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ABSTRACT

Order release is an important job shop scheduling function
that plans and controls the release of jobs to the shop floor.
Deterministic simulation has been proposed to determine
order release times with either a forward or a reversed
approach. ~ We develop a bi-directional algorithm that
always starts and ends with a forward simulation run, and
the algorithm includes a number of additional reversed and
forward runs in between the first and last runs. A reversed
simulation run determines potential job release times, and
these potential times become actual release times when
they are all non-negative. When one or more potential
release times are negative, the algorithm modifies them to
specify job release times for the succeeding forward
simulation run. The last forward simulation run determines
the job completion times.

Experimental results show that the bi-directional
simulation algorithm produces a significantly improved
mean flow time, and the algorithm can improve mean
tardiness in some cases.

1 INTRODUCTION

Three essential elements of job shop scheduling are due-
date assignment, order releasing, and job sequencing
(Ahmed and Fisher 1992). Given a set of jobs with pre-
determined job due dates, the order release plan has a
significant effect on the performance of a job shop
(Melnyk and Ragatz 1989, Ragatz and Mabert 1988).
Ideally, the process producing the order release plan will
consider the existing shop capacity and status, and the plan
will avoid excessive queue times for jobs after they are
released. Some authors (Melnyk and Ragatz 1989, Ragatz
and Mabert 1988) believe that a good order release plan
renders sequencing decisions less essential since the shop
is less congested and the queue times of jobs are reduced.
Obviously, no sequencing decisions are required in the
absence of queues.

The traditional MRP approach assumes shop lead
times are constant, and order releases are backward
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scheduled ignoring the current shop status and the capacity
constraint. The consequence could be late jobs, missing
due dates, and/or creating an excessive amount of Work-
in-Process (WIP).

To remedy this MRP weakness, authors have
proposed a number of finite capacity approaches to more
accurately describe the shop capacity and lead time. The
Pritsker Corporation (1989), Wyman (1991), and
Rosenwinkle and Rogers (1993) are applying discrete event
simulation to schedule production.  One basic advantage
of simulation is that it can accurately represent the capacity
and current status of a plant. Muller, Jackson and
Fitzwater (1990) propose the use of simulation for order
release. However, an attempt by simulation to identify
order release times that minimize WIP and avoid late jobs
may require many simulation trials representing different
possible release times. Another approach is finite capacity
backward loading (Ragatz and Mabert 1988). Although
this approach is intuitively appealing, experimental results
in the literature do not show significant improvement over
the infinite-capacity approach.

Several authors (Watson, Medeiros, and Sadowski
1993; Mejtsky 1985) introduce the "backward simulation"
approach as an alternative to forward simulation. In fact,
these "backward simulation" approaches are actually a
regular forward simulation performed on a set of reversed
job routes. The basic idea is to start jobs at their due dates,
represent reversed job routes, and use the job completion
times as the order release times. We call this approach the
reversed problem formulation instead of backward
stmulation since the simulation does not represent a model
that has a corresponding representation when simulating
forward in time. That is, the state transition function does
not, in general, have an inverse defined for a forward
simulation (Ying 1994).

1.1 Overview of the Bi-Directional Algorithm
In this paper, we present a bi-directional simulation

algorithm to determine job release times given a set of
common job due dates. Assume that the planning system
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specifies order release times periodically, i.e., once each
planning period such as a week. For example, the master
schedule may require the jobs at the end of the current
planning period. In addition, the algorithm must consider
the effect of a set of open orders (old jobs) released during
the previous planning period and not yet completed.

The algorithm starts with a forward simulation run
considering all open orders and determines the completion
time of each job. These completion times become the
starting pownt of a subsequent reversed simulation run
which 1s the second run of the algorithm. Thus, the second
run has a feasible starting condition which is not
necessarily true if the job due dates were used for the first
reversed run. The completion times of the reversed run,
1.e. the second run, become a set of job ready times. If a
job's ready time is negative, the algorithm sets it to zero.
A job ready time is the time a job is ready to enter the
system. The algorithm uses these ready times to calculate
job release times and as a starting condition for the
subsequent forward simulation, i.e., the third run for the
algorithm. This third run may terminate the algorithm,
and, if so, thus forward simulation generates a set of
completion times for use in calculating flow time and
tardiness performance measures. The algorithm may
continue for five runs in which case the completion times
of the third run become the starting condition for the
following reversed simulation. The algonthm always ends
with a forward simulation.

