o o 18 .
- s K -
Probability | 8A Sot vihiatio N et
condifons g
© ! OusER| 1
60 3 ; -+ [Macro Processing Flow |
Ta
END 9 wac
FORTRAN Descripton .-
LNUM-1 User & Vanable & MEND
: definifon ¢ Fie
P a—
(Path Stucture Diagram| (Fie Table}
HOST CH-10KC-1

Name | File | File

DKt DK 2 DK 1| F1 G-

DK2| F2 | G2

SFM 1 skm 1| Fa | 63

XX YY XXis the resource name
YY is the resource number

IOC($F 1) Is equivalant to DKC-1
IO{$F 1) is equlvalent to DK 1

Figure 1: Modcling Overview

1274 Komatsu, Wakayama, and Nose

a flowchart representing the process {low, focusing on the
flow of transaction processing. The direction of transac-
tion flow is represented simply by the lines connecting the
nodes. To make it easy to build, revise and extend a
model, the conditions for resources and transactions and
so on are defined in a diagram and table format, separated
out from the process flow. Conditions that cannot be de-
scribed with diagrams and tables can be defined by user
programming. To make the processing flow easy to un-
derstand, comments can be inserted freely in the process
flow description.

The process flow is described using the 56 types of
nodes described in Table 1. Those types of nodes include
one that users can define for themselves. INSYDE allows
the processing flow to be described on three hierarchical
levels: the system processing flow, in which the overall
processing flow from transaction generation to comple-
tion is shown; the task processing flow, in which indi-
vidual task processing is implemented; and the macro pro-
cessing flow, which involves a group of processes that is
to be repeated any number of times.

Table 1. Functions of Nodes for Processing Flow Description

Type of Node Number Functions

These delay transactions with resources in

Time delay 8 the reserved or unreseved statud.

These indicale the beginning or end of
processing flow. For termination, continuous
restart and queuing to other processcs is
possible, except when the transaction is
deleted.

Start, End 8

Unconditional branching and branching
according 1o various conditions is possible.
Conditions can be set for the work area of
each transaction or variable, etc.

Branch 14

These transfer processing between sysiem
processes and task processes or belween Lask
processes.

Processing
Control Transfer 9

These handle resourcereservation and
release. Multiple resources can be reserved
or released simultaneously.

Resource 9
managcmcm

These split ransactions into multiple
processes that may proceed in the same

4 direction or in different directions. It is
possible to specify that the split Lransaction
be complete re-intcgrated or partially re-
integrated.

Splitting and
merging

User

This is defined by the user.

Macro

This calls a pre-defined macro process flow.

Measurement

These collect statistical data over a freely

Concerning tasks, which are one of the software re-
sources, various structures and control schemes have been
proposed and implemented for the purposes of improving
performance and facilitating program development and
maintenance management. In order to make possible
modeling that does not lose the special features of these
structures and schemes, INSYDE is designed to allow de-
tailed task definition, as shown in Table 2. In this way, the
structures of task queue groups and task groups that have
various characteristics, such as are shown in Fig. 2 for ex-
ample, can be defined completely by means of tables.

Table 2. Main Task Definition Items

Item Description

Task name
Number of tasks For each type of task

Interrupts Whether or not there are forced interrupts for the
cPU

CPU reservalion priority Priority order among tasks for reserving the CPU

Startup condition Condition for starting service
Task Queue name
Queue capacity Task queue length
Queue selection rule Rule for calling transactions from the task queue

Number of ask reservations | The number of tasks that can be processed
simultaneously

Task reservation priority Priority order for rescrving tasks

Task A

|

Tusk quoua group

Q== P =1 W=mulbple \ O
/

H

Q=80. Py =1. W=mulple

|

Q=®, Py =1, W=muluple

U

|

U

specfied measurement interval.

