Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

GENERAL PURPOSE SIMULATION WITH STROBOSCOPE

Julhio C. Martinez,
Photios G. Toannou

Civil & Environmental Engineering Department
University ot Michigan
Ann Arbor, Michigan 48109, U.S.A.

ABSTRACT

Stroboscope is a programming language designed for
the simulation of processes common to construction
engineering. These processes are very complex and
involve many different types of resources. As a result,
Stroboscope is also an etfficient and effective general
purpose simulation system. This paper presents an
overview of Stroboscope and illustrates how it can be
used to model a complex example taken from classic
simulation literature.

1 OVERVIEW

Stroboscope (Martinez, loannou, and Carr, 1994) is an
acronym for STate and ResOurce Based Simulation of
COnstruction ProcEsses. It is a programming language
specifically designed to model construction operations.
Stroboscope models are based on a network of
interconnected modeling elements and on a series of
programming statements that give the elements unique
behavior and control the simulation.

The character of Stroboscope arises from its ability to
dynamically access the state of the simulation and the
properties of the resources involved in an operation. The
state of the simulation refers to such things as the number
of trucks waiting to be loaded; the current simulation
time; the number of times an activity has occurred: and
the last time a particular activity started. Access to the
properties of resources means that operations can be
sensitive to properties — such as size, weight, and cost
— on an individual (the size of the specific loader used
in an operation) or an aggregate basis (the sum of the
weights of u set of steel shapes waiting to be erected).

Stroboscope modeling elements have attributes —
defined through programming statements — that detine
how they behave throughout a simulation. Attributes
represent such things as the duration or priority of an
activity, the discipline ot a queue, and the amount of
resource that flows trom one element to another. Most

1159

attributes can be specified with expressions and have
default values that provide the expected behavior.
Expressions are composed of constants: system
maintained variables that access the state of the
simulation and the properties of resources; user-detined
variables; logical, arithmetic, and conditional operators;
and scientific, statistical, and mathematical functions.

The attributes of Stroboscope modeling elements
allow simulation models to consider uncertainty in any
aspect (not just time), such as the quantities of resources
produced or consumed (e.g.. the volume of rock resulting
tfrom a dynamite blast). Attributes also allow models to
dynamically select the routing of resources and the
sequence of operations: to allocate resources to activities
based on complex selection schemes: to combine
resources and dynamically assign properties to the
resulting compound resource; and to activate operations
subject to complex startup conditions not directly related
to resource availability (e.g.. do not blast rock until all
crews of all trades have left the vicinity. the wiring has
been inspected, and there are less than 10 minutes lett in
the current shift).

2 EXAMPLE — AIRPLANE SERVICE CENTER

The Stroboscope simulation languuge is best
illustrated with an example. For the purposes ot this
discussion we have selected an example that should be
easily understood by a wide audience. It is an airplane
service center, and is a paraphrasing of problem 2.32 in
(Law and Kelton, 1991). Obviously, our intent is to
illustrate the capabilities of the language, not the
operations of an airplane service facility.

2.1 EXAMPLE DESCRIPTION

Planes of seven different types i (see tuble 1) arrive at
aservice center for inspection and possible repair of their
engines. The times between successive arrivals are
exponentially distributed with means «, days. The service

1160 Martinez and Ioannou

Table 1: Plane Types

i Type n, a, A, B, D, I ¢,
I B707 1 &1 07 21 030 2.1 21
2 B727 3 29 09 I8 026 18 17
3 B737 2 36 0% 16 018 1.6 1.0
4 B747 4 84 19 28 002 31 39
S DCR 4 10Y 07 22 036 22 14
6 DCY 267 0Y 17 004 17 1
7 DCIO° 3 30 1.6 20 021 2% 37

center maintains i service facilities, each of which can
host one plane at a time. When a pluane arrives it is
immediately checked into a fucility it one is available,
otherwise it enters & queue common to all arriving
planes. When a facility is available, an airplane is
checked-in and its engines are serviced one by one.
Service on one engine must be complete before work
starts on another engine.

