Proceedings of the 1994 Winter Sumulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

MASPAWS - A MASSIVELY PARALLEL WAR SIMULATOR

N. Chandrasekharan
and
Zhi-Hai Ma

Dept. of Mathematical Sciences
Loyola University of Chicago
Lake Shore Campus
Chicago, IL 60626, U.S.A.

ABSTRACT

We describe the design, implementation and perfor-
mance of a battlefield simulator for massively paral-
lel SIMD machines. MasPaWS (Massively Parallel
War Simulator) is a first generation prototype that
simulates the battle dynamics of a two-dimensional
theater to the level of individual tanks in a battle-
field having certain terrain features. Objects in the
battlefield are the terrain features and tanks. The
battle cycles through a set of protocols: perception
and combat, update combat, migration and update mi-
gration. MasPaWS, written in Maspar Programming
Language (MPL), has been implemented on MasPar
machine. The salient features of MasPaWS include:
(1) use of simple protocols to match machine architec-
ture, (2) parametrization of several quantities to con-
trol the computation of and communication between
MasPar processors and to estimate performance, and
(3) interactive user input for terrain specification and
generation and other key parameters. Our work ap-
pears to be the first of its kind in war simulation on
a massively parallel SIMD machine, using thousands
of processors. Our results indicate that MasPaWS$S
is both data and architecture scalable for battlefield
simulation, while achieving high efficiency at the same
time.

1 INTRODUCTION

Computer simulation has been a major tool for anal-
ysis, prediction and training in the last several years.
The increasing computational complexity of simulat-
ing physical systems has led researchers to recognize
the use of parallel computers. Computer simulations
which use many processors have been variously called
as distributed, parallel, concurrent, etc. We will use,
for the purposes of this work, parallel simulation to
represent discrete cvent time-driven simulation car-
ried out on tightly-coupled multiprocessors. For a

744

Udaya B. Vemulapati

William J. Porthouse, Jr.

Allen T. Irwin

and SAIC

Technology Parkway
Orlando, FL 32826, U.S.A.

Dept. of Computer Science
University of Central Florida
Orlando, FL 32816, U.S.A.

general discussion on parallel simulation, the reader
may consult Fujimoto (1990) and Prasad (1990). For
a more recent survey on parallel simulation, including
battlefield simulation, we refer to Nicole (1994).

1.1 Battlefield Simulation

Battlefield simulations are amongst the most irregu-
lar, computationally intensive, and complex simula-
tions in existence (Weiland et al. 1989). A central
issue in parallel simulation is work-to-processor map-
ping, especially where the computational load dynam-
ically varies with both time and space. Parallel bat-
tlefield simulators use either a functional or spatial
mapping of work to processors. Functional mapping
is achieved by distributing battle units to processors
where each processor is responsible for a certain num-
ber of operational combat units (Gilmer and Hong
1986). Spatial mapping is carried out by tessellat-
ing the battle theater into regular geometric objects
(rectangles, hexagons, etc.) and assigning processors
to fixed regions of the battlefield (Nicole 1987, Nicole
1988, Prasad 1990, Gilmer 1988). In both scenarios,
as battle progresses, load balancing becomes a seri-
ous issue. One way of coping with load balancing is
to introduce dynamic assignment of work. But this
has to be weighed against the cost of determining
and executing a new assignment at various points in
simulation. Another key issue in parallel simulation is
communication overhead. In functional mapping, any
two arbitrary processors may be required to commu-
nicate battle data whereas in spatial mapping, com-
munication is usually confined within a certain neigh-
borhood of processors. Where communication over-
head between processors increases with distance be-
tween them, there is a good reason to perform spatial
mapping. Hence existing parallel battlefield simula-
tors on distributed-memory, parallel machines (e.g.,
hypercubes) use spatial mapping (Deo, Medidi and
Prasad 1992, Nicole 1987). We now discuss some of
the previous works on battlefield simulation.

