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ABSTRACT

This paper presents a simulation tool to help the
network designer to identify the optimum network design
parameters for a heterogeneous network environment.
The tool consists of two parts: simulation modules and a
user interface. The simulation modules are created using
enhancements of an asynchronous, event-driven C-
function library to enable the simulation of
heterogeneous scenarios. In the future, this modules will
be distributed to speed-up the simulation runtime. The
user interface helps the user to create the design of the
network to be simulated. By this modular concept of
distributed simulation modules and user interface the
optimum network can be found out without much
knowledge of the underlying simulation details.

1 INTRODUCTION

The optimum network design is mainly a matter of
determining network parameters. Buffers have to be
dimensioned, timer values have to be defined and many
other parameters have to be chosen carefully not to
decrease the performance of the network. For a
heterogeneous scenario the choice of correct parameters
becomes even more important and much more difficult
because of the different mechanisms in each of the
interconnected networks.

Performance analysis provides methods to determine
appropriate values for the design parameters but has a
disadvantage: most tools and methods for performance
analysis can be used only by “experts” of a special tool
or mathematical method. The most tlexible method to
analyze network performance is simulation: the network
is modeled in a computer program that calculates the
output parameters like packet loss or throughput based
on input parameters like load conditions or the number
of nodes.
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To help the network designer using performance
analysis based on simulations, a tool should simplify the
network design even for a complex interconnected
scenario. This tool should be as flexible as the
simulation program itself but much more easy to use for
a network designer who has a good knowledge of
networks but only little (or even no) knowledge of
simulation details and the principles of the parallel
programming of the modules and their synchronization.

This paper presents such a “non-expert” performance
analysis tool based on simulation currently under
development at the University of Paderborn.

The tool “SimCom™ (Simulator for Communication
systems) consists of two main parts:
1)simulation modules for the performance analysis

(described in section 2) and
2)a user interface to determine the input parameters for
the simulation modules (described in section 3).

In the future, the simulation modules will be
programmed in a parallel way to reduce the runtime for
complex scenarios. Therefore, efficient synchronization
methods have to be introduced in SimCom.

Using this modular structure of independent simulation
modules, it becomes easy to create a library of
simulation modules. The library includes the simulation
modules for different networks and IWUs (Interworking
Units). The IWUs are special nodes in the networks for
the interconnection of different networks in the
heterogeneous network scenario to be simulated. The
interactive user interface can be used to determine easily
the structure of the heterogeneous network and its
parameters for the analysis of the chosen scenario. After
determining the input parameters with the user interface,
the interface can start the simulation modules in order to
evaluate the performance of the heterogeneous scenario.
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Figure 1: Simulator Architecture

2 THE SIMULATION MODULES

The architecture of the heterogeneous network simulator
SimCom is shown in Figure 1. It consists of two parts:
the user interface (UI) and the simulation modules.

The main function of the Ul is to assist the user in
defining the topology of the simulated heterogeneous
network. With this information, the UI generates the
input files for the simulation modules. The simulation
modules and the simulation libraries are the subject of
this section.

The simulation modules are written in C and include:

1) models of the networks that form part of the

heterogeneous scenario considered,
2) models of interworking units (IWUs),
3) generic simulation libraries, and
4) the Simulation Frame (SF).

The networks and IWUs are represented by discrete,
asynchronous, event-oriented simulation models, using
the general simulation primitives provided by C-
libraries. The SF is an extension of the libraries that

specifically supports the simulation of heterogeneous
networks. It allows the creation of several instances of
the same network type, their interconnection by means
of interworking units, and the routing of data units from
network to network.

All network and IWU models must offer a standard
interface, so that they can be integrated with each other
and with the SF in a heterogeneous network simulation.
Assuming this, new models can be easily added to the
simulator. Currently there are models available for
DQDB (Distributed Queue Dual Bus) and ATM
(Asynchronous Transfer Mode) networks, and models for
FDDI (Fiber Distributed Data Interface) and Ethernet are
being developed. Details on the functionalities of the
networks can be found in Kvols (1992).

2.1 The Simulation Library
The generic simulation functions provided by the library

support the development of discrete, asynchronous,
event-oriented simulation models in C. It includes
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general functions for (Riimekasten 1991):

* Event handling (schedule event, get next event).