4. METHOD FOR INCREASING DESCRIPTIVE
POWER

4.1 Describing Complex Conditions

4.1.1 Defining Task Structures

L P =3, W=mngle

H

Q=®, P, =1, W=muluple /
N=20
Q=m, Py =2. W=uangle Pe=4a
Q=w. P: =3, W=usngle Q Queue capacily
P Task reservation prionty
P

[
w

N

Number ol ek reservations
CPU reservalion priorily
Number of masks

Figure 2: Example of Task Configuration

4.1.2 Special Processes of Computer Systems

Here, we give an example of describing control nodes,
which represent the special processes of computer sys-
tems.

INSYDE

(1) Exclusion control: The LOCK node and UNLK node
can be used to lock or unlock multiple resources at the
same time. If a simultaneous locking fails, it is automati-
cally judged whether or not simultaneous locking is pos-
sible for each of the target resources when any of them are
unlocked.

(2) Interrupt processing: The PRE node performs inter-
rupt processing, in which the task being executed is halted
and the CPU is forcefully reserved. When the interrupt
processing is finished, the interrupted task is automati-
cally resumed.

(3) Inter-task communication: Information exchange be-
tween tasks is accomplished by the LINK and LON nodes.
For each such communication, the initiator of the commu-
nication is managed on a per-transaction basis. Thus, as
shown in Fig. 3, there is no need 1o specify the address for
the response as a parameter for the LON node.

Task A -2 [— Task A Taskg
V TABKA 4V TASKB
Tasknumbel =1~ 4 |
/ Communpsign
. R
X LINK(A.OB.TABKB)*
-~ | y\,'
. : | S i x LON
(Festtime) . x |.INK(A,Qt;,'r;«s»(a)j‘f"“""""".l
. % "Responselo
. communicailon Intiiator .
. |
k8econd 1ime) & END o END

X LINK(XX,YY,ZZ) waliing for response

® .Communication o Task B
from spactiad 1ask

XX Nameollinklable
{Msirallon ol Inter-task Communicalion)
YY Nameollaskqueus
2Z Namoollask
X LON ‘Aulomalically respondio tho
communication Inltialor

[Example of Processing Flow Deacription|

Figure 3: Example of Inter-task Communication Description

(4) Synchronization: As shown in Fig. 4, AND nodes are
used to specify the synchronization of any number of split
transactions. There is also another type of synchronization
node, the OR node, which specifies that the first transac-
tion that is reached is made effective, while the subsc-
quent one is deleted.

4.1.3 Accessing System Information

System information can be referred to at any time during a
simulation by using the IF node. Various conditions can
be specified for the referencing. Global information (com-
mon to the entire system) and local information (concern-
ing individual transactions) can be accessed. Global infor-

1275

job1

O—>30 6
O
2
o 5 Synchronizaton
(]
3 }
(@]

[Example of job scheduling)

T SYS

X PARA Splittng

é JOB1 © Jos2 O JoB3 . Call macro
?JOB“ W Al X JUMP(A1) : Jump to A1
T A2 X AND.2 - Synchronization

X AND.2 é JoBs

© JOoBé X JUMP(A2)

I |

~ END |[Example of Description)

Figure 4: Example of Synchronization Description

"""" E 71 Taka TASKB
~ IF (ATR1 >7QUSE (DK 1))
Rotry X ADD(ATR2),1
E Task8 — IF (ATR2<5) Dolermine number
olralries
X ENQ(QA TABKA) X ENQ(QA TASKA)
|
= DEL : Delele
'
TaskC & END & END

| Wusiration of Reiry| ATRn Work srea

7QUSE Funciion thal Indicales the number ol walis

ENQ(XX, YY) . iranslor ol task procassing

XX Nameoliask queuo
YY :Name ol task

|Example ol Procossing Flow Descriplion]

Figure 5: Example of Retry Descripition

mation includes such data as the using multiplicity, and
number of waits for each resource. Local information in-
cludes the contents of the user-definable work areas and
so on. This sort of access to system information allows the
specification of complex conditions. In the case shown in
Fig. 5 for example, firstit is detcrmined whether or not the
number of transaction queues at a particular resource has
exceeded a threshold. If it has, exccution is retried a speci-
fied number of times, after which the transaction is de-

