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ABSTRACT

In this paper, we present a manufacturing simula-
tion system based on autonomous agents and a dy-
namic price mechanism that explores routing flex-
ibility and provides a programming language for
modeling manufacturing environments, based on au-
tonomous agents and a dynamic price mechanism.
The simulation system contains a control simulation
module and a manufacturing environment simulation
module. The control simulation module consists of a
collection of autonomous agents who negotiate with
each other to reach job processing decisions based
on negotiation protocols and built-in price adjust-
ment algorithms. The manufacturing environment
simulation module is an event-based simulation sys-
temn that couples with an input simulation language
called Flexible Routing Adaptive Control Simulation
Language. The language can be used to model com-
plicated manufacturing environments and to specify
flexibility in part process plans. By integrating the
control framework with the FRACS simulation sys-
temn, a sophisticated test bed is created for research
of different control and negotiation strategies. The
simulation system allows quick turn around time for
software prototyping, and the modeling language en-
ables easy model adjustment and performance tun-
ing. Many experiments in the control and scheduling
of manufacturing systems have been conducted using
this simulation system. Several of these experiments
are discussed in this paper.
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1 INTRODUCTION

Modern manufacturing environment is complex and
uncertain. In order to stay competitive in the mar-
ket place, the decision-making tools need to have the
ability to adapt to the changing environment and to
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handle the system complexity. The ability to make
use of the system flexibility and to retain flexibility
itself is a primary requirement for the decision tools
to be effective. To meet this requirement, we pro-
posed an agent-based real time adaptive control and
scheduling framework [Lin and Solberg, 1992]. Under
the framework, both decision making and information
flow are distributed so that it is flexible and can adapt
quickly to the changes. All possible sequencing and
processing of a job are considered in real time during
the decision making process to make use of the system
routing flexibility and to improve system throughput.
The global and local system states are captured using
a price mechanism. The price mechanism is used as
an invisible hand to guide the negotiation and ensure

harmonious system operation.
Due to the complexity of the manufacturing en-

vironment, it is very expensive and time consuming
to setup a manufacturing floor to do experimental
testing and comparison of different control strate-
gies, negotiation protocols, or factory setups. On the
other hand, software prototyping by simulation offer
a quick, controllable, tunable environment for per-
formance the above tasks before applying the con-
trol system to real manufacturing environments. The
software prototyping system must offers a good mod-
eling tool for modeling the manufacturing environ-
ments. Important system entities need to be included
in the model so that the modeling is realistic. It
also needs to provide flexible interface so that chang-
ing control strategies, negotiation protocols, and fac-
tory setup can be accomplished easily. Furthermore,
our framework requires that unexpected events, such
as machine breakdowns, order changes, supply prob-
lems, and objective changes, be modeled in the simu-
lation. None of the existing simulation systems as we
noted provide these functionalities. In this paper, we
will present an integrated shop floor control and sim-
ulation system that models the proposed framework.
The simulation system supports the modeling of sys-
tem resources such as machines, automatic guided ve-
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hicles (AGVs), tools, buffers, etc., and part process
plans that contain alternative processing sequences or
operations. The system resources and parts can be
controlled by simple dispatching rules or autonomous
agents that employ sophisticated control protocols.
The system supports an extensive set of debugging
and trace facilities and visualization tools for ana-
lyzing experimental results. The system is carefully
designed so that by decoupling the control and sched-
uling system from the simulation module and linking
the former to the real time control and monitoring in-
terface of a manufacturing environment, a real time
manufacturing control system can be created. This
is accomplished by separating the simulation system
into two modules, a control simulation module and a
manufacturing environment simulation module, and
integrating the two simulation modules with three in-
terface modules: the control interface, the monitoring
interface, and the communication interface.

By using the built-in negotiation protocols, we were
able to implement new negotiation algorithms in days
rather than months. Our experiences in applying the
simulation system show that software prototyping can
shorten development cycles and provide quick turn
around time for system design and changes.

The rest of this paper is organized as follows: in
Section 2, we will briefly describe the flexible routing
control framework. The detailed simulation system
will be presented in Section 3. In Section 4, we will
describe some experiments performed using the sim-
ulation system. A summary will be given in Section

5.