The service pertormed on each engine consists of a
series of inspections and possible repairs. Engines are
repaired if the result of the inspection indicates the need.
The time required to perform an inspection is uniformly
distributed between A, and B, days. The probability that
an engine needs repair is p;. The time required to repair
an engine follows a 2-Erlang distribution with mean r,
days. Engines that have been repaired must be re-
inspected and if necessary repaired again. Work
continues on an engine until it eventually passes an
inspection. The time required to inspect or repair an
engine that has ulready been inspected or repaired at
least once tollow the same distributions, but with
parameters that are 50% of the original. The probability
of an engine failing an inspection more than once is also
reduced by 50%. The reduced time distributions and
probability of failure remain at the 50% of the original
level for the second and all subsequent inspections and
repuirs.

When all engines in a plane are serviced. the plane is
checked-out and the facility is available to other planes.

The downtime (waiting in queue or being serviced)
costin $/day for a plane of type 7 is ¢, The objective of
this problem is to study the relationship between average
daily downtime cost (over all types of planes) and the
number of service facilities. The problem also requires
an investigaion of the ettects of two different queing
disciplines: strict FIFO vs. giving priority to wide-body
planes (these are denoted with a “in table 1) while
retaining FIFO rule within the wide-body and regular
classifications. The study period is 10 years (3650 days).

2.2 SOLUTION

Stroboscope models consist of a graphical network
and a series of programming statements (the network is
also defined via programming statements). This
discussion will go through the network and the complete
Stroboscope source code required to solve this problem.

2.2.1 THE NETWORK

Figure | shows the network for this model. At an
abstract level, the Combis (rectangles with cut-ottfs in the
top-lett corner), Normals (rectangles). and Queues (large
circles with aslash in the bottom right corner) shown in
this figure are similar in appearance and function to
CYCLONE modeling elements (Halpin and Riggs 1992,
loannou 1989): the Forks (smaller circles with an
inscribed triangle) resemble COOPS Routers (Liu 1991,
loannou and Liu. 1992). The Links connecting elements
are named, by convention. with 2 letters that abbreviate
the type of resource that flows through them followed by
a number. In this model PL stands for plane, AS tor
arrival scheduler, and SF for service fucility.

Resources move from node to node in the direction of
the Link arrows. Queues are storage locations tor

IsPIDone Passinsp
PL8 PL6 .
Repair
[Te)
)
N a
=] <
5 2 PL7
a
Inspect PL4
CheckoutPl |—>F2 SP ! CheckinPl

Planes
Wait

InterArrival

Figure I: Plane Service Facility Network

Stroboscope 1161

inactive resources. Combis and Normals are classes of

activities that require and take hold of resources for a
certain amount of time. Combis activate themselves
when enough resources are available in the Queues that
precede them; upon activation they remove from their
preceding Queues the resources needed to support the
activity they represent. Normal activities start when
activated by any of their preceding nodes and receive the
resources released by the ending activity. A Fork is a
probabilistic or decision-making node that selects which
one of its successors to activate and route resources to.
Figure | shows planes going through a cycle. Initially
aplane is in the PlaneWorld Queue until it is removed by
the /nrerArrival Combi, which later releases the plane to
the PlanesWair Queue. The plane remains in the
PluanesWait Queue until the CheckInPl Combi removes it
and immediately releases it to the /nspect Normal. Atter
inspection. the Passinsp Fork decides probabilistically
whether to activate the Repair Normal (inspection tailed)
or the IsPIDone Fork. It the IsP{Done Fork is activated it
decides non-probabilistically whether to activate the
Inspect Normal again (inspect another engine in the same
plane) or the ChechOurPl Normal (plane is done and
leaves the service facility). The /nspect Normal then
releases the plane to whichever of the three possible
successors: Repair via PLS-Passinsp-PLO: CheckOQutPL
via PL5-Passinsp-PLS-1sPIDonc-PLI0O; or another
instance of Inspect via PL5-Passinsp-PLS-1sPlDone-

PLY. If the Kepair Normal is activated, it takes hold of

the plane for repairs and then releases it to a new
instance ot Inspect where the same engine is re-
inspected. A plane may go through several fnspect -
Repair cycles before it goes to service another engine or
leaves the facility. Eventually all the plane’s engines will
be serviced and the CheckOutPl Normal will be
activated. Upon activation, ChckOurPlwill immediately
release the plane to the world ot operating planes. the
PlaneWorld Queue.

Arrival schedulers are fictitious resources used to
control the inter-arrivals of the different types of planes.
Only one arrival scheduler resource exists for each of the
seven plane types. An arrival scheduler starts out in the
ArviSchdlrs Queue until it is removed by the Interdrrival
Combi. Later. the /urerArrival Combi releases the
arrival scheduler back to the ArviSchdlrs Queue, where
the cycle starts again.