1276 Komatsu, Wakayama, and Nose

lcted.
4.1.4 User Defined Conditions

Conditions that are difficult to describe with the standard
diagram and table format can be defined by the user in
FORTRAN. User definition is not limited to within the
user nodes in the processing flow; user programming can
also be incorporated into the parameters of each node,
queue selection rule of resource definition table, and gen-
eration distribution of transaction definition table. In the
user programming, functions for acquiring various lypes
of statistics are available in addition to the ability to refer
to the various informations managed by INSYDE while
the simulation is running.

4.2 Simplifying Intricate Conditions
4.2.1 Indirect Specification of Access Paths with Files

Files are frequently accessed in computer systems. This
access requires specification of the access path to the file
(the channel device, the file storage device, and so on) in
the processing flow. Because this is difficult, the file ac-
cess path is specified indirectly. This indirect specifica-
tion is done by defining the path structure diagram, which
represents the interconnections in the group of devices
that make up the access path, and the file table, which rep-
resents the file storage conditions. With this approach,
only the file name need be specificd in the processing
flow.

4.2.2 Using Variables in Node Parameters

If multiple processing [lows are described individually
when the processing flows are the samc but the node pa-
rameters (device number, process amount, etc.) differ ac-
cording to the transaction, then the description will be
very large. This problem can be avoided by making it pos-
sible to define these kinds of parameters as variables. In
this way, a single process flow description can be used for
a given type of node.

4.2.3 Definition of Static Variables in Table Format

There are two types of node parameters: those that arc de-
termined when the transaction actually begins within the
processing flow, and those that are uniquely determined at
the time the model is defined. The former are called dy-
namic variables; their rclationships with the execution
conditions are defined by user coding. The latter are called
static variables; their relationships with the execution con-
ditions are defined in tables. A description example is
given in Fig. 6.

Varlable Delintiion Table

ANDK | aNWS [Probabuny| . | aDOK | sDWS
Y TASKB ' ' 20 10 30
OK ANDK, ADDK 1 1 80 20 10
1 2 100 ao 20
W5 ANWE, 8DWE
2 l 100 40 50
& END
2 2 50 s0 w0
? 2 50 10 00
@ XX YYZZ (Timedelsyolicansaclion

Ith led
s11he apscilled resource) IF ANOK <1 8nd ANWS - 1,81 8 20% probabiy,

ADDK -10 and 8DWSB =30 ;al an 30% probabiiy,
800K 20 and 8DW5 =10

XX Namoolresource
YY Numberol resource

ZZ Amouni ol processing

FFigure 6: Example of Specifying Variables

5. OPERATION EXAMPLE AND EVALUATION
RESULTS

5.1 Operation Example

INSYDE was used to evaluate three systems. System A is
for a public network; system B is for a private network.
Both are large-scale systems for managing work rang-
ing from application to maintenance. System C is a me-
dium-scale system for centralizing work related to
charges. The system conditions and the size of the models
resulting from the evaluation are listed in Table 3.

Table 3. Conditions and Modeling Scale for the Evaluated Systems

Main Sysiem Conditions Model Size
System F
Name)
Number of |Number |Number [Number of |Number of
Transacuon |of of Tasks [INSYDE SLAM I
Types Devices Nodes Statements*
(Number of |(Number of
FORTRAN |FORTRAN
Sieps(1)) Steps(2))
675 1062
A 8 20 25 0.15
(50) (342)
1026 2105
B 7 26 14 0.40
(181) (455)
157 215
C 2 9 32 0
©) (125)

* Resource Statements defning resource names, multiplicity units
and so on are not included

INSYDE

Part of the processing flow for system A for when
INSYDE was applied is shown in Fig. 7. The figure shows
the flow of processing for one of several transaction types.
First, when transactions generated on a workstation arrive
at the center via the communication line, the non-task in-
terrupts the task being executed, performs reception pro-
cessing, and then turns processing over to the manager
task. The manager task divides up the transaction for pro-
cessing by the work task. In the work task, DB1 and DB2
are simultaneously locked and processing is turned over 1o

1277

the journal task to accomplish database updating. The
work task waits for the response from the journal task and
writes the file in duplicate. Next, after executing lock re-
lease and other processing, the work task returns control
10 the manager task for termination processing. The man-
ager lask then returns control 1o the non-task for transmis-
sion processing, which sends the data to the originating
workstation.