In the following sections, we present a more
detailed description of the reversed problem formulation
and the bi-directional algorithm. Then, the paper describes
the experimental setting and results.

2 THE REVERSED PROBLEM FORMULATION
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Figure 1: Forward Simulation

One can understand the role of the reversed problem
formulation by considering the result of the preceding
forward simulation. Figure 1 depicts a three-machine
three-job forward simulation. Every job released in the job
shop has an assigned due date and a route, which consists
of a number of operations. Each operation specifies a
machine and a processing time on that machine. This
processing time is deterministic. The set of jobs waiting to
be released to the shop floor is known. That is, we only

consider jobs available during the planning period. The
times tl, t2 and t3 are release times, and the simulation
computes the job completion times t4, t5 and t6.
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Figure 2: Reversed Simulation

The primary feature of the reversed problem
formulation is to reverse the job route and the time axis.
The reversed simulation starts with the job ready times
equal to t4, t5, and t6 as determined by the previous
forward simulation. The job completion times for the
reversed simulation give new values for t1, t2, and t3 noted
as tl', t2', and t3'. Note the significant reduction in idle
time for jobs 1 and 2 so tl' > t] and t2' > t2, allowing for
later release of jobs 1 and 2. When simulating backwards
in time, idle time will disappear when both jobs and
machines are simultaneously available allowing release
times to be delayed.

A desirable characteristic of the reversed problem
formulation is that it can be represented using software
designed for forward simulation. If we truly attempt
backwards simulation where the simulator traces events
backwards in time for a model defined for a forward
simulation, backwards simulation would require new
software (Ying 1994). Consider, for example, the task of
representing a backwards simulation of a job shop using a
FIFO queue discipline when operating forwards in time.
The following notation defines the initialization for a
reversed simulation based on the result of a preceding
forward simulation.

J is the number of jobs to be scheduled (includes both old
and new jobs)

M is the set of all machines

N, is the number of operations in job J's route, N,> 0, j =
1J

P,, is the processing time of operation i on job j's route in
the forward simulation, P;; > 0; i =1, N, j=1.J.

R,, is the machine for operation i on job j's route for the
forward simulation, R,; € M; i = I, N, j=1,J.

C(j) is the completion time of job j in the previous forward
simulation; j =1, J.

The following specifications define the reversed
problem formulation for simulation using existing
simulation software.
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R',, is the machine for operation / on job J's route in the
reversed formulation, R, € A i =1 N;j=1, J

R, =Ry, i=1LN;j=1J . _

P', = processing time of operation i on job J's route in the
reversed formulation; i =/, N, j =1, J.

P\ =Pypy,si=1L N j=1J ‘

r'(j) is the ready time of job ; in the reversed setting.

Cmax is the maximum job completion time, 1.e.Cmax=
max{C().j=1.J}

r'(j)= Cmax - C(j); j = 1.J.

3 THE BI-DIRECTIONAL ALGORITHM

The bi-directional simulation algorithm consists
of a sequence of forward and backward simulation runs.
The algorithm starts with a forward simulation given a set
of jobs to be released. We consider all open orders
throughout the entire multi-pass simulation. The first
forward simulation run generates a set of job completion
times. A reversed simulation run follows starting with job
completion times, which becomes job ready times in the
reversed problem formulation. The reversed simulation
then generates a new set of job ready times. If any job
ready time 1s negative, the algorithm changes it to zero (the
present time). The ready time for an old job is always
zero for a forward simulation run. Another forward
simulation run then follows starting with the revised set of
job ready times. Note that job ready time is not necessarily
the job's planned release time. If the job is able to access
the first machine 1n its route, this job ready time becomes
its release time. Otherwise, the release time becomes the
time the job is able to access the first machine in its route.
The forward-reversed-forward runs can be repeated as
many times as desired.

The open orders, 1., old jobs, merit special
treatment in forward simulation runs. We make the
assumption that the old jobs already have due dates
assigned and/or they are already late. Thus, the algorithm
gives the set of old jobs higher priority in any machine
queue than any new jobs.

In calculating flow times based on the results of
the last forward simulation, the algorithm implements the
following rules.

. The flow time for a new job is the difference
between its completion time and its release time.

. The flow time for an old job is its completion
tume.

4 EXPERIMENTAL SETTING

The experiments used a job-shop model described
below to test the performance of the algorithm. The job
shop consists of five machines and a set of Jobs waiting to
be released. The number of jobs in the system ranges from

25 to 250. Each new job has a route consisting of five
operations. Any machine can be visited more than once by
the same job as long as the machine is not required in two
consecutive operations of the same job route.