MASPAWS 745

1.2 Previous Work On War Simulation

One of the influential works in battlefield simulation
is Quickscreen (Hawkins and Thompson 1985) de-
veloped by the BDM corporation for the US Army,
which was later renamed as CORBAN (Corps Bat-
tle Analysis). Quickscreen was designed to run on
a uniprocessor machine using FORTRAN. The sim-
ulation is time-stepped, of Corps-scope, of battalion
resolution and could simulate up to 700 battle units
with terrain effects. Zipscreen, a time-stepped sim-
ulator representative of the structure of CORBAN,
was implemented on BBN Butterfly, a shared mem-
ory parallel machine (Gilmer 1988). The simulator
worked on a battlefield decomposed into hexagons
and attained efficiencies of 40%-75% on 124 proces-
sors with the number of combat units ranging from
480 to 800. A version of Zipscreen was implemented
on Flex/32 multicomputer with 20 processors (Nicole
1987) assuming battalion sized units on a hexgonally
partitioned battle terrain. The typical speedup at-
tained was 8.5 on 16 processors, resulting in 53%
efficiency. Weiland et al. (1989) describe a combat
simulation called the Concurrent Theater Level Sim-
ulation designed at the Jet Propulsion Laboratory.
This was implemented on the Caltech/JPL Mark III
Hypercube and the BBN Butterfly machine. In this
event-stepped simulator, a speedup of 28.6 on 60
Mark III processors (48% efficiency) and 36.8 on 100
BBN Butterfly processors (36.8% efficiency) was at-
tained. More recently, Deo et al. (Deo, Medidi and
Prasad 1992) describe research into processor alloca-
tion under three different schemes for a time-driven
battlefield simulation. In all of the 3 simulators, the
combat units are of battalion resolution. The first
scheme uses static allocation of the battlefield domain
to processors and with 50 combat units on each side,
a speedup of 9.5 was observed on a 16 node Intel
hypercube iPSC/1 computer. In the second scheme,
the above code ported on a BBN Butterfly GP 1000
machine recorded a speedup of 8 using 16 processors.
The third method uses a dynamic processor allocation
strategy which resulted in a speedup of 12 on 16 pro-
cessors and 17 on 27 processors. Another work wor-
thy of mentioning in the sequential setting is GISMO
(Game for Intelligent Simulated Military Opponents)
(Van Brackle 1992). This is an interactive software
testbed in which simulated forces may be compared
to one another.

1.3 Present Work

We observe that all of the above simulators have been
designed at a coarse resolution (battalion level, usu-
ally) and implemented on MIMD (Multiple Instruc-

tion Multiple Data) machines. The efficiencies of the
simulators range from 35% to 75%, on processors
numbering from 16 to 124. Here, we describe the de-
sign, development and study of MasPaW$§ (Massively
Parallel War Simulator) on a SIMD (Single Instruc-
tion Multiple Data) machine (MasPar) using several
thousands of fine-grained processors. Our resolution
of the battle units is to the level of individual tanks
each having & gun with reloadable supply of ammu-
nition. Briefly, the battle terrain is decomposed into
squares m rows long and n columns wide, where m xn
is the size of the processor grid of the MasPar parallel
machine, resulting in a simple static mapping. The
objects in the simulation are tanks and terrain effects
such as forest, mountain, water and plain. Each pro-
cessor is responsible for the actions happening in its
battle square. Actions include perceiving for an en-
emy tank within a certain depth of squares in front
of each tank under its control, performing line-of-
sight computations taking into account the terrain ef-
fects, engage enemy tanks in battle, update casualty
information, plan movement of its combat vehicles,
and move each of its tank to a possible new position
avoiding collisions. The simulation cycles through the
above protocols and collects battle statistics.

1.3.1 MasPaWS: Salient Features & Results

e MasPaWS is a first generation prototype of sim-
ulating a battlefield on a SIMD machine and ap-
pears to be the first of its kind.

¢ MasPaWS supports automatic generation of ter-
rain data for rectangular terrains. Further, it
provides three different runtime codes (1) for
timing purposes only, (2) for logging important
events in the battle, and (3) for debugging pur-
poses using asserts.

e [t provides several parametrized variables which
control the simulation to study various effects.
Parameters include GunRange, TankSpeed, As-
sets, ReloadTime, GridSize, etc.

e Experiments suggest the MasPaWS is both data
and architecture scalable, in a sense we describe
later.

e Our performance studies of MasPaWS indicates
that its efficiency was over 80% consistently.

