Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

DISCRETE EVENT SIMULATION FOR SHOP FLOOR CONTROL

Jeffrey S. Smith
Richard A. Wysk

Industrial Engineering
Department
Texas A&M University
College Station, TX 77843

ABSTRACT

This paper describes an application of discrete event
simulation for shop floor control for a flexible
manufacturing system. In this application, the
simulation is used not only as an analysis and
evaluation tool, but also as a “task generator” for the
specification of shop floor control tasks. Using this
approach, the effort applied to the development of the
simulation is not duplicated in the development of the
control system. Instead, the same control logic is used
for the control system as was used for the simulation.
Additionally, since the simulation implements the
control, it provides very high fidelity performance
predictions. Implementation experience in two flexible

manufacturing laboratories is described. These
implementations use a special feature of the
Arena/SIMAN simulation language which allows

Arena/SIMAN to interact directly with the shop floor
control system through an interprocess communication
mechanism. This feature is described in detail in this

paper.

1. INTRODUCTION

Traditionally, discrete event simulation has been used as
an analysis and planning tool prior to the actual
implementation of manufacturing systems. This is
especially true in the case of flexible manufacturing
systems (FMS) which are difficult to model using purely
analytical techniques. In general, the first step in the
development of a new FMS is to identify a potential
system design. Once a design has been identificd, a
simulation is developed to analyze this design according
to a set of specified performance metrics. The system
design is then “tweaked” in order to improve the
expected performance, and, in some cases, additional
designs are developed and cvaluated. The role of the
simulation in this activity is to predict the system
performance for a given design. Once a promising

David T. Sturrock

Systems Modeling
Corporation

504 Beaver Ave.
Sewickley, PA 15143

962

Sanjay E. Ramaswamy
Glen D. Smith
Sanjay B. Joshi

Industrial and Management Systems
Engineering Department
Penn State University
University Park, PA 16892

design has been finalized, the simulation is set aside
and the control system is created.

In this development cycle the same system control logic
is essentially developed twice: once for use in the
simulation, and then again for the contro]l system.
Similarly, when system modifications are required, the
simulation is typically used to test potential
modifications first. Once the impact of the
modifications has been verified, the control system is
correspondingly modified. This duplication of effort
represents a significant cost in the development and
maintenance of a flexible manufacturing system. A
more attractive alternative to this cycle is to use the
same logic for the simulation and the control, thereby
reducing or eliminating this duplication of effort.

Under this paradigm, once the system design has been
finalized, the simulation that was used for evaluation is
then used as the basis for the control system. A novel
approach towards this goal has been developed as part
of the RapidCIM project. RapidCIM is a three year
joint project between Texas A&M and Penn State
Universities and Systems Modeling Corporation (Wysk
et al.,, 1992). The overall objective of the project is to
reduce the time required to develop fully functional
shop floor control systems for flexible, discrete parts
manufacturing systems. This paper describes the
simulation-based control system that has been developed
for the Texas A&M Computer Aided Manufacturing
(TAMCAM) lab and Penn State CIM lab in conjunction
with this project.

2. RAPIDCIM APPROACH

In an FMS, the shop floor control system (SFCS) is
responsible for processing parts through the system.
This includes selecting part processing routes and
matcrial handling operations, scheduling operations
based on the current system state and current

Discrete Event Simulation for Shop Floor Control 963

production requirements and then implementing these
plans in the physical system.

In the proposed approach, the shop floor controller
functions are partitioned so as to separate the execution
functions from the decision making (planning and
scheduling) functions. According to this partitioning,
execution is responsible for interacting with the shop
floor equipment in order to implement the physical
tasks, and decision making is responsible for specifying
which tasks will be executed and in which sequence in
order to meet the production requirements. The
rationale for this partitioning is that the execution
functions depend only on the physical equipment
configuration, while the decision making functions also
depend on the specific part types being produced and
the production mix. Explicit separation of these
functions allows modular development of the execution
and decision making functions.