The algorithm assumes all inputs, i.e., routes and
processing times, are deterministic. To test the algorithm,
the experiments used a problem generator that samples for
processing times and routes to generate different problems.
After one operation, a job has an equal probability of
visiting any one of the other four machines. The problem
generator determined processing times by sampling from
a uniform distribution bounded by 1 and 10. The due date
for new jobs assumes a 100-job shop load and 80%
load/capacity ratio. Then we replicate scenarios with 25
jobs, 50 jobs,..., and 250 jobs to represent 20%, 40%,...,
and 200% load/capacity ratios. If the sampled processing
times did not give a load/capacity ratio within £5% of the
nominal 20%, 40%, .., 200% values, the problem
generator rejects that sample.

We use the Shortest-Processing-Time (SPT) rule
as the sequencing rule in the algorithm for both forward
and reversed runs. The SPT rule gives priority to the job
with the shortest processing time of the competing jobs in
any queue (with the exception that an old job has higher
prionty than any new job). The SPT rule has been tested
by many researchers and shown to be effective in
minimizing the mean job flow time (Baker 1984, Kiran and
Smith 1984, and Dumond and Mabert 1988). We tested
the FIFO rule in preliminary experiments not reported in
this paper, and the results show the same pattern as
produced by the SPT rule.

Mean Flow Time for All Jobs
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Figure 3: Mean Flow Time

The experiments use 10 % of all jobs to represent
open orders and assume these jobs to have only 3
operations left in their routes at present time. The
experimental procedure used a single forward simulation to
determine their due dates. This simulation used the FIFO
rule and did not include new jobs. The due dates for the
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old jobs are the completion times generated by the
simulation; thus, old jobs had tight due dates since they
were based on no competition with new jobs.

S EXPERIMENTAL RESULTS AND DISCUSSION

Figures 3 and 4 show the experimental results of
this bi-directional simulation algorithm with both 3 and 5
runs. For companson purposes, the figures includes the
results for a single forward simulation. Numbers in the
figures are the average of 100 replications. The 90%
confidence intervals half widths (CTHW) are all less than
1.6% of the mean values shown in Figure 3. In Figure 4,
the CIHW values are less than 16% of the mean values for
load/capacity ratios 20% and 40%, no more than 10% of
the means for ratios 60%, 80%, and 100%, and less than
2.85% of the means for ratios greater than 100%. Figure
3 shows the mean flow time for all jobs aggregated
together, i.e., old jobs and new jobs. Figure 4 shows the
mean tardiness for all jobs.

Mean Tardiness for All Jobs
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Figure 4: Mean Tardiness

The results show that the bi-directional simulation
algorithm yields much better mean flow time over all jobs
than a single forward simulation run. The improvement in
the overall mean flow time ranges from about 40% in the
25-job case with 3 runs to more than 80% in the 200-job-
or-more cases with 5 runs. While the overall mean flow
time is improved significantly by the extra bi-directional
simulation runs, the mean tardiness measure varies in
different cases. The only case where the average tardiness
increased is 100% load capacity ratio with 125 total jobs in
the system. When the load-capacity ratio is less than
100%, there is no significant change in the overall mean
tardiness caused by extra bi-directional simulation runs.
When the load-capacity ratio is more than 100%, there 1s
again a significant improvement by the extra runs. The
improvement ranges from about 14% to 25%.

The above experiments tested the algorithm with

3 and 5 runs. The trend seems to indicate that each
additional run will improve the mean flow time measure
without significantly degrading mean tardiness. Finding
the eventual lower bound for this approach and the number
of runs to reach the lower bound is an interesting research
question.

6 CONCLUSIONS

The experimental results show that bi-directional
simulation 1s a promising approach for planning order
release in a job shop. The results are dramatic since they
show a significant reduction in mean flow time of jobs
while still improving in most cases the mean tardiness.
The improvement in overall mean flow time ranges from
about 40% to more than 80% compared to a single forward
run. When the shop load-capacity ratio is more than 100%,
the algorithm improves the tardiness measure from 14% to
25%. When the shop load-capacity ratio is less than or
equal to 100%, the results ranged from no significant effect
of mean tardiness to an increase of 18%.

We believe that the ability of the approach to find
late release times for jobs and avoid queuing accounts for
the algorithm's superior performance.
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