A service facility is initially in the ServiceFuc Queue
until the CheckinPl Combi removes it. The service
facility is then implicitly attached to a plane until the
plane to which it is attached enters the CheckOurPl
Normal. CheckOutPl then explicitly releases the service
facility to the ServiceFac Queue. where the cycle starts

again,

The Combis control inter-arrivals and plane check-ins.
The InrerArrival Combi requires both an arrival
scheduler and a plane for 1t to start. While the number of
arrival schedulers is exactly seven, the number of planes
in the world is possibly enormous. Because ot this. the
number of simultaneous instances of Interdrrival is
limited to the number of arrival schedulers. Once all
available arrival schedulers are involved in instances of
InterArrival, further instances of /nterArrival can not
oceur because the ArviSchdlrs Queue is empty. As
denoted by the superscripts in links AS/ and PLI?. the
InterArrival Combi first removes an arrival scheduler
and then a plane. By looking at the properties of the
arrival scheduler, it can decide which type of plane to
remove trom the PlaneWorld Queue. When an instance
of InterArrival ends. the arrival scheduler returns to the
ArviSchdlrs Queue. This allows a new instance of
InterArrival to take place another plane of the
appropriate type is removed from PlaneWorld.

Simtlarly, the ChecklnPl Combi creates the queuing
effect in the PlanesWair Queue. Because only n service
fucilities exist, planes that enter the PlunesWait Queue
may not find a service tacility available in the
ServiceFae Queue — the ChecklnPl Combi will not
remove the plane. Tt is not until the CheckOurPl Normal
releases a service tacility to the Service Fuc Queue. that
CheckinPl will start and remove a waiting plane trom the
PlanesWait Queue. Note that the ChecklnPl Combi also
controls queing in the the ServiceFac Queue — a service
facility is not removed (and CheckinPwill not start) it
there is no plane to check-in.

2.2.2 SIMULATION MODEL SOURCE CODE

The network provides a high level representation of
the operation. More specific details ot the model are
shown only in the source listing. The discussion that
follows will go through the entire source-code listing for
this model.

Stroboscope statements end in a semicolon. They can
span several lines with arguments separated by white-
space. Arguments that include white space must be
enclosed in single quotations: text arguments must be
enclosed in double quotations. In this paper. source code
lines are shown using a fixed-pitched tont: object names
that have been defined explicitly for this model and are
not part of the Stroboscope language are shown in italics
(Stroboscope keywords and plain numbers are not).

2.2.2.1 DECISION VARIABLES

Variables that store model parameters are placed at
the beginning of the source file so that they can be found

1162 Martinez and loannou

and changed easily when pertorming experiments with
the model:

VARIABLE WideBodyFirst 1;
VARIABLE nServiceFacilities 11;
VARIABLE DaysToSimulate 3650;

WideBodyFirst ts a flag used to specify the queuing
discipline. It is set to zero to indicate strict FIFO, and to
a non-zero value to indicate wide body - FIFO.
nServiceFacilities holds the number of service stations in
the service center. DayvsToSimulate holds the number of
days tor which the simulation will run.

The resource types used in this model need to be
detined (arrival scheduler, plune, and service facility).
Both “arrival scheduler” and *plane’ are characterized
resource types (i.e., they represent non-bulk resources
that have properties attached to them). The resource type
“service facility” is generic (i.e., it represents bulk
amounts of property-less resources). These three types
are defined below:

/******* AS = Arvschdlr * ok ok ok k ok ok ok ok ok ok ok ok ok

CHARTYPE ArvSchdlr i a;
/=====================================
SUBTYPE ArvSchdlr ASB707 1 8.1;
SUBTYPE ArvSchdlr ASB727 2 2.9;
SUBTYPE ArvSchdlr ASB737 3 3.6;
SUBTYPE ArvSchdlr ASB747 4 8.4;
SUBTYPE ArvSchdlr ASDC8 5 10.9;
SUBTYPE ArvSchdlr ASDC9 6 6.7;
SUBTYPE ArvSchdlr ASDC10 7 3.0;

ArvSchdlr is the actual type name used for the arrival
scheduler resource type. Resources of type arrival
scheduler have properties that indicate the type of plane
i; and the mean inter arrival time in days a. ASB707.
ASB727 ... ASDC]0 are subtypes ot ArvSchdlr that have
specific values assigned to the i and a properties.