To facilitate expressing the performance of a SIMD
machine we now introduce some relevant terminology.
Let t be the parallel run-time of a parallel program on
a SIMD machine with n processors for a certain input
data. Then we define the total work done, 11", by the

746 Chandrasekharan et al.

program to be ¥" = t x n for that input data. Let
tmin De the time taken for the program on a certain
data set for the smallest configuration of processors
available, P,.n. (P = 1K processors in the case
of MasPar). Let tc,,rcn: be the time taken for the
program on the same data set on the number of pro-
cessors under consideration Pryrren:. It may be noted
that for a fully configured MasPar, P.y;rent can be
varied as 1K, 2K, 4K, 8K and 16K processors. Then
we define speedup

S = tmzn/tcurrent

and efficiency

Wmln _ tmin X szn

H/current

E =
tcurrent X Pcurrent
Note that the above definitions are consistent with

the well-known definitions of speedup and efficiency
for MIMD systems.

1.4 MasPar Overview

The MasPar parallel processing system is a massively
parallel SIMD (Single Instruction, Multiple Data)
machine. The system is available in 1K, 2K,-- -, 16K
processors with maximum memory of 64K in MP-1 or
256K in MP-2, per processor element (PE). MP-1 is
rated at a peak 175 MFlops and MP-2 at 400 MFlops
for 1K processors. The machine has a DECstation
5000 as a frontend host. The backend, known as the
Data Parallel Unit, has an Array Control Unit (ACU)
and the Processor Element (PE) Array. The ACU
drives the PE array unit execution by broadcast-
ing instructions. The processors are interconnected
to form a grid-like configuration with the boundary
processors wrapped around toroidally. Two types of
communication between processors are possible: zNet
and router. A processor can communicate with a pro-
cessor at a distance 1 away by an xNet[:] communi-
cation in one of eight directions (North, South, East,
West. Northeast, Northwest, Southeast, and South-
west) directly or by means of a special router hard-
ware. Generally speaking, xNet is used for short-
distance and router for long-distance communications
for efficient communication.

The rest of the paper is organized along the fol-
lowing lines. In the next section, we provide the
background needed for understanding the design fea-
tures of MasPal\V'S along with relevant data struc-
tures. Section 3 deals with the detailed description of
MasPaWS protocols. The experimental performance
of MasPaWS under varying conditions and parame-
ters is presented in Section 4, followed by conclusions.

2 TECHNICAL BACKGROUND OF MAS-
PAWS

2.1 Conflict Environment

The battlefield has two types of grids points, viz.,
level-0 and level-1. A level-1 grid is made up of N x N
level-0 grid points, where NV is parametrized as Grid-
Size in the implementation. Hence a level-0 grid point
is terrain at its finest resolution and uniquely specified
by coordinates (z,y). For the sake of convenience, we
will call a level-0 grid point as a “point”. Each point
is associated with a terrain feature, which is one of
plain, forest, water and mountain. Terrain features
affect line-of-sight and hence perception and move-
ment of vehicles. Each point has only one feature
and at most one tank (friendly or enemy).

2.2 Combat Vehicle

Tanks are the only fighting vehicles and each tank
has a gun. A tank can move in one of eight direc-
tions East, West, North, South, NorthEast, North-
West, SouthEast and SouthWest and rotate on its
vertical axis. The tanks have three speeds: Forward,
Forward-Half and Halted. A tank can reverse direc-
tion by turning 180°. The speed of a tank is affected
by the terrain it is currently in and moving into. The
tanks turn differently at different speeds. Each tank
has a limit of certain rounds of ammunition. After a
tank runs out of ammunition, reloading it with am-
munition involves a certain time delay. The gun has a
certain range, and when it fires at a target the damage
done obeys a certain probability function depending
on parameters like speeds of the tanks, distance, etc.
Tanks operate independently. No command and con-
trol or organizational structure is simulated in this
initial version. Representation of tactics is restricted
to requiring each tank to move toward the greatest
perceived threat. The battlefield is rectangular and
it is divided into a certain number of level-1 grids
depending on the user input. Each processor is re-
sponsible for the battle actions of the level-1 grid it
1s assigned.

2.3 Battle Parameters

To facilitate a detailed study of the simulation, we
have parametrized as many variables as possible
which arise in the conflict environment and vehicu-
lar characteristics. These are provided below.