* The generation of random variables with usual
probability distributions, e.g. exponential, normal,
etc.

* The analysis of simulation results (mean values,
variances, histograms, etc).

* Input/Output functions for simulation parameters and
error messages.

Additionally, the simulation functions provide
predefined data structures (e.g. “‘packets”) intended for the
simulation of communication networks, in particular
those structured in protocol layers.

2.2 The Simulation Frame (SF)

Looking at the reality of today’s communication
networks it is easy to see that heterogeneity of different
network protocols and implementations is a fact. Since
this will not completely change in the future, it is
important to analyze the performance of heterogeneous
networks. Therefore, an additional C library, the SF was
developed (Ottensmeyer 1991).

The SF enhances the simulation in two important
aspects.

Firstly, the SF allows the simulation of a
heterogeneous system including several network types
and instances of the same network. Network models
which have been developed independently can be
integrated in order to simulate a heterogeneous network,
provided that the interface of each model (section 2.4)
conforms to the rules imposed by SF.

Secondly, the SF allows a flexible definition of the
simulated network structure by means of input parameter
files which are read before starting the simulation. In this
way, different network configurations can be simulated
without recompiling. (These files are generated by the
UI, so the user does not need to edit them directly.)

The SF includes the following functions (Ottensmeyer
1991):

« Initialization of the simulated system configuration as
defined in the input files.

* Routing functions: these functions determine the
intermediate node in the sending network and the
IWU that must be used to reach the destination
network.

* Input/Output functions. They coordinate the access of
the different simulation modules to the command-line
parameters and external files.

2.3 The Interworking Unit Module

The IWU module provides a generic interworking unit
structure, which can be enhanced by the programmer to

model particular interworking units. At the general level,
an IWU module consists of two (or possibly more)
ports. For each port the user specifies the network and
node where the port is attached, and the networks which
can be accessed through the port. This information is
used by the SF routing functions.

Packets are delivered to an IWU by scheduling a
predefined event. An internal event of the IWU gets each
packet and passes it to the destination network. The
internal structure of the IWU models and their interface
to the SF are similar to those of the network modules
described below.

2.4 The Network Modules

Following the event-oriented simulation paradigm, a
model that is part of the heterogeneous scenario consists
basically of a set of event-processing routines. Each
routine deals with the events of a given type and can
schedule future events of any type. Future events are
stored in a list (provided by the simulation libraries) and
processed in chronological order (also provided by the
simulation libraries).

In this case, each module has a function, that accepts an
event and calls the appropriate processing routine
depending on the event type. If the event is not known,
e.g. because it belongs to another component of an
heterogeneous network, the function returns the event
unprocessed. The SF is responsible for retrieving events
from the event list, and passing each of them to each
module in sequence, until one of the modules recognizes
and processes the event (for more details see Vogt et al.
(1992) and Riimekasten and Vazquez (1994)).

Furthermore, each network model must provide a
function that accepts data coming from other networks.
Simulation models of DQDB, ATM and their IWUs are
described in detail in Kvols (1992).

3 THE USER INTERFACE

The simulation modules as described up to now give a
flexible and efficient possibility for the analysis of a
heterogeneous network. However, there is a disadvantage
that makes it hard to use the modules: each module has
its own input parameter files (for more details see
Riimekasten (1991) and Ottensmeyer (1991)) and the user
has to integrate and connect the modules by himself to
design the scenario he wants to analyze.

Therefore the user has to have some knowledge in C
programming and in using the special SF input format.
Since the user (the network designer) might not be a
computer scientist, this knowledge can not be taken for
granted for each user.



Simulation of Heterogeneous Networks 1267

Because of this lack of programming knowledge, a
network simulation tool that really wants to be used has
to be as user friendly as possible to make its handling as
easy as possible. In future times, when the parallelism of
the simulation modules will be developed the simulation
modules are much too complicated for non-specialists.
To increase the practical use of the parallel simulation
library, SimCom provides an interactive Ul based on the
X-window system. By determing the input parameters for
all the subnetworks and IWUs, the whole scenario is
generated in an interactive man-machine dialogue. Based
on these inputs, the simulation of the desired scenario
can be started without programming the connection
between the modules.