/****wv* PL = Plane * ko k ok ok k ok ok ok ok ok ok ok Kk k k Kk
CHARTYPE Plane 1 nkng c WB
B p r;
/=====================================
SUBTYPE Plane B707 1 4 2.1 0
0.7 2.1 30 2.1;
/ _____________________________________
SUBTYPE Plane B727 2 3 1.7 0
0.9 8 26 1.7;
/ _____________________________________

SUBTYPE Plane B737 3 2 1.0 O
0.8 1.6 18 1.0;
/ _____________________________________
SUBTYPE Plane B747 4 4 3.9 1
1.9 2.8 12 3.9;
/ _____________________________________
SUBTYPE Plane DC8 5 4 1.4 0
0.7 2.2 36 1.4;
/ _____________________________________
SUBTYPE Plane DCY9 6 2 1.1 0
0.9 1.7 14 1.1;
/ _____________________________________
SUBTYPE Plane DC10 7 3 3.7 1
il

Resources of type Plane have properties that indicate
the type of plane i: the number of engines in the plane
nEng, the daily downtime cost ¢: a flag to indicate their
classification as regular (0) or Wide Body (1) WB:
parameters for the duration of the inspection of one of its
engines A, and B; probability of failing the first
inspection p, and a parameter for the duration of the
repair of one of its engines r. B707. B727 ... DCI10 are
subtypes of Plane that have specific values assigned to
their properties.

Resources of type Plane additionally have the
tollowing read/write properties:

SAVEPROP Plane EngsToGo;
SAVEPROP Plane Repaired;
SAVEPROP Plane RepStartTm;

EngsToGo keeps track of how many engines in a
plane are pending inspection/repair. Repaired is a flag
that indicates it the current engine has been repaired
already. RepStartTm stores the simulation time at which
a plane checks-in.

JFExkxxx GF = SeryFac *rrArh kA xkk ok xkkkx
GENTYPE ServFac;

ServFac is the actual type name used for the service
tacility resource type.

2.2.2.3 NETWORK DEFINITION

The network shown graphically in tigure | is defined
in the source file as follows:

/******* Queues d*ohkok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

QUEUE ArvlSchdlrs ArvSchdlr;
QUEUE PlaneWorld Plane;
QUEUE PlanesWait Plane;
QUEUE ServiceFac ServFac;

/*******

/*******

/*******

Stroboscope

COmbIs ****kkkhkhkkkkkhhkhhhxhx

COMBI InterArrival;
COMBI CheckInPl;

Normals kkhkkkkkkhkkkhkhhxkhkkhkkk*k
NORMAL Inspect;
NORMAL Repair;
NORMAL CheckOutPl;

Forks

FORK PassInsp Plane;
FORK IsPlDone Plane;

kok ok

VAR RSN Links -- AS Cycle *okokok ok ok ok kK KK
LINK AS1 ArvlSchdlrs InterArrival;
LINK AS2 InterArrival ArvlSchdlrs;
/******* LlnkS —_— PL Cycle Kk Kk k ok ok ok ok Kk K Kk
LINK PL1 PlaneWorld InterArrival;
LINK PL2 InterArrival PlanesWait;
LINK PL3 PlanesWait CheckInPl;

LINK PL4 CheckInPl Inspect Plane;
LINK PL5 Inspect PassInsp;

LINK PL6 PassInsp Repair;

LINK PL7 Repair Inspect Plane;
LINK PL8 PassInsp IsPlDone;

LINK PL9 IsPlDone Inspect;

LINK PL10 IsPlDone CheckOutPl;
LINK PL11 CheckOutPl PlaneWorld;
/******* Lil’lkS -- GF Cycle ok k ok ok ok ok ok ok ok Kx
LINK SF1 ServiceFac CheckInPl;

LINK SF2 CheckOutPl ServiceFac;

The preceding statements that define the graphical
network can be inferred directly and unambiguously
trom figure 1. This section of a Stroboscope model is
highly amenable to interactive graphics preprocessing
tools.