2.3.1 Global Variables

GridSize defines the size of the battlefield. Grid-
Size*GridSize equals number of level-0 points mak-

MASPAWS 747

Ing up a level-1 grid. UnitSize is the maximum
number of (live) tanks (for each color) that can
be present in a level-1 grid. FullTankSpeed is
the number of level-0 points the tank can move at
full speed. GunRange is the range of the gun in
number of level-0 points. Assets denotes the ini-
tial number of rounds of ammunition in the tank.
TankStrength is the number of hits needed to de-
stroy a tank. PerceptionDepth denots the number
of level-1 grids the tank can perceive in any direc-
tion. BlueArmyStrength and RedArmyStrength in-
dicate the number of tanks in the blue army and
red army respectively. SimulationCycleLength is
the number of cycles of simulation where each cy-
cle consists of all the protocols namely, perception
and combat, combat update, migration and migra-
tion update. CombatCycleLength is the number
of cycles involving only perception and combat ac-
tions. MigrationCycleLength is the number of cy-
cles involving only migration actions. ReloadTime
is the time units taken for reloading the ammuni-
tion in a tank. BattlefieldLength is the length of
the battlefield in terms of number of level-1 grids.
BattlefieldWidth is the width of the battlefield
in terms of number of level-1 grids. NoOfGrids is
the number of level-1 grids that have tanks initially.
NoOfTerrainBlock is the number of terrain blocks
having special terrain features. The terrains are as-
sumed to be rectangular in shape.

2.3.2 Data Structures

The following data structures used in MasPaWS will
be needed to describe the protocols in Section 3.

Tank Descriptor includes following fields: Speed,
AssetsLeft, CurrentStrength, TankId, identifica-
tion number for a specific tank, TankPosition, the
level-0 point that the tank is on, Direction, and
Status. If Status is positive, it denotes the num-
ber of time units still needed for a complete reload.
Normally it is zero.

The data structure Hit is local to every PE and
records information about combat and it has the fol-
lowing fields: GridId, PE of the level-1 grid that
holds a tank, FoeTankId, the id of the tank, hits, the
no. of hits suffered by the tank, and FoeTankColor,
the color of the tank.

In addition, each PE has the following variables.
NoOfBlueTanks is the number of blue tanks on this
level-1 grid. NoOfRedTanks is the number of red tanks
within this level-1 grid. TerrainViewis a 2-D array of
the struct TerrainInfo of all level-0 points in a level-
1 grid. TerrainInfo has a TerrainValue field and a
TankPresent field. Terrain value is one of plain, for-

est, mountain and water. TankPresent is 1 when a
tank is on that point and 0 otherwise. RedTankInfo
is an array of red tank descriptors. BlueTankInfo
is an array of blue tank descriptors. HitListSize is
the number of tanks engaged. HitList is an array of
data structure tt Hit.

3 DESCRIPTION OF MASPAWS PROTO-
COLS

3.1 Perception and Combat Protocol

For each level-1 grid in parallel and for each of local
tank t; that has ammunition the following steps are
carried out:

1. Search from near to far and from left to right,
each level-1 grid within the PerceptionDepth for an
enemy tank ¢;, in the facing direction of ¢;. In each
grid, pick an enemy tank in the order of how the tanks
are listed. The reader may note that for the purposes
of the simulator, an engagment of a tank by another
is different from a hit.

2. If t; is visible to t, and ¢, is the first tank to
engage t;, then t; will engage t;. Otherwise, check
the HitList to see if ¢; was hit before. If it was, pick
a random number p between 0 and 1. If p is larger
than a certain threshold, t; engagest; and if it is a hit,
update the HitList. If p is smaller than the threshold
then t, looks at the next enemy tank. If ¢; is not on
the HitList, t, engages t; and puts t; onto Hitlist. If
t; is not visible, then search for the next enemy tank.

3. During engagement, first calculate the euclidean
distance D between two tanks. Then find the speed of
both the local tank and the remote tank and decrease
the AssetsLeft by 1. Use the formula

P = Round(100 x e—B><(GunRange)_“><D2 ~5),

to find the hit probability P (expressed in percent-
age). Then modify P using the following rules:

if local tank is at half speed, decrease P by 3; if
local tank is at full speed, decrease P by 5; if remote
tank’s speed is half, decrease P by 5; if remote tank’s
speed is full, decrease P by 10. Then pick a random
number R between 0 and 100. If R < P then it is a
hit, else it is not. The above formulas are based on
the work of Van Brackle (1992).