2 AN AGENT BASED REAL TIME CON-
TROL AND SCHEDULING FRAME-
WORK

Under our framework, the control and scheduling sys-
tem is modeled as a marketplace. Each system entity
is equipped with a software agent who controls the
functioning of the entity and represents the entity to
negotiate with other agents. A part equipped with
a part agent enters the system with some (fictional)
currency, an objective function, and a flexible pro-
cessing process plan (see [Lin and Solberg, 1991]). It
tries to fulfill its processing requirement to achieve its
objective by bargaining with resource agents. Each
resource agent labels its processing charge according
to its status and tries to sell its service to maximize
its profit. That is, the manufacturing system is con-
sidered as a collection of intelligent system entities.
The entities negotiate with each other by message
passing for task sharing to achieve their individual
goals. Mutual selection and mutual agreement are

Part Agent Resource Agent

Bid
=

announceme

t
1 announcements
monitorin Bid
construction
4| Bid
Submission

Bid
evaluation

Task offer
constructio Task offer

evaluation

Figure 1: A general negotiation protocol

made through multiple-way communication. The sys-
tem functions based on the equilibrium of the price
system and the part’s objective. The high currency
part will be able to achieve a better objective value
and the critical resource which may change over time
will play a major role in decision making. Therefore,
the decision making process is called a dynamic crit-
ical resource centered decision making scheme.

The general negotiation protocol is depicted in Fig-
ure 1. Under the protocol, both parts and resources
have the capability to initiate the negotiation pro-
cedure. They will then collect information from the
network and select the entities to submit their con-
structed bids using their own evaluation schemes.
The negotiation procedure is completed when both
part and resources commit to a deal.

The agent-based real time control and scheduling
framework has several advantages over conventional
control and scheduling systems. First, global states
are usually unavailable in real manufacturing environ-
ments; this makes centralized decision making unreal-
istic. The dynamic price mechanism captures the sys-
tem status and reflects the priority and bottlenecks
in price fluctuation. The distributed decision making
by cooperation among agents can utilize local states
and the price mechanism to improve system perfor-
mance by improving performance of each individual
entity. Second, the agent-based negotiation frame-
work is robust and can cope with sudden environment
changes. Third, different entities can have different
objectives. The behavior of the agents can be con-
trolled by changing objectives, price adjustment algo-
rithms, audience selection, bid construction methods,
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etc. Fourth, the framework supports ”plug and play”
different negotiation protocols, and price adjustment
algorithms can be used. Deriving new negotiation
algorithms based on built-in generic negotiation pro-
tocols is fairly straight forward.

3 AN AGENT BASED SIMULATION SYS-
TEM

We designed an agent based control simulation sys-
tem to model the agent based real time control and
scheduling framework. The system contains a control
simulation module and a manufacturing environment
simulation module. The control simulation module
consists of a collection of autonomous agents who ne-
gotiate with each other to reach job processing de-
cisions based on the negotiation protocols and the
built-in price adjustment algorithms. The manufac-
turing environment simulation module is an event-
based simulation system that couples with an in-
put simulation programming language called Flexible
Routing Adaptive Control Simulation Language. The
language has provisions to model components of man-
ufacturing environments such as machines, AGVs,
tools, tool storage units, stamping stations, central
buffers, etc. It also allows the part process designer
to express flexibility in part process plans. The inte-
gration of the two modules is based on three interface
modules: the control interface, the monitoring inter-
face, and the communication interface.

The control interface provides a set of functions
for controlling the activities of part entities and re-
sources in the manufacturing simulation system. The
monitoring interface module supports a set of queries
for obtaining states of part entities, resources, or the
global states of the environment.

By integrating the control framework with the
FRACS simulation system, we created a sophisticated
testbed for experimenting with different control and
negotiation strategies. By decoupling the control and
scheduling system from the simulation system and
linking it to the real time control and monitoring in-
terface of a manufacturing environment, a real time
manufacturing control system can be created. This
arrangement allows us to test the proposed concepts
in the controlled simulation system and also allows
the control system to be easily ported to real time
control of manufacturing systems.

All communication between agents in the con-
trolled system or between the control system and the
controlled units and sensors goes through a communi-
cation interface module which is an abstraction of the
underlying communication network and provides util-
ities for sending and receiving messages, broadcasting
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Figure 2: The agent based control simulation system

messages, and transmitting commands and bids, etc.

The simulation system and the control system are
both event driven. The simulation system is driven
by the time-dependent events generated by the simu-
lator. And the control system is driven by the events
caused by receiving messages from other agents or
from interface modules. The modular system descrip-
tion is shown in Figure 2.

In the following section, we will first describe the
manufacturing environment simulation system and
the control simulation system. The monitoring, con-
trol, and the communication interface modules will
then be discussed.