The execution functions have been modeled using a new
formalism called a message-based part state graph
(MPSG). An MPSG for a controller describes the
processing protocol for that controller. In a distributed
control system, control is exercised by passing messages
and signals between controllers and by performing
specific controller tasks. The processing protocol
describes the controller in terms of the messages it
receives and sends and the tasks that it performs in
response to messages. Given the MPSG and the device-
specific interaction routines for a piece of equipment,
the execution portions of the shop floor controller can
be automatically generated using previously developed
tools (Smith and Joshi 1993).

Figure 1 illustrates the structure of the RapidCIM shop
floor controller. In this structure, an Arena/SIMAN
(Drevna and Kasales, 1994) simulation serves as the
decision maker (or Task Generator) and MPSG-based
controllers perform the execution functions. The Task
Generator and execution module communicate through
the task initiation queue (TIQ) and the task completion
queue (TCQ). The Arena/SIMAN simulation uses the
TIQ to instruct the execution module to perform a
specific task. The MPSG-based execution module
interprets the request as an incoming message and
performs the requested task. Upon completion of the
task, the execut:on module uses the TCQ to inform the
decision maker that a specified task has been completed.
These queues facilitate the explicit separation of the
decision maker from the execution module. The
execution module simply executes tasks it reads from
the TIQ without regard for how these tasks are selected.
Similarly, once a task sequence has been determined,
the decision maker simply writes tasks to the TIQ.

When the decision maker receives the task completion
message from the TCQ, it knows that the task has been
completed successfully, but has no knowledge of how
the task was implemented.

The separation of the decision maker and the execution
module makes the system truly “plug and play.”
Assuming the decision maker understands the physical
constraints imposed on the task sequences, any decision
maker can be "plugged in" to the execution module
according to the current production requirements. This
allows use of a decision maker most appropriate to the
specific application such as an expert system, custom
optimization algorithm, simulation, or other appropriate
tool.

Decision Siman
Maker simulation

Task
Completion Initiation
Queue Queue
E MPSG-based

xecutor shop executor
MPSG-based

equipment

El E2 E3 En controllers

Figure 1. RapidCIM shop floor controller structure.

The separation between the decision maker and the
execution module, also makes it possible to use the
decision maker in an off-line “play and plug” mode.
Off-line, it can be used to “play” with different
production alternatives and/or refine the production
heuristics to provide improved operation. Likewise, this
play mode can be used to determine the best response to
exceptions such as equipment failures. This new
knowledge can then be “plugged” back into on-line
operations.

It is frequently desired to emulate certain equipment.
Emulation can be used to permit limited operation
during installation, equipment failures, and while
testing new equipment/approaches. More important,
emulation allows the same control system to be used in
both real-time control as well as the off-line mode
discussed above.

964 Smith et al.

Emulation can be accomplished in two ways. The first
approach is to let the execution module simply respond
with a task completion message after a fixed time
interval. This approach does not require any extra logic
in the decision maker, and, in fact, the decision maker
is unaware that tasks are being emulated.

The second approach is to let the decision maker
implement emulation logic in place of actually
executing a task. For example, Arena/SIMAN can
incorporate any logic necessary (from a simple delay to
complex guided transporter interactions) to emulate
equipment. This logic would be developed during
initial system design/analysis and retained for later
reuse during testing and the emulation discussed above.
Using this form of emulation, the system can be
emulated on a single computer without the use of the
network.

3. ARENA/SIMAN LANGUAGE
MODIFICATIONS

As part of the RapidCIM project, Arena/SIMAN has
been enhanced with additional constructs to make it
possible to implement the physical control of
equipment. The following discussion illustrates one
approach implemented for real-time control. It is likely
that this approach will be improved as more is learned
from our research. Typically, equipment processing
functions are modeled as simple time delays in which
the delay time closely approximates the expected
processing time on the physical equipment (in
simulation time). These delays can be modeled with the
current SIMAN DELAY and TRANSPORT blocks in
conjunction with the STATION and SEQUENCES
elements.