4. To check visibility the following line-of-sight
calculation is used. Let P, = (z1,%1) and P, =
(r2,y2) be two points on the battle grid. The line-
of-sight between P and P, should involve all of the
intermediate points lying on the straight line connect-
ing these two points. The closest approximation to
this on a grid is given by the following simple pro-
cedure: Let ¢ = |2 — 21| and y = |y2 — y1]. Let

748 Chandrasekharan et al.

g = gcd(z,y). Let éx = r/g and éy = y/g. Then
line-of-sight from say, P, is determined by checking
all of the grid points obtained by iteratively incre-
menting (or decrementing) r; by éz and y; by dy.
The gcd is calculated by a fast Euclid algorithm.

5. The casualty update is performed by each pro-
cessor running down the HitList of a remote grid and
updating the cumulative hits. More details can be
found in Chandrasekharan and Vemulapati (1994).

3.2 Migration Protocol

Tanks will gather information about the number of
friend and foe tanks within their PerceptionDepth
and set their FnemyDirection to where they are
needed most. Tanks will then migrate in that direc-
tion while avoiding other tanks (both alive and dead),
and hazardous terrain features (e.g., mountains, wa-
ter, and battlefield borders). The Migration Protocol
can be further broken down into two smaller parts
namely, Migration Planning and Migration Update.
The descriptions of these protocols are given below:

3.2.1 Migration Planning

Each tank gathers the number of friend and foe tanks
in its own PE as well as all surrounding PE’s within
their PerceptionDepth. This friend and foe informa-
tion is calculated as the difference between the num-
ber of Red Tanks and the number of Blue Tanks,
yielding the NetTanks in the current PE. Since the
simulation is spread across many PE’s on MasPar,
it will be necessary to communicate to surrounding
PE’s in parallel to get this information. After acquir-
ing all the NetTank information, an EnemyDirection
for each tank color (in each PE) is computed. The re-
sulting direction is based on where the friendly tanks
are outnumbered worst by the foe tanks. Each PE in
which the friendly tanks are not outnumbered by foe
tanks within the PerceptionRange, will be given an
EnemyDirection of None. The Migration Planning
Protocol accomplishes three main tasks — namely,
gather perception, compute enemy threat and find
enemy direction. More details can be found in Chan-
drasekharan and Vemulapati (1994).

3.2.2 Migration Update Protocol

All tanks will all start out with a speed equal to a
user specified FullSpeed and attempt to go in the En-
emyDirection. If turning is required, or difficult ter-
rain is encountered (e.g., forests, mountains or wa-
ter), TankSpeed will be decreased. Tanks may in-
crease TankSpeed again when leaving difficult ter-
rain, but TankSpeed decreased due to turning will

not be gained back until the next migration cycle.
Two tanks are not allowed to occupy the same level-
0 point. The migration update involves the following
steps.

1. Set initial tank direction: Tank information is
kept in a packed list. Each PE contains a Red Tank-
Info and a BlueTankInfo list. In addition to these
lists, a LocalRedTankInfo and a LocalBlueTankInfo
list are used to store information about each tank
during the migration cycle. Some of the variables in
these lists, and all of the variables in the local lists,
must be initialized at the start of a migration cycle.

2. Iterate through all tanks in each PE: The steps
listed below will be done for every tank present in the
RedTankInfo or BlueTankInfo lists.

3. Filter out all tanks that are dead, reloading, or
have no moves left.

4.Check For Collision Avoidance — Given a tank’s
current position and direction, check if a collision
will result if the tank moves in that direction. Col-
lisions can result from encountering a terrain type
of Mountain or Water. It is assumed that while
tanks can not occupy the same level-0 point, they
can maneuver around tanks in level-0 points with-
out causing collisions. If a collision results, the tank
will randomly choose a direction and continue to ro-
tate in that direction (while adjusting its LocalTank-
Info.MazTankSpeed accordingly), until it clears the
object, or reduces its LocalTankInfo. MazTankSpeed
to Halt. If a tank is attempting to move out of a PE,
it may be necessary to communicate to other PE’s
to get information about the terrain. This is done by
simply using the Connect and Router constructs in
MPL.