3.1 Principles in User
Design

Interface (UI)

Conventional user interfaces are characterized by
sequential dialogues that are fixed with the sequential
application. This means that there is a strong connection
between UI and application. This results in badly
readable programs and difficult changes in both the user
interface and the application. Another disadvantage of
this kind of UI design is the fact that the user interface
can not be re-used for any other application and vice
versa.

To make the (possibly parallel) program code more easy
to understand and to enable software re-use, modern user
interface design follows the principles of “dialogue
independence”. This results in a clear separation of user
interface programming and underlying application. For a
simulation environment this means that no semantics of
the application (the parallel simulation program) is used
in the user interface: each input value from the interface
is independent from its semantics for the simulation
program itself. Only the connection between interface
and application maps the semantics from input values
(semantics of the user interface) to network parameters
(semantics for the simulation modules).

The so-called “Seeheim model” (see Pfaff (1985) and
Szwillus (1991)) tries to realize dialogue independence by
separation of UI and application. The model and its
components is shown in figure 2.

The presentation component provides the objects of the
UL This component communicates with the user on its
own using the provided objects of the interface. Each of
the interface objects has a specific semantics for the
interface. An object of the presentation component can
be a push button that represents two values (“on-off
button™). The value of that object is calculated by the
presentation component and depends on the action of the
user.

The shared application data model also provides a pool
of objects. These objects can be part of the application
objects or have a direct connection to the application
objects. They map the semantics from the presentation
component objects to the application objects.

By this mapping, the UI objects are connected to the
underlying application.

By this concept of dialogue independence the application
runs independently from the UI. For the case of a
simulation environment this concept results in a
remarkable advantage: the runtime of the simulation is
not influenced (that means slowed down) by the UI.
Since simulations are very runtime sensitive this
advantage of dialogue independence is much more
important for this kind of application than for other
applications. Because of this, the SimCom user interface
has been developed following the principles of dialogue
independence using a tool called InterViews.

3.2 The InterViews Class Library

InterViews (Interactive Views) has been developed at the
Stanford University, USA. It provides a library of object-
oriented C++ classes of graphical objects for the X-
window system environment (see Linton et al. (1991)).
The user writes his own C++ interface program using
the classes provided by InterViews.

Presentation

Component

Shared
Application
Data Model

User

Application

Figure 2: Dialogue independence (Seeheim model)
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The hierarchical structure of InterViews makes it
possible to compose different classes to new classes or to
enhance or modify the existing classes of graphical
objects.

In its basic version InterViews provides several classes
to receive and process events like the pushing of buttons
or selecting items from a menu. Other classes can be
used to compose existing objects to create windows or
backgrounds as new objects. Also the modification and
the visualization of objects is possible using pre-defined
InterViews classes. More details can be found in Linton
et al. (1991).

The object-oriented structure of all the classes provides
good methods to re-use classes in different parts of the
interface simply by the hierarchical structure of any
interface.

3.3 The SimCom User Interface

This section describes the architecture of the SimCom
user interface. The UI has been created using the pre-
defined InterViews classes. The Ul is based on a
graphical editor providing graphical objects representing
different network elements for a complete definition of
the input parameters. The complete scenario is defined
according to the composition of the graphical objects on
the interface.

The interface is structured hierarchically with general
inputs at the beginning and more detailed inputs in the
following. Figure 3 shows the structure of the interface.
At the beginning of the specification the user has to
define the general network parameters for the scenario.

These are the networks to be used for the simulation and
the number of those. To determine these parameters the
user selects the networks and determines their parameters.
The network parameters for each of the chosen networks
are determined easily by moving “stations” of the
networks and by connecting the networks with IWUs
that can operate in different modes. By this, the overall
structure of the heterogeneous network is determined.
However, some details for each station are still to be
specified. These details are the load types for each
station, buffer sizes and other parameters. Those
parameters are determined by selecting them from pre-
defined menus.

The connection between the interface and the application
(the shared application data model) is realized by creating
the simulation input files after finishing all the inputs.
The interface creates the input files automatically on
demand and also starts the simulation if the user wants to
simulate the scenario (general inputs in figure 3).