However, these constructs are not sufficient for on-line
physical control. Under physical control mode where
the simulation is acting as the task generator, when an
entity reaches a point in the simulation involving a
processing step, the simulation must tell the execution
module to perform a task and wait for it to be completed
before the entity can continue through the simulation.
Consequently, several modifications have been made to
Arena/SIMAN language to facilitate this type of control.
The modifications include the addition of the TASK
element and modifications to the DELAY, ROUTE,.
MOVE, and TRANSPORT blocks. These language
constructs are described in the following paragraphs.

The existence of two environment variables specify the
major modes that Arena/SIMAN operates within. If the
environment variable SM_RealTime exists, the
simulation will run in real-time as measured by the
computer’s internal clock (referred to as wall time).

Real-time or control mode is mandatory when using
Arena/SIMAN to control a physical system. By running
the simulation in fast mode, it can be used in the more
traditional role of a performance predictor. If the
environment variable SM_Execute exists and is set,
Arena/SIMAN will attempt to execute tasks by writing
them to the task initiation queue and waiting for the
repsonse from the task completion queue. Otherwise,
all tasks are emulated using the standard Arena/SIMAN
language constructs.

The TASKS element specifies physical tasks which are
to be written to the task initiation queue (TIQ) to be
performed by the execution module. The syntax for the
TASKS element it as follows:

TASKS: Number, TaskID, ExecExpr, Format,
Parameter, ... : repeats;

where Number is an optional task number, TaskiD is the
task identifier (a string), ExecExper is an expression
which, if it evaluates to non-zero, specifies that the task
should be executed. If ExecExper evaluates to zero, the
task is emulated. Format is the format string (similar to
C’s printf format string) used for writing messages to
the TIQ. Parameters represent parameters specified in
the format string. The following is an example of the
TASKS element.

TASKS: pick, LocalExecOn, “pick %1.0f TGID=%1.0f
loc=%f mhe=%s”,partNum, IDENT, CurrentLoc,
STR(STATIONS,m);

If LocalExecOn evaluates true, the task associated with
this element is written to the TIQ in response to a
DELAY, ROUTE, MOVE or TRANSPORT block
(described below). The format of the task written to the
TIQ is as follows:

pick 5 TGID=17 loc=23.25000 mhe=puma

The execution module interprets this task as a request
for the specified material handling entity to pick the
specified part from the specified location.

A new field has also been added to the DELAY,
MOVE, TRANSPORT, and ROUTE blocks to permit
real-time execution of a task. The new syntax of these
blocks is as follows:

DELAY: Time, Storage, TaskID;
ROUTE: Time, Destination, TaskID;
MOVE : Transporter, Destination, Velocity, TaskID;

TRANSPORT: Transporter, Destination, Velocity, GTR
Dest, TaskID;

Discrete Event Simulation for Shop Floor Control 965

Where the parameter Task/D is a name or an expression
which evaluates to a task identifier as defined by a
TASK element.

When a simulation entity reaches one of these blocks,
Arena/SIMAN first looks at the global execution mode
(based on SM_Execute). If it is off, the task portion of
the block is ignored. If global execution mode is on, the
execution expression (ExecExpr) for the task is
evaluated to determine whether or not the task should be
executed..

If ExecExpr for the task is false, the equipment is being
emulated and the task is ignored. If ExecExpr is true
the task will be executed in an operation parallel to the
logic of the block being processed. If the block finishes
first, its operation will be suspended until the task
returns. If the task finishes first, the block operation
will be aborted and treated as though it had finished
early.

To execute a task, a message is added to the task
initiation queue. The content of the message will be
determined by the format and parameters specified by
the task element. The entity executing this task will take
no further action until it is identified in a “task
complete” message in the task completion queue.
Although this entity will be suspended, Arena/SIMAN
will continue to process other entities and execute any
associated tasks.