As can be seen from the figure, the processing flow is
easily described and the description is easily understood.

Center
non-task
ws
A > Line > Manager task
(up) \
Generation of transaction
Work task Journaltask
x g
Managerlask :
non-lask
<€ Line €
(down)

[Flow of Transaction Processing]

System Processing

non-lask Managertask Work task
v SYS
v Ti(1) v T2(1) v AP
@® WS-&N, 10KS 4| K4
S O CPU,10KS . O CPU.30KS
® LINE-&M,508) X] .
| . X ENQ(D2.AP) *
O CPU(D1.T1(1)) \ | .
& END O CPU,10KS W LOCK($DB1-8A,50B2-88B)
¥ ENTER-1 |
N & END X LINK(B,QUNL,INL)
v
@ LINE-&M, 408 ‘.‘ x PARA
\
\
@® WS-&N.20KS v T1(2) v T2(2) © DK(3DB1.8A) O DK($DB2.&B)
| \ | g | X
M . * .
A END l.‘ ; 8 \\‘ x AND.2
|‘ ‘\ N
Y ., B UNLK($DB1-8A.$DB2-88)
. Ay
Yo EXIT(1) A END . .

" x ENQ(D2.T2(2))

W LOCK(lile name,.) : Simultaneous looking

B UNLK(file name,..) : Simultaneous unlooking

O CPU(task queue, task name) : Queuing In 1ask processing

O CPU,20KS

O CPU.processing amount : CPU processing time, transaction delay]

A END

Figure 7: Example of Processing Flow Description

1278 Komatsu, Wakayama, and Nose

5.2 Evaluation Results

Performance with respect to intricate conditions can be
qualitatively inferred from the various descriptions al-
ready presented, so in the following we discuss perfor-
mance with respect to logically complex conditions.
Generally, the difficult point in the evaluation of perfor-
mance versus the degree of complexity is that there is no
clear measure for this purpose. Here, we will focus on the
SLAM II simulation language (See Pritster 1986). Com-
plex conditions that cannot be expressed using the stan-
dard statements provided by this language are wrilten in
FORTRAN. Therefore, we assume the amount of FOR-
TRAN code used when the system under consideration is
described with SLAM 1I to be one measure of the com-
plexity of that system. The complexity of each system
evaluated is given in Table 3. The main items written in
FORTRAN are simultaneous locks, specification of re-
source numbers, and so on. The models for each system
were respectively constructed by different persons.

(1) For each of the systems that have the degrees of com-
plexity listed in Table 1, the system conditions could be
described as they are, without approximation on a rough
level.

(2) Atthis time, the following equation is used as a mea-
sure of the extent to which the description of complex
conditions can be simplified.

F=N()/N(S)

where N(I) is number of FORTRAN steps used with

INSYDE, N(S) is number of FORTRAN steps used

with SLAM 1L

Although the precision of the system conditions in
question, the person creating the model, and so on are [ac-
tors, we can say that F indicates the degree of simplifica-
tion of complex condition description: the smaller the
value of F, the greater the simplification. For the three sys-
tems evaluated here, F ranges from 0 to 0.4. This is prima-
rily because the special computer system processes, such
as locking, unlocking, and static variables, can be de-
scribed with standard INSYDE cxpressions, whereas they
must be coded in FORTRAN in SLAM II. The conditions
written in FORTRAN in INSYDE were primarily specifi-
cations for dynamic variables.