4 PARALLEL SIMULATION

Simulation of heterogeneous highspeed networks is a
time consuming job: each cell-arrival (e.g. for an ATM
network) has to be computed to simulate the behavior of
the network correctly. Therefore lots of millions of cells
have to be computed to make the program calculating
correct results that can be used for performance analysis.

General network parameters
(involved networks,
number of involved networks)

Specific parameters
(Load types for each station,
buffersizes, ...)

General inputs
(load scenario,
store scenario,
start simulation)

Network parameters
(Number of stations, IWU mode, ...)

Figure 3: Structure of the SimCom user interface
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Figure 4: Distributed architecture of future SimCom

To speed-up such time consuming computations the
distribution of the program is a promising method. But
to be as runtime effective as possible one has to keep the
communication overhead of the distributed program parts
as low as possible. Therefore, the independently running
parts of the distributed program should be as complex as
possible.

In our simulator, we have a very special scenario: the
simulation of heterogeneous networks. The only commu-
nication of the subnetworks is the exchange of internet-
packets. In realistic environments, this event does not
occur often, because most of the data is consumed
locally.

Thus, for a simulation of heterogeneous networks, the
independent simulation of each subnetwork on one
computer in a workstation cluster (or on a multi-proces-
sor workstation) seems to be the most promising (and
natural) way to speed-up the computation due to its low
communication overhead.

Figure 4 shows the (future) architecture of SimCom.

4.1 A Synchronization Problem

Simulating subnetworks independently also means inde-
pendently running simulation clocks with "fast" clocks
for simple and "slow" clocks for complex programs.

As one easily can assume, the complexity to model net-
works is different for different networks: cell-based net-
works (DQDB, ATM) are very complex, because each
cell has to be modeled. In opposite, FDDI is very easy to

model: only one free token circulates on the ring. So the
computation time of the networks differs

very much. In fact, a FDDI program is much faster than
a DQDB program. Thus, the simulation clocks of
different modules run different.

So the following problem can occur: the module for
network A with local clock time x sends a packet to the
module for network B. When the packet arrives at the
network B module, the local clock time of that module is
y with y > x. Now, the network B module has received a
packet that is “too late” and the computation of that
packet can not be handled correctly.

Therefore the modules have to be synchronized
(“synchronization event”) to avoid that problem. The
next section describes classical synchronization methods.
4.2 Synchronization in Distributed
Simulations

In general, two synchronization methods are known:
“conservative” methods and “optimistic” methods.

Conservative methods are based on knowledge of the
time between two synchronization events. This means
that the minimum time interval T between
synchronization events is always known. If T can be
determined, the simulation can proceed in cycles of T. At
each time stamp neT the simulation modules can
exchange data without any risk of receiving packets “too
late”. Using this method it might happen that “fast”
simulation modules have to stop at time stamps n*T and
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wait for “slower” (= more complex) modules to get their
data. Conservative methods and their modifications are
known as “Barrier synchronization” or “Time Bucket
synchronization” (compare Fujimoto (1990) and
Steinman (1993)).

Optimistic methods are based on the “Time Warp”
mechanism as described in Fujimoto (1990) and
Steinman (1993). In Time Warp, the simulation modules
have no synchronization events and exchange their data
whenever needed. Of course, the above described
synchronization problem can occur.

Time Warp then has to recover the system state by a
rollback algorithm. In the situation described above, the
module for network B (and maybe other modules) has to
be rolled back to time x to handle the packet correctly.
The advantages and disadvantages of the two methods
can be compared as follows: conservative methods need
to have a good knowledge when the next synchronization
event takes place but the overhead for synchronization
can be kept to a minimum as shown in Fujimoto
(1990). Optimistic methods have the advantage that
Time Warp can be used for any simulation problem
without any knowledge of the synchronization events but
have the big disadvantage that the rollback mechanism
can be very difficult to handle and very time consuming
to perform.

Thus, Fujimoto (1990) concludes that Time Warp is
useful for “general purpose simulations” and conservative
methods are useful for optimized simulation packages.

Based on this, the next section develops a possible
synchronization method for SimCom.