3.1 The Manufacturing Environment Simu-
lation System

The manufacturing environment simulation system
contains a very high level programming language
called the FRACS programming language, a parser
for the FRACS language, an event-driven simulator,
a data and statistics collection system, a trace facil-
ity, a visualization interface, and an interface to the
control system (Figure 3).
Simulation Control

The functioning of the simulation system can be
controlled through the input FRACS program or
command line options. The following global simu-
lator variables can be set in the FRACS program:

buffer_size - default size of central buffer.

run - run the simulator for this many times.
seed - seed for the random number generator.
rule - negotiation methods or dispatching rules.
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Figure 3: The manufacturing environment simulation
system

trace - time period for generating trace information.

in_buffer_size - default machine in buffer size.

out_buffer_size - default machine out buffer size.

report_period - time period between intermediate
statistical results are generated.

Other control variables for the simulated manufac-
turing system are set based on the resource and part
specifications in the FRACS program. FRACS pro-
grams specify the factory setup, capabilities of the
resources, part process plans, and the control and
simulation options.

Input FRACS Program

The very high level programming language ap-
proach of FRACS provides a flexible and easy way for
the user to model and define the manufacturing envi-
ronments. The FRACS language contains constructs
to model manufacturing environments, part process
networks, and the control structure and strategies.
The modeling of the environment includes the def-
inition of machines, transporters, central and local
buffers, machine breakdowns, factory layout geome-
try, initial system states and prices, and price adjust-
ment parameters. Parts description, objective func-
tion, arrival rate, and price setting are also specified.
The part process network is represented by operation
nodes and the precedence arcs. The operation nodes
contain the desired operations, constraints of the op-
erations, and the types of precedence arcs originat-
ing from the nodes. The precedence arcs determine
the execution orders of the operation nodes. The
specifications of the control include the control al-

gorithm and strategies, dispatching rules, evaluation
functions, and predefined optimization options. in
Appendix.

Simulator Logic

The logic of the simulator is as follows: new part
entities arrive at the system at a rate defined by the
arrival functions specified in the FRACS program.
At any instant, the state of a part entity inside the
system is one of the following: being served by a ma-
chine, waiting to be served in the input buffer of a ma-
chine, waiting for transportation in the central buffer
or output buffer of a machine, or being moved. A
new part entity or a part entity whose operation is
just finished by a machine sends a status report to
the control simulation module to determine its action;
it will either initiate a negotiation process or collect
resource information and participate in an existing
resource initiated negotiation process depending on
the control module. Part and machine controls then
negotiate with each other according to their control
protocol and evaluation functions to match a ready
operation (or several operations if look ahead control
is invoked) of a part entity to a machine taking con-
sideration of the transporter availability. Once the
desired operation and machine matches are done, if
the required immediate service machine has a space
to hold the part entity, the part entity requests a
transporter and waits to be moved to the input buffer
of the designated machine. By default, part enti-
ties in the local input buffer of a machine get ser-
vice based on the first-come-first-served dispatching
rule. When a part is served, an end-of-service event
is scheduled to simulate the completion of the oper-
ation. Upon completion of the operation, the part
entity requests a transporter to move it elsewhere
unless the next operation will be processed by the
same machine. If the machine has space in the out-
put buffer, the part entity whose operation was just
finished will be moved to the local output buffer of
the machine; otherwise, the machine is blocked by
this part entity and cannot resume operation until
the part entity is moved. When the transporter ar-
rives, if the part entity has not found a machine or
the assigned machine has no place to hold it, it will
be temporarily moved to the central buffer to free
up the output buffer of the machine to avoid block-
ing. This process continues until the part entity is
finished processing. Breakdown events are scheduled
according to the up-time functions of the machines
specified in the FRACS program. When a machine is
down, parts that were assigned to the machine (being
processed by the machine, in the local input buffer of
the machine, being moved to the machine by a trans-
porter, or in the central buffer or local output buffer
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of other machines waiting for transporter assignment
or arrival) are rescheduled and moved to a new des-
tination machine or central buffer (if no machine is
available). And a fixed event is scheduled accord-
ing to the down-time function specification. When a
machine is up again, it resumes its operation by de-
claring its status to be idle and invokes the machine
control routine to look for parts.

Command Line Options

The simulation system also provides command line
options to overwrite or ignore some of the options
defined in the FRACS program for convenience in
conducting experiments. For examples, -i flag allows
the user to input the part program interactively, -
C flag allows the user to specify the central buffer
size. Other options include the specification of look
ahead time, bidding strategies, number of operations
to announce at a time, and the output format.
System Output

The output of the system includes the trace infor-
mation, debugging information, statistical informa-
tion, and final results. All the output can be con-
trolled with an extensive set of options.