The final modification required for use in the RapidCIM
environment is a mechanism for implementing the task
initiation and task completion queues. To facilitate
these message queues, Arena/SIMAN provides the
following stub functions.

stIPC _Initialize() This function initializes the
interprocess communications required for the
queues.

srIPC_Shutdown() - This function closes the
interprocess communications when the simulation
terminates.

stIPC_WriteMessage(msg) - Writes the specified text
message to the task initiation queue.

stIPC_ReadMessage(msg) - Reads the first message
waiting in the task completion queue.

The user creates these functions for the specific
operating system and inter process communication
mechanism under which the system is being run.
Within the laboratories described in the following
section, these functions have been developed under
0S/2 and DEC ULTRIX.

4. LABORATORY DESCRIPTIONS

4.1 TAMCAM LAB

The RapidCIM controller has been implemented at the
Texas A&M Computer Aided Manufacturing
(TAMCAM) lab. This lab includes a full-scale flexible
manufacturing system (shown in Figure 2) consisting of
three CNC machine tools, several industrial robots, a
vertical automatic warehouse, and a “smart” conveyor.
Table 1 describes the specific equipment in the
TAMCAM lab. In this lab, the conveyor transports
parts from station to station on specialized pallets.
When a pallet arrives at a load/unload station, parts are
automatically unloaded by an industrial robot. The
robot then loads the part on one of the machine tools
where the part is processed. While the part is being
processed on one of the machine tools, the pallet can
either wait at the load/unload station for the part to be
completed, or it can be used to transport other parts
within the system.

The TAMCAM lab uses a variety of computers and
operating systems to implement the shop floor control
system. An equipment level controller running on a
DOS-based personal computer front-ends each
individual piece of equipment. Each of these computers
is connected via Ethernet to the centralized shop level
controller running on an OS/2-based personal computer.
The shop level controller consists of the Arena/SIMAN
simulation model, the shop execution module, and the
task initiation and completion queues. A “Design
Workstation” is used to design and modify part
produced in the lab and to create and store the
numerical control (NC) programs required to process
the parts. The Design Workstation is based on
AutoCAD and runs on an IBM RS/6000 running AIX
3.2.

Pratt & Whitney
(MP1)

]

[E'= Adept
Port © (MH1)
(Pl) Leadwell Sabre 500
(MP2) (MP3) Robot(MHS)
Manual Wkstn 1
(OP1)
Manu:gl}yksm 2 % Port |:|
(OP2) X
Puma Port ®2)
Robot (MH") (P2) Kardex
(AS1)

Shuttleworth Conveyor

(MT1)

Figure 2. TAMCAM lab FMS.

966 Smith et al.

Table 1. TAMCAM equipment.

Item Description
Cincinnati Milacron Sabre 500 — CNC Machining Center

1
2 Pratt & Whitney Drill-o-Mate” CNC Machining Center

3 Leadwell LTC CNC Turning Center

4 GE A4 SCARA Robot

5 Adept SCARA Robot System”

6 Kardex Vertical Carousel AS/RS

7 Material Handling System — Flexible Conveyor Syslem“r
8 Puma 760 Robot

9 Computer Control System and Software

* Donated by DEC.
1 Donated by Shuttleworth

The communications network software which connects
these systems has been developed specifically for this
project and is based on TCP/IP. This communications
system provides tremendous flexibility in the operation
of the system. Processes can be moved between
computing platforms with only simple recompilation.
For example, to move the shop execution module to the
RS/6000 to free up resources for the simulation, the
shop execution code can be recompiled under AIX
without modification. ~ The only other required
modification is in the network route map files. These
files are ASCII text files (roughly 10 lines long each)
which the controller uses to route messages. These files
can be modified for each controller without mandating
code recompilation.