5. Examine the level-0 points in current direction
until a collision happens or if no moves are left.

6. Move the tank. Note that since tanks are being
moved in parallel, it is possible

7. Clean Up — There are chances that a move may
become blocked, either through other tanks occupy-
ing desired level-0 points, or, RedTankInfo and/or
BlueTankInfo list becoming full. When such block-
ing occurs, the tank’s original state is resumed and

the migration is postponed until the next cycle of the
migration protocol.

4 EXPERIMENTS AND RESULTS

4.1 Source Code

MasPaWS source code consists of a total of 17 pro-
gram files, a data file and a Makefile. The programs
have a total of, roughly, 3,700 lines code split into
over 30 functions. Apart from these, there is also a C

MASPAWS 749

“todal’ -

Total Time (in seca)
3

o 512 1024 1536 2048 2560 3072 3584 4036 4608 S$120
Total No. of Tanks

Figure 1: Number of Tanks vs Simulation Time

program (called MAKEDATA) which automatically
generates the data interactively with the user, for the
simulator to act upon.

4.2 Impact of Number of Combat Vehicles

Figure 1 illustrates the performance of MasPaWS$ for
increasing overall computational load, namely, the
number of tanks per army, keeping UnitSize invari-
ant at 4. The data in Figure 1 conforms to PE mesh
sizes of 64 x 64 on MP-2 for 100 simulation cycles.
The numbers of tanks cited are for each army.

Comments: MasPaWS has a linear performance
characteristic against a computational load which is
potentially quadratic. The robustness of the perfor-
mance stands even at 5000 tanks for each side.

The plots in Figure 2 show the impact of using
more processors for the same number of tanks. There
are 4 plots, each run with PE mesh configurations of
32x 32,32 x 64 and 64 x 64 on MP-2. The total num-
ber of tanks were varied in the range 8,000, 12,000,
16,000 and 20, 000 with a view to test MasPaWS per-
formance at high-end. Timings indicated are for 100
simulation cycles. The figure 3 shows the speedup
obtained on these data which is roughly linear point-
ing to an efficiency of over 85%. The reader may
also note the superlinear speedup for plots involving
20,000 and 16,000 tanks. Upon closer examination,
we found that this was due to the probabilistic varia-
tion of the runtime of MasPaWS protocols when the
same number of tanks were distributed on different
mesh sizes.

Scalability: Thisis a key concept in parallel process-
ing which describe s the performance changes as we
vary the experiments. We introduce two notions of
scalability which are somewhat related to each other.
We call one Data Scalability and the other Archi-
tecture Scalability. Data scalability refers to propor-

“Ge-dar” -—

12000 tanks

Simuition Time (in sec)
¥ 83885353886
3 §
///

IS

3
Number of Processors (x K)

Figure 2: No. of PEs vs Simulation Time (MP-2)

“6t-dal’ -—
20000 tanks

o 16000 tarka

12000 lanke.

Figure 3: No. of PEs vs Speedup

tional improvement in performance as data size is in-
creased keeping the number of processors an invari-
ant. Architecture scalability refers to proportional
improvement in performance as machine size (number
of processors) is increased for the same data size. Ex-
isting parallel simulators for battlefield are known to
suffer on both counts. But our experiments strongly
suggest that MasPaWS is both data and architec-
ture scalable for war simulation within the features
we have considered. It does come as a surprise when
many believe complex simulation is not suited for syn-
chronous, SIMD parallelism. In the coming months,
we hope to continue our study on this aspect more
closely.

4.3 UnitSize Versus Simulation Time

Using a total of 1600 tanks distributed on 13 rows
of the PE array of size 32 x 32, we varied the Unit-
Size (the maximum number of tanks of either color
that a level-1 grid can have) as 4,8,16,...,50. The
UnitSize is indicative of how crowded a level-1 grid
could become as the battle progresses. Hence it is a

750 Chandrasekharan et al.

Total Time (in secs)
n
2

25 % £ a0 46 s0
uUnestze

Figure 4: Simulation Time vs Unit Size

Porcoption Tkme (in sacs)

o 25 50 75 100 125 150 175 200 228 250
No ol Grids PerceNed/PE

Figure 5: Simulation Time vs No. of Tanks Perceived

dynamic load indicator and the Figure 4 shows the
effect. The plot is linear up to a certain point and
flattens out at the top. This is due to a combination
of tanks spreading out as battle progresses and tanks
being lost in combat.