Trace Information

Trace information can be generated for monitor-
ing and understanding the control and simulation
systems. The simulation system generates a human
readable trace for understanding the behavior of the
system. The example listed in Figure 4 shows a trace
file produced by the FRACS system during the spec-
ified ten minute period. The trace data provides de-
tailed information about selected events in the sys-
tem.

The system also generates a different status and
statistical trace that can be fed into an X-window
visualization package to give a detailed graphical view
of the progress of the system. Figure 5 contains an
X-Window dump of some graphical displays showing
the statistical data. Currently, this tool shows the
graphs in postmortemn mode only.

Debugging Information

The system has a built-in debugger so that it can
be used to trace system problems or improve setups
in a user’s program. A flag can be set so that the
system does a sanity check periodically to uncover
inconsistency in the system. The system will out-
put debugging information when the debugging flag
is set to a positive number (that is less than 10). The
larger the value of the flag, the more output will be
produced.

As with all debugging processes, using the debug-
ger is an involved job. The granularity of the debug-
ging information is based on functions and is much
finer than the trace facility. Typically, the system

Figure 4: The trace output window

generates multiple megabytes of debugging informa-
tion for small programs. The user should start with a
small setting of the debugging flag, narrow the prob-
lem to a small time interval, and then set the debug-
ging flag to generate detailed information to actually
find the problem.

In Figure 6, we list a fragment of the debugging
information that was produced with the debugging
flag set at 2. get debug output from file ndebug.out
Statistics and Results

The result of simulation is summarized in a sum-
mary report that includes a list of options and sum-
marized information about parts and resources such
as part mean flow time, throughput, price, objective
value, machine price, utilization, and maximal and
minimal central queue size. Figure 7 shows a frag-
ment of a typical report that is generated.

3.2 A Negotiation-Based Adaptive Control
System

The negotiation-based adaptive control system is
composed of a set of autonomous agents who ne-
gotiate with each other to direct the activities in
the manufacturing environment. A part-resource ne-
gotiation process begins when a new part equipped
with a part agent enters a loading station, a task
of the part entity is near completion, or when the
previous negotiation process fails to yield any bind-
ing bids. Agents in the control module are equipped
with event handlers. Each can invoke needed sys-
tem knowledge such as price adjustment scheme, bid
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Figure 5: The window dumps of the graphic visual-

ization of trace data

construction, and submission for decision making.

Each event handler is supported by a

timer and an

event queue. The event handler paces the agents
and decides when to generate and handle certain
events. Examples of the events include INITIATE-
BIDS, EVALUATE-BIDS, BID-CONFIRMATION-

TIMEOUT, RE-NEGOTIATION, etc.

Options are

provided in FRACS language to control the schedul-

ing of these events.

The system currently supports the following differ-
ent multi-stage negotiation protocols. See [Lin, 1993]

for detailed descriptions.

e Part-initiated, resource-centered
protocol.

e Part-initiated, resource-centered
protocol with multiple bid ahead.

e Resource-initiated, part-centered
protocol.

e Resource-initiated, part-centered
protocol with multiple bid ahead.

negotiation

negotiation

negotiation

negotiation

e Resource-initiated, bottleneck-centered negotia-

tion protocol.

e Resource-initiated, bottleneck-centered negotia-
tion protocol with multiple bid ahead.

The current protocol is set by the

variable con-

trol_method and the number of bids to bid ahead is
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Figure 7: Sample summary report for the simulation
results

determined by the variable number_bid_ahead. Our
experiments show that excessive bid ahead can cause
agents of parts and resources to make premature com-
mitments and hurt the performance. A one or two bid
ahead is recommended for most cases.

The framework of the system also provides hooks
for using different algorithms for price adjustments
and resource selections. Several different price ad-
justment strategies and methodologies for selecting
resources or selecting parts to serve are also sup-
ported. Each of the price adjustment and select-
ing algorithms can be used by each of the negoti-
ation protocols thus creating many different combi-
nations of algorithms and effects. The price adjust-
ment method can be adjusted by using the FRACS
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variable charge_adjust_-method. The resource selec-
tion criterion used by the part is set by the vari-
able resource_selection_method. The part selection
criterion used by resources is set by the variable
part_selection_method. The price adjustment algo-
rithms and different selection algorithms for each
negotiation protocol are discussed in detail in [Lin,
1993].

The system also supports part-initiated negotiation
protocols that do not rely on the price mechanism. It
also supports dispatching rule controls. This allows
the user to compare the performances of different ne-
gotiation protocols and access the effectiveness of the
price mechanism.