4.2 PENN STATE CIMLAB

This Lab hosts a flexible manufacturing shop consisting
of three CNC machines, several robots, an automatic
storage and retrieval system (AS/RS), and a Cartrac
material transport system (Figure 3). Table 2 details the
equipment currently operational in the lab. Parts are
stored in the AS/RS, from where they can be retrieved
by the IBM 7535 robot and placed on one of the carts of
the Cartrac system for transport to the processing
workstations. At each workstation another robot is
provided for material transport within the workstation
area. Completed parts are routed back to the AS/RS
using the same transport equipment. The shop floor
control system is implemented on DOS-based personal
computers at the equipment level. Each of these
computers are connected via ethernet to a centralized
shop controller that can variably be run on either an
0S/2 or UNIX platform. Two DEC Workstations and an
0OS/2 based personal computer are available for this

purpose.

L)

. WORKSTATION IV
' KARDEX
.

)
.
AS/RS : WORKSTATION |
o e e e e ,
. & ', HORIZON V MACHINING .
) o CENTER .
! IBM ! ' & '
=L |
------- il (-] g ee— ,
! TURNING CENTER
[T
3‘ L L}
0 o], .
6 9l. .
WORKSTATION Il | ey —
. _(FUTLRE)_ ,FANUC MY-L ,
; aT. . - - - . - . .
' 7
. [o] ¥y - - - = = = = = = “
& '] ° . FADAL 4 AXIS MILL ,
FANUC A 13 o I .
' ROBOT 1 lo ol' .
' \ - 8] '
' IBM 7545 . ! '
, ROBOT ' , .

- 9 , FANUC -
' CARTRAC UNIT M1 ROBOT
tesmm o “CONVEYOR SYSTEM

& WORKSTATION 1I

| NETWORK

I
== —_

DESIGN WORKSTATION CELL CONTROLLER

Figure 3. Penn State CIMLAB Layout

Table 2. Penn State CIMLAB equipment.

—

tem Description
Daewoo PUMA 6 - CNC Lathe
Horizon V - CNC 2 1/2 Axis Milling Machine
FADAL VMC-20 4 Axis CNC Milling Machine
GMF M1-L Robot
GMF M1 Robot
IBM 7535 Robot
IBM 7545 Robot
GMF AO Robot
Kardex AS/RS System
0 Cartrac Material Transport System

— O 00 3 WA Wiy

5. SIMULATION FOR CONTROL

There are three different modes of operation for this
modified version of Arena/SIMAN. In emulation mode
for the purpose of rule/capacity evaluation you would
typically desire stochastic processing times and product
mixes and hence require multiple replications. In
emulation mode during control or while planning
exception handling, you would typically desire
deterministic data. In this case the data can be
explicitly stated or read from a file or the shop floor
database. Finally, in control mode, the actual parts
being processed must be used and the data describing

Discrete Event Simulation for Shop Floor Control 967

those parts and their processing must be available in a
shop floor database.

Except for the physical control mode components, the
structure of the Arena/SIMAN simulation developed for
the TAMCAM lab is rather typical for manufacturing
systems of this type. The processing machines and
robots are modeled as equipment resources which must
be seized prior to use. The conveyor and pallets are
modeled as an AGV system with each pallet being an
individual transporter and each conveyor stop being a
station. Parts arrive at the Kardex storage system
station and are queued to wait for a pallet to transport
them to the first processing machine in the part route.
In emulation mode, parts arrive according to an arrival
distribution specified in the experiment frame. In
control mode, part arrivals are explicitly defined at
system startup and through a special “order task.” This
explicit definition is required since each part entity in
the simulation represents a physical part being
manufactured.

The “order task” is placed on the TIQ when the
simulation is initialized. When the execution responds
with a task completion message, a predefined “order
file” which describes the newly ordered parts is read.
After reading the order file, the simulation again places
the order task on the TIQ. This mechanism allows the
execution system to explicitly specify arrivals at any
time during the operation of the simulation.