2.2.2.4 MODELING ELEMENT ATTRIBUTES

Elements in the network have attributes that define the
way they behave. Attributes have default values that
make the network element to which they apply behave
the natural or expected way. In the next part of the
source tile, attributes ot modeling elements that are
ditferent from the default are set:

DRAWWHERE PLI1
i==InterArrival.ArvSchdlr.i;

Ordinarity, a Combi starts by removing the first
available resource from each one ot the Queues that

1163

preceed it. The statement above specifies that the plane
to be removed by the /nterArrival Combi from the
PlaneWorld Queue through Link PL/ must be such that
its i property is the same as the { property of the arrival
scheduler already acquired. Note that Link AS/ is
detined before Link PL I in the network detinition: this is
indicated in the network drawing with the superscripts on
the Link labels.

DURATION InterArrival
'Exponential [
InterArrival.ArvSchdlr.al';

Unless otherwise specified, an activity (Combi or
Normal) has no duration. This statement indicates that
the duration of an instance of the /nterArrival Combi is
sampled from an exponential distribution with mean
equal to the « property of the arrival scheduler acquired.

DISCIPLINE PlanesWait
WideBodyFirst?-WB:1;
/i.e., IF(WideBodyFirst,-WB,1)

The default queuing discipline tor Queues is FIFO.
The above statement sets the discipline for Queue
PlanesWait to give priority to wide-body planes if the
WideBody First variable is true (1.e.. not zero). Otherwise
the discipline remains FIFO. When resources tie in their
values of WB, the FIFO rule takes effect. Similarly, in the
case in which WideBodyFirst is talse, the constant sub-
expression *17 is the same for all resources and thus a
strict FIFO rule takes effect again.

COLLECTOR WaitCost;
ONDRAW PL3 WaitCost
(SimTime-Timeln) *c;

WaitCost is a statistics collector that keeps track of
costs incurred while planes are waiting. When the
CheckinPl Combi draws a plane trom the PlanesWait
Queue, the cost incurred (the time spent in queue
multiplied by the daily cost of the plane ¢) is added to the
set of samples collected by WaitCost (SimTime 1s a
system maintained variable that represents the current
simulation time and Timeln is a read-only property
defined and updated by the system).

ONRELEASE PL4 EngsToGo nkng;
ONRELEASE PL4 Repaired 0;
ONRELEASE PLd RepStartTm SimTime;

When ChecklnPl releases a plane through Link PLY,
the EngsToGa., Repaired. and RepStartTi properties of
the plane are initialized. Originally all the engines in the

1164 Martinez and Ioannou

plane are pending service (EngsToGo=nEng) and the
current engine has not been repaired (Repaired=0). The
plane is checked into the facility at the simulation time at
which it flows through Link PL4 (RepStariTm =
SimTime).

VARIABLE RepairFactor
l+Inspect.Plane.Repaired;

The time required to inspect an engine and the
probability that the engine requires repair are reduced by
a factor of 2t the engine has already been repaired.
RepairFacroris an auxiliary variable that is re-computed
every time it s used. Its value is either | or 2, depending
on the value of the Repaired property ot the Plane
currently in the /nspect Normal.

DURATION Inspect
‘Uniform(Inspect.Plane.A,
Inspect.Plane.B)/RepairFactor';

The duration ot an engine inspection is uniformly
distributed between the A and B properties ot the Plane
to which it belongs. It the engine has been previously
repaired, the time is reduced by 50%.

STRENGTH PL6
Inspect.Plane.p/RepairFactor;

STRENGTH PL8
100-Inspect.Plane.p/RepairFactor;

The probability that a Fork activates a particular
successor depends on the strength ot the Link that goes
from the Fork to the successor. The strength of a post
Fork Link is converted to a probability through division
by the sum of the strengths of all the Links that originate
from the Fork. The probability that the Pass/insp Fork
activates the Repair Normal is given by the p property of
the Plane held by the Inspect Normal. It the engine has
been previously repaired, the probability is reduced by
S0%.

ONRELEASE PL5 EngsToGo
EngsToGo-'!Repair.InContext;
ONRELEASE PL5 Repaired
'Repair.InContext?0:Repaired;
/ i.e., !w means IF(x<>0,0,1)

When the Inspect Normal releases a plane through
Link PLS. Stroboscope updates the EngsToGo and
Repaired plane properties. EngsToGo is decremented
and the Repaired tlag is cleared if the engine passes the
inspection (!Repair InContext returns O 1f Repair is the

node selected and activated by the Passinsp Fork at the
end of the Inspect Normal, otherwise it returns 1).
DURATION Repair
'"Erlang(2, Repair.Plane.r/
(Repair.Plane.Repaired+l)])";

The duration of the Repair Normal tollows a 2-Erlang
distribution with mean equal to the r property of the
acquired Plane. If the plane has been repaired, the mean
is reduced by 50%.