We can thus conclude that while INSYDE cannot de-
scribe cases in which the transaction priorities are not
fixed but change dynamically, it does achieve a gencrally
high descriptive power.

6 CONCLUSION

We have described the INSYDE simulator developed for

evaluation of the performance of computer systems, fo-
cusing on the method for achieving a powerful model de-
scription capability. INSYDE makes it possible to de-
scribe logically complex conditions and to simplify intri-
cate conditions by means of techniques such as detailed
resource condition definition tables, copious types of
nodes for describing the flow of processing, introduction
of variables into node parameters, indirect specification of
access paths by means of files, table definition of static
variables, and user definitions.

Actual application of INSYDE to a number of large-
scale, complex computer systems that are either in the de-
sign stage or in operation has confirmed that this simula-
tor is adequately practical with respect to the results of
performance evaluation support, model description
power, operability, and the debugging and editing func-
tions. We are confirming the modcls by using the tables
and diagrams as they were input to INSYDE in areview of
the system with the client that requested the evaluation.

Future work will aim at a tool that has high descriptive
power for a general information communication network
that integrates computer systems and communication net-
works.

ACKNOWLEDGMENTS

We are very grateful to all the people who cooperated in
developing and improving INSYDE, and to the many per-
sons who supplied us with actual system model data and
valuable discussions.

REFERENCES

Bharath.K.K. P.Kermani(1984). Performance Evaluation
Tool(PET): An Analysis Tool for Computer Communi-
cation Networks, IEEE JASC, Vol.SAC2, No.1,
pp.220-225.

Dupuy.A,J.Schwartz, Y.Yemini, D.Bacon (1990). NEST.A
Network Simulationand Prototyping Testbed, COMMU-
NICATION OF THE ACM, Vol.33, No.10, pp.64-74.

Komatsu.T, J.Nose (1991). Evaluation Response Time for
Network Service System, IPSG SIG Notes, OS-50-9.

Marsan.MA, G.Balbo, G.Bruno, F.Neri(1990).
TOPNET:A Tool for the visual Simulation of Commu-
nication Networks, IEEE JSAC, Vol.8,No.9, pp.1735-
1747.

Okada.Y, Y.Tanaka (1991). FES:A Toolkit System for the
Development of Visual Interactive Simulators,
Trans.IPG Japan, Vol.32, No.6, pp.766-776.

Pritsker.A (1986). Introduction Simulation and SLAMII,
John Wiley & Sons.

INSYDE

AUTIHOR BIOGRAPHIES

TOSHIO KOMATSU is a Senior Research Engineer in
the NTT Network Information Systems Laboratories. He
received B.S. degree in 1972 and M.S. in 1974 in electri-
cal engineering from Kyushu Institute of Technology.
Since joining NTT in 1974, he has been active in R & D
on computer systems hardware architecture and computer
systems performance evaluation techniques. He is cur-
rently interested especially in modelling and analyzing
techniques and tools for distributed computing systems.
He is a member of the Information Processing Society of
Japan.

HIROFUMI WAKAYAMA is a Senior Research Engi-
neer, Supervisor in the NTT Network Information Sys-
tems Laboratories. He graduated from Kyoto University
in 1970. Since joining NTT in 1970, he has been active in
R & D on operating systems software, computer network
architecture and protocols, and computer software and
system evaluation. He is currently responsible in the R &
D on systems evaluation techniques and tools. He is a
member of the Institute of Electronics, Information and
Communication Engineers of Japan, and of the Informa-
tion Processing Society of Japan.

JUNRO NOSE is a Senior Manager in the Productivity
Innovation Promotion Headquarters at NTT Software
Corporation. He received B.S. degrce in 1967 and M.S. in
1969 in electrical engineering from Kobe University. He
joined NTT in 1969 and has been active in R & D on fault
diagnosis technique, videotex communication system and
systems evaluation techniques. He joined NTT Software
Corporation in 1993 and is now responsible in the systems
evaluation systems and services. He is a member of the
Information Processing Society of Japan.

1279