Part processing routes are specified in the experiment
frame using the SEQUENCES element. In emulation
mode, the part type is a stochastic variable whose value
is determined upon arrival. In control mode, the part
type is specified explicitly on start up. Once a pallet is
available at the Kardex load/unload station, the part is
loaded on the pallet using the Adept robot and is routed
to the first processing station using a TRANSPORT
block. Once the pallet arrives at the station, the part is
picked up by either the Puma robot or the Adept robot
(depending on the station) and is loaded on the specified
machine tool for processing. Upon completion of
processing, the part is unloaded with the robot and is
placed on either next processing machine (if it is
reachable by the robot) or back on a pallet at the
load/unload station. Once on a pallet at the load/unload
station, the part can be transported to another work
station or back to the Kardex storage system.

Consider the portion of the TAMCAM simulation
shown in Figure 4. These portions of the model and
experiment frames represent loading, processing, and
unloading parts on the Sabre machining center and the
Leadwell lathe. In this workstation, the Puma robot is
used to pick parts from pallets and load the parts on the

machining center. According to the model segment,
entities are initially transported to the Puma workstation
where they are queued. Entities then attempt to seize
the Puma robot and either the Sabre machining center
or the Leadwell lathe (depending on the routing for the
specific part type -this decision logic is not shown).
Once both resources have been obtained, two tasks are
executed. The first DELAY block represents the task
Pick which instructs the robot to pick up the part from
the specified station. The second DELAY block
represents the Put task which instructs the robot to load
the fixture of one of the machines. Upon completion of
this task, the part has been loaded on the machining
center, the robot has cleared the work volume, and the
machining process can be started. The Process task
associated with the final DELAY block in the model
segment represents this task.

Assuming that the SM_Execute environment variable
has been set, Arena/SIMAN will evaluate the expression
LocalExecOn associated with each task to determine
whether the tasks should be executed or emulated. If
the tasks are being executed, Arena/SIMAN writes the
appropriate task to the TIQ whenever the entity reaches
the DELAY block. The execution module reads the
task from the task initiation queue and implements the
task on the physical device(s). Once the physical device
completes its task, the execution module writes a “task
complete” message to the task completion queue and the
simulation entity is free to move through the DELAY
block in the simulation. This physical control mandates
that simulation time be synchronized with wall time
(“slow mode”). By resetting the SM_Execute
environment variable, all tasks will be emulated (using
DELAY blocks with normally distributed delay times in
this example) and the simulation can run in “fast
mode.” Similarly, individual tasks can be emulated by
adjusting the expression LocalExecOn.

During control mode operation, fast mode can also be
used as a decision making tool. At any point during
slow mode operation a copy of the simulation can be
initialized with the current physical system state and
run for some period in fast mode to evaluate the impact
of the decision on the system performance. Assuming
that the fast mode simulation runs sufficiently fast,
several alternatives can be evaluated and the most
promising alternative can be used by the control mode
simulation. The use of simulation as a “look ahead”
scheduling tool has been described previously by Wu
and Wysk (1988), Harmonosky and Robohn (1991), and
Cho (1993).

968 Smith et al.

6. CONCLUSIONS

A simulation-based shop floor control system has been
described in this paper. Enbancements to the
Arena/SIMAN simulation language allow the
simulation model used for design, performance analysis
and planning, to also be used for direct shop floor
control. Consequently the same control logic is reused
and need not be implemented multiple times.
Additionally, the simulation can also be used to predict
future system performance based on current decisions by
running in fast mode from the current physical system

state. The results of the fast mode analysis can be used
by the decision making functions in control mode.

The simulation-based control system described in this
paper has been implemented and is currently being used
in two laboratories: one at Texas A&M University and
the other at the Pennsylvania State University. Initial
experience with these labs appears quite promising.
Further details about this work is available on the
TAMCAM World Wide Web (WWW) home page at the
URL address http://tamcam.tamu.edu/tamcam.html.