ONRELEASE PL7 Repaired 1;

When repairs on an engine conclude, the Repaired
tlag for the plane is turned on.

STRENGTH PL9
Inspect.Plane.EngsToGo!=1;

STRENGTH PL10O
Inspect.Plane.EngsToGo==1;

When the Pussinsp Fork activates the IsP{Done Fork,
IsP{Donc decides whether to activate the /nspect Normal
(go to the next engine in the same plane) or the
CheckOutPl Normal (all engines have been serviced).
The Boolean expressions that define the strengths of
Links PL9 and PL/0 force the probabilities to be | for
one Link and O for the other. The Strength of PL/0 is |
when all engines have been serviced (EngsToGo is | but
will be decremented to 0 when the plane is released
through Link PL5).

RELEASEAMT SF2 1;

When the ChekOurPl Normal finishes, it releases the
corresponding service facility through Link SF2 (the
service tacility had been removed by the CheckinP!
Combi and was implicitly carried along with a plane).

COLLECTOR ServiceCost;
ONRELEASE PL11 ServiceCost
(SimTime-RepStartTm) *c;

ServiceCost is a statistics collector that keeps track of
costs incurred while planes are serviced. When the
CheckOutPl Normal releases a plane to the PlanesWorld
Queue, the cost incurred (the time spent between check-
in and check-out multiplied by the daily cost of the plane
¢) is added to the set of samples collected by
ServiceCost.

At this point the behavior of the model is completely
defined.

Stroboscope

2.2.2.5 QUEUE INITIALIZATION

The model’s resources are created trom the defined
types and placed in the appropriate Queues:

INIT ArvlSchdlrs 1 ASB707;
INIT ArvlSchdlrs 1 ASB727;
INIT ArvlSchdlrs 1 ASB737;
INIT ArviSchdlrs 1 ASB747;
INIT ArvlSchdlrs 1 ASDCS8;

INIT ArvlSchdlrs 1 ASDC9;

INIT ArvliSchdlrs 1 ASDC10;

One Arrival Scheduler of each type is created and
placed in the ArviSchdlrs Queue.

INIT PlaneWorld 60 B707;
INIT PlaneWorld 60 B727;
INIT PlaneWorld 60 B737;
INIT PlaneWorld 60 B747;
INIT PlaneWorld 60 DCS8;
INIT PlaneWorld 60 DC9;
INIT PlaneWorld 60 DC10;

A sufficiently large number of planes ot each type are
created and placed in the PlaneWorld Queue.

INIT ServiceFac nServiceFacilities;

The appropriate number of service facilities are made
available by setting the initial content of the ServiceFac
Queue.

2.2.2.6 SIMULATING & PRINTING RESULTS

Finally, the source file contains instructions that
perform the sunulation and display the results:

SIMULATEUNTIL SimTime>=DaysToSimulate;
The simulation will run until the value of SimTime
becomes at least as large as the number of days to

simulate.

PRINT StdOutput

" (FIFO=0,WB/FIFO=1) 2.0f\n"
' ({WideBodyFirst) ;

PRINT StdOutput

"Service facilities %.0f\n"

nServiceFacilities;

1165

PRINT StdOutput

"Av. downtime cost
‘(WaitCost.SumVal+
ServiceCost.SumVal)/SimTime*10000";

$.0f S/day\n"

PRINT StdOutput
"Av. delay 1in Queue
PlanesWait.AveDur;

$.2f days\n"

PRINT StdOutput
"Av. planes in Queue
PlanesWait.AveCount;

3.2f\n\n"

REPORT StdOutput;

Print to standard output the queuing discipline,
number of service facilities, average daily downtime
cost. average delay in queue, and average number of
planes in queue. The last statement prints a report that
shows detailed statistics about the modeling elements
and the resources involved in the simulation.

2.3 RESULTS

The output from a run of this model (the detailed
statistics report is omitted due to space considerations) is
as follows:

(FIFO=0,WB/FIFO=1) : 0

Service facilities : 11

Av. downtime cost 323985 $/day
Av. delay in Queue 2.59 days
Av. planes in Queue : 3.73

For each Queue, the detailed report presents the
current content: lifetime content: average waiting time:
and average, standard deviation, minimum and maximum
queue length.