4.3 A Synchronization
SimCom

Method for

The basis for a possible SimCom synchronization algo-
rithm is an enhanced Time Bucket synchronization with
flexible time intervals that are determined at each synchro-
nization event (compare “Breathing Time Bucket” in
Steinman (1993)).

Thus, for Time Bucket synchronization the time interval
between two synchronization events has to be known. In
our simulation environment the synchronization event
can be the generation of an internet packet because of the
well known traffic generation process as explained in the
following.

Any of the internet packets can be generated as follows:
the load generator creates the packet and calculates the
time T when the next packet has to be created according
to the underlying load generation theory. Then an event
with time stamp T is generated that creates the new
packet at time 7. So at the creation time of one packet
the creation time of the next packet of that type is
always known exactly. Thus, each subnetwork can run

until time T independently. At time T the packet is
generated and after its transfer the subnetworks can run

independently again until the next packet is generated at a
now already known point of time.

Based on this good knowledge of the time of synchro-
nization events the following synchronization algorithm
can be integrated in the SimCom simulation modules:
The synchronization events are stored in an extra event
list (Synchronization Event List (SEL)) that can be
realized easily. So SEL contains the events responsible
for the generation of the next internet packet. According
to the load generator described above, SEL is never
empty for each module. So the minimum time stamp for
all events in all SELs for all modules can be determined
at any point of time.

Then the simulation and synchronization of the subnet-
works can be realized as follows: at the start of the simu-
lation all modules generate the time stamps for the gene-
ration of their first packets. Also the generation times of
the first internet packets are created at this starting point.
Before the simulations start all modules exchange the
time stamps of their first internet packets (stored in SEL)
to all other modules. Having received all time stamps,
each module determines the time 7y when the first
internet packet is generated. After that the modules start
and run independently until T.

Only the sender of the internet packet does not stop at
Toto be able to generate the internet packet at time T.
After that the sender generates the time stamp for its next
internet packet according to the load generator, stores the
time stamp in SEL and sends it to the other modules.
When the current packet has been transmitted after its
media access the sender also stops.

In the time between packet generation and its trans-
mission the following events can occur: another sender
in the same module has generated another internet packet
or another sender in one of the waiting modules has
generated another internet packet (that can be found out
by the exchanged time stamps). The first event is no
problem because all the other modules are stopped and
can receive the packet at the appropriate time after their
re-start. The second event also is no problem because in
this case the running module only runs until the time
stamp for the packet generation in the other module.
Then it stops and makes the other module run to generate
and transmit its packet. After that the module is re-started
for its own transmission. Thus, the synchronization
always simulates correctly.

Having reached its destination in one of the waiting
modules the transmitted packet can be handled correctly
because the receiving module is still waiting.

The next minimum time stamp T, can be determined
from the old ones except Ty (they are still valid) and the
transmitted new one. Now again all simulations can run
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independently until time T, the new packet is generated
and transferred, the time stamp for the next internet
packet is generated and the next minimum time stamp is
determined.

This way, the simulations run independently from each
generation of an internet packet to the next.

The advantages of this synchronization is its inherent
exactness and its low communication overhead: the only
additional data that are exchanged are the time stamps and
messages that the modules have reached the
synchronization event time. These messages are very
short and are exchanged from the modules at each
synchronization event. Since the synchronization events
do not occur often (at least in realistic environments) the
modules run independently most of the time.

This synchronization is only possible because we have a
scenario where the time stamp of the next synchro-
nization event is already known at the current
synchronization event.

5 FURTHER WORK

Further work on the user interface part of SimCom will
be the integration of additional networks and IWU
models. This will include FDDI, the Ethernet and
possibly new developments like the 100 Mbit/s
Highspeed-Ethernet. Including all these networks, a
useful library of existing networks will be provided by
SimCom for simulation.

In addition to this a new graphical editor will be intro-
duced to SimCom. This editor will provide the user with
“empty” symbols and network elements to create an own
UI or to enhance existing parts of the Ul with new
features.

More work will be done to enhance the underlying
simulation structure: other synchronization techniques
will be tested and the most promising (that seems to be
the one presented here) will be implemented in the
simulation modules in order to realize a distributed
application for the performance evaluation of
heterogeneous networks. The distribution of the modules
will increase the performance of the tool to be able to
simulate even more complex scenarios than today.
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