TRANSPORT: Pallet,PumaWKSTN, ,,Move;

STATION, PumaWKSTN;
QUEUE, PumaWKSTN;
SEIZE: PUMA:

SABRE ;
DELAY: Normal(1l,.15),,Pick;
DELAY: Normal(1,.15),,Put;
DELAY: Normal(15,3),,Process;

STATION, PumaWKSTN;
QUEUE, PumaWKSTN;
SEIZE: PUMA:

LEADWELL;
DELAY: Normal(l,.15),,Pick;
DELAY: Normal(1l,.15),,Put;
DELAY: Normal(15,3),,Process;

Experiment:

TASKS:
IDNUM, IDENT,MSQ (NS, IS):

2,Pick,LocalExecOn, "Pick %1.0f TGID=%1.0f Plan=%f MHE=%s",

IDNUM, IDENT, PLAN, STR (Robots,m) :

3,Put,LocalExecOn, "Put %1.0f TGID=%1.0f Plan=%f Sentity=%s
slot=%1.0f",IDNUM, IDENT, PLAN, STR(Machines,m),slotID:
4 ,Process,LocalExecOn, "Process %1.0f TGID=%1.0f Plan=%f",

IDNUM, IDENT, PLAN;

1,Move,LocalExecOn, "Move %1.0f TGID=%1.0f Loc=%1.0f",

Figure 4. Sample Arena/SIMAN code including the real-time control modifications.

7. REFERENCES

Cho, H., An Intelligent Workstation Controller for
Computer Integrated Manufacturing, Ph.D. Thesis,
Texas A&M University, 1993.

Drevna, M. and Kasales, C., “Introduction to Arena,”
Proceedings of the 1994 Winter Simulation Conference,
M. Tew and S. Manivannan, Eds., IEEE Publishers,
Piscataway, NJ.

Harmonosky, C. M. and Robohn, S. F., “Real-time
Scheduling in Computer Integrated Manufacturing: A
Review of Recent Literature,” International Journal of

Computer Integrated Manufacturing, Vol. 4, No. 6, pp.
331-340, 1991.

Smith, J. S. and Joshi, S. B., “Message-based Part State
Graphs (MPSG): A Formal Model for Shop Floor
Control,” Texas A&M University Working Paper
Series, 1993.

Wu, S. D. and Wysk, R.A., “Multi-pass Expert Control
Systems - A Control/Scheduling System for Flexible
Manufacturing Cells,” Journal of Manufacturing
Systems, Vol. 7, pp. 107-120, 1988.

Wysk, R. A,, Joshi, S. B., and Pegden, C. D., “Rapid
Prototyping of Shop Floor Control Systems for

Discrete Event Simulation for Shop Floor Control

Computer Integrated Manufacturing,” ARPA project #
8881, 1992.

AUTHOR BIOGRAPHIES

JEFFREY S. SMITH is an assistant professor in the
Industrial Engineering Department at Texas A&M
University. His research interests are in shop floor
control, manufacturing system design, analysis and

control, and simulation. He is an active member of IIE,
SME, and IEEE.

RICHARD A. WYSK is the Royce Wisenbaker Chair
in Innovation at Texas A&M University. His primary
research areas include computer aided process planning
and flexible automation systems. He is the recipient of
the IEE David F. Baker Distinguished Research Award
(1993) and is a Fellow of IIE.

DAVID T. STURROCK is product manager in
software development with Systems Modeling
Corporation in Sewickly, Pennsylvania. He joined SMC
in 1988 after more than 11 years of manufacturing
experience. He has applied simulation techniques to
problem solving in the areas of transportation systems,
scheduling, plant layout, capacity analysis, and process
design.

SANJAY R. RAMASWAMY is a Ph.D. student in the
Industrial and Management Systems Engineering
Department at the Pennsylvania State University.

GLEN D. SMITH is a Ph.D. student in the Industrial
and Management Systems Engineering Department at
the Pennsylvania State University. His research
interests are in manufacturing system simulation,
computer control of manufacturing systems, and
artificial intelligence.

SANJAY B. JOSHI is an associate professor in the
Industrial and Management Systems Engineering
Department at the Pennsylvania State University. His
research and teaching interests are in the areas of
computer aided design and manufacturing with specific
focus on computer aided process planning, control of
automated flexible manufacturing systems, and
integration of automated systems.

969