For each Activity, the detailed report presents the
number of currently active instances: the lifetime number
of instances; the time at which the first and last instances
started: the average, standard deviation, minimum and
maximum duration of the instances: and the average,
standard deviation, minimum and maximum times
between successive instantiations.

For all possible combinations ot Subtypes and
network nodes. the detailed report presents the average
number of entries; average total time spent: and average,
standard deviation, minimum and maximum visit time.

For each collector, the detailed report presents the
number of samples and the average. standard deviation,
minimum and maximum of the values collected.

1166 Martinez and Ioannou

320 4
E‘ \ -_— FIFO - Cost
= ot - Cos —_
i 300 1 \ WB/FIFO - Cost || 3%
]
z NY e FIFO - Delay z
& H]
2 \ WB / FIFO - Dclay @
E 280) ‘g
E Z
: g
= 2
8 260 - Z
z

240 ;
11 12 13 14 15 16

Number of Service Facilities

Figure 2: Downtime Cost and Average Delay

Figure 2 shows the average daily downtime cost and
delay in queue plotted as functions of the number of
service facilities; each point was obtained by averaging
50 replications.

3 IMPLEMENTATION

Stroboscope is implemented in two forms: a
command-line compiler and an MS Windows integrated
development environment (editor-debugger-compiler).
Both are native MS Windows NT 32-bit programs
developed in C++. The command-line compiler can run
under DOS using the TNT DOS-extender. The integrated
development environment can run under MS Windows
3.1, if the Win32s subsystem is installed.

4 CONCLUSION

The example presented in this paper illustrates
Stroboscope's power as a general-purpose simulation
system. Complex and realistic problems such as the
example presented can be modeled, analyzed and
optimized quite easily.

REFERENCES

Halpin, D. W., and L. S. Riggs. 1992. Planning and
analysis of construction operations. New York: John
Wiley & Sons.

loannou, P. G. 1989. UM-CYCLONE Discrete event
simulation system reference manual. Technical Report
UMCE ¥9-12, Department ot Civil & Environmental

Engineering, University ot Michigan, Ann Arbor,
Michigan.

lIoannou, P. G., and L. Y. Liu. 1992. Graphical object-
oriented discrete-event simulation system. In
Proceedings of the 1992 Winter Simulation
Conference, Arlington, Virginia.

Law, A. M., and D. K. Kelton. 1991. Simulation
modeling and analysis. 2nd ed. New York: McGraw-
Hill.

Liu, L. Y. 1991..COOPS - Construction object oriented
process simulation system. Doctoral dissertation, Civil
& Environmental Engineering Department, University
of Michigan, Ann Arbor, Michigan.

Martinez, J. C., Ioannou, P. G., and R. [. Carr. 1994,
State and resource based construction process
simulation. In Proceedings of the First Congress on
Computing in Civil Engineering, Washington, D.C.

AUTHOR BIOGRAPHIES

JULIO C. MARTINEZ is a Horace H. Rackham Pre-
Doctoral Fellow and a Doctoral Candidate in Civil
Engineering at the University of Michigan. He designed
and implemented the Stroboscope simulation language as
partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Civil Engineering) at the
University of Michigan. He received a Civil Engineer’s
degree from Universidad Catolica Madre y Maestra
(Dominican Republic) in 1986, an M.S. degree in Civil
Engineering from the University of Nebraska in 1987,
and an M.S.E. degree in Construction Engineering and
Management from the University of Michigan in 1993.
His research interests are in computer applications to
Construction Engineering and Management.

PHOTIOS G. IOANNOU is an Associate Protessor in
the Department of Civil and Environmental Engineering
at the University of Michigan. He received a Diploma in
Civil Engineering trom the National Technical
University, Athens, Greece, in 1979; and he received a
SMCE and PhD tfrom MIT in 1981 and 1984
respectively. He is currently serving as Chairman of the
Computing in Construction Committee of the American
Society of Civil Engineers. He co-developed the UM-
CYCLONE construction process simulation system with
R.I.Carr, supervised the design and development of
COOPS by L.Y Liu, and is currently serving as chairman
of J.C. Martinez’s PhD Dissertation committee. His
research interests are primarily focused on the areas of
construction decision support systems and construction
process modeling.