3.3 Monitoring Interface

The monitoring interface module is used either by
the job shop entities to inform the control system of
the events which occur in the shop or by the control
system to query the states of the entities.

Upon receiving an event, the corresponding entity
in the control system either updates the information
or triggers actions corresponding to the event.

When the snap_shot command is executed, all job
shop entities report their states to the control module.

3.4 Control Interface

The control interface is used to control the activities
of resources in the manufacturing system. The inter-
face module includes the functions to load the part
entity to machine, to move the entity from the ma-
chine to the output buffer, to load a part to an AGV,
etc.

The control simulation system uses these interfaces
to control the operations of the system entities. And
the manufacturing environment simulation module
uses these interfaces to simulate the handling and
functioning of the system entities.

3.5 Communication Interface

The communication module is decomposed into two
layers; the upper layer corresponds to the commu-
nication protocols that are used in the control and
simulation system. The lower layer corresponds to
the actual communication protocols of the underly-
ing network (such as TCP/IP). The upper layer in-
terface includes the functions such as send_message,
receive_message, broadcast_message, etc.

The lower layer protocol depends on the actual
communication package used. Possible targets in-
clude parallel communication systems such as ISIS,

Presto, MPI, or loosely coupled communication sys-
tems such as TCP/IP. To port the communication
module to a new type of communication system, one
only needs to implement the upper layer communi-
cation modules based on the lower layer which is
the interface that the target communication system
provides. In our implementation of the simulation
system, we simulated the lower layer communication
with a simulated virtual network which transfers mes-
sage among entities through an object-oriented inter-
face.

The communication interfaces in the control and
the simulation systems convert messages into events
that take certain actions or redistribute the messages
to entities in their domain (such as a resource agents).
For example, when a part announces a ready opera-
tion, it issues a broadcasting message to all machines
that are capable of performing that operation. A copy
of the broadcasted message is distributed to all agents
of the machines in the group which would in turn
trigger an event in each agent, causing the agent to
process the message.

4 EXPERIMENTS WITH THE AGENT-
BASED CONTROL AND SIMULATION
SYSTEM

The agent-based control and simulation system can
be used for different purposes. In particular, we have
used it to test

1. the performances of the proposed agent-based
control framework,

2. the comparison of different negotiation protocols,

3. the comparison of negotiation control and dis-
patching rule control,

4. the effectiveness of different types of input
process plans.

5. the effect of look ahead in negotiation, and

6. the performance comparison of different look
ahead schemes.

Our results show the the proposed framework pro-
vides a coordinated information flow and physical
flow and can cope with the machine failures and parts
objective changes. They also show that the price
mechanism reacts to the part’s priority, machine ca-
pability, and system loads. We also see the resource-
centered negotiation scheme achieves a slightly better
overall system performance, and the part-centered ne-
gotiation scheme reacts better to the part’s objective
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function. We also observed that the use of the flexibil-
ity embedded in the flexible processing process plan
improves system performance, and a small degree of
look ahead helps system performance. However, too
much look ahead causes system degradation under
the dynamic manufacturing environment [Lin, 1993).

The simulation system provides us with a flexi-
ble testbed such that new experiments can be easily
setup. For example, when we decided to compare our
negotiation protocols to that of Maley’s [Maley and
Solberg, 1987] which only uses part intelligence and
does not use the price mechanism, we were able to
implement Maley’s algorithm in a few days (as op-
posed to months) based on the simulation system.
The simulation system allows the user to concentrate
on control algorithms and significantly shortens the
required development time.

5 SUMMARY

In this paper, we have presented a generic agent based
control simulation system. The system consists of a
collection of agents who make routing and processing
decisions in real time through negotiation protocol
and price and objective control algorithms. Changes
in the environment, objectives, or the system itself
can be incorporated quickly and smoothly. Resource
failures will not disrupt operation of the system. The
system also allows heterogeneous job objectives, ad-
mits job priorities, recognizes multiple resource types,
and allows multiple step negotiation between parts
and resources to ensure system effectiveness.

The system can model generic manufacturing en-
vironment including machines with different types,
capability, and input and output buffers, system lay-
out, transporters, central buffers, different part types,
multi-objective, arrival rates, and different types of
input process plans. It also supports different negoti-
ation protocols and simple dispatching control rules.
Therefore, the control and simulation system can also
be used to model and test different manufacturing en-
vironments, input process plans, negotiation proto-
cols, control schemes, and price adjustment schemes.
When linked with real manufacturing systems, it can
also be used as a real time manufacturing control sys-
tem.
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