4.4 Perception Complexity

The perception protocol allows for each attacking
tank in a current level-1 grid to potentially engage
a target tank in a neighboring grid. The perception
depth d is the parameter that controls how deep the
attacking tank will engage. The number of neighbor-
ing grids potentially engaged by an attacking tank is
given by the expression G = (d + 1)(2d + 1) which
are the number of grids in the facing direction of the
tank. Again in the worst-case scenario, an attack-
ing tank could examine O(G * UnitSize) target tanks.
We suspect that this worst-case scenario happens in-
frequently. Keeping the UnitSize invariant we varied
d from 2 to 10 and plotted the number of potential
Grids Perceived G versus the Perception Time. This
is shown in Figure 5, wherein we have plotted a pos-

120

“Sa-dal” -—

Tota) Tme (n secs)
2

16 20 u 28
GridSize

Figure 6: Simulation Time vs Grid Size

FoTTT dala” —— |

N

Simuation Time In Seconds
o
g

o s 10 6 2 2 EY
Tank Stength

Figure 7: Simulation Time vs Tank Strength

sible linear-fit.

4.5 Effect of GridSize

GridSize, as we know, is a measure of the size of the
terrain handed out to each processor at the start of
simulation. In fact, the size of the terrain grows as
the square of the GridSize. Terrain size contributes
significantly to perception and migration complex-
ity and hence to overall simulation time. In Fig-
ure 6, we have plotted GridSize versus simulation
time on a 32 x 32 mesh, keeping the total number
of tanks at 1024 with UnitSize of 4. In order that
FullTankSpeed not have any role in effecting early or
late combat (because of changes in terrain size), we
set FullTankSpeed=GridSize. The plot in Figure 6
bears out the quadratic growth rate in battle com-
plexity.

4.6 Strength of Tanks

In MasPaWS, the number of hits that is needed
to destroy a tank is parametrized by TankStrength.
Clearly, the only protocol that would be influenced

MASPAWS 751

by this parameter is the Combat protocol. During
the combat phase, if a tank is fired upon by many
tanks, the cumulative total needs to found at the end
of the phase, to assess the damage. This is relatively
time consuming on MasPar since the hit counts from
potentially different PEs have to be added, which
results in a communication overhead. When the
TankStrength is at its lowest value 1, the commu-
nication overhead is minimal. As the TankStrength
increases, the communication time increases also but
the tanks are becoming more and more invincible.
So after the initial increase , the communication time
flattens out (refer to figure 7).

The various effects of varying Assets, GunRange,
TankSpeed, and Terrain on the simulation time have
also been studied and can be found in Chandrasekha-
ran and Vemulapati (1994).

5 CONCLUSIONS

We presented the design, development and perfor-
mance of a parallel war simulator to exploit SIMD
architecture on several thousands of processors. From
our detailed study we have come to understand that
SIMD parallelism is well suited for complex and irreg-
ular simulation while achieving high efficiency. The
second generation prototype of MasPaWS will be
used to test multiple weapon types and battle strate-
gies.

ACKNOWLEDGMENTS

The first author would like to acknowledge the help
of Dr. Muralidhar Medidi for valuable discussions
and Dr. David Nicol for his useful e-mail replies.
This work is funded by Science Applications Inter-
national Corporation (SAIC) under contract number
#08-940086-92.

REFERENCES

Chandrasekharan, N., and Udaya B. Vemulapati.
“Massively Parallel War Simulator (MasPaWSs)”,
Tech. Report CS-TR-94-01, Dept. of Computer Sci-
ence, University of Central Florida, 1994.

Deo, N., M. Medidi, and S. Prasad. “Processor Al-
location in Parallel Battlefield Simulation”, Proc.
of the Winter Simulation Conference, pp. 718-725,
1992.

Fujimoto, R.M. “Parallel Discrete Event Simulation”,
Communications of the ACM, vol. 33, No. 10,

pp.31-53, 1990.

Gilmer, J.B. “Parallel Combat Simulation Research”,
Tech. Report. BDM/P0OS-88-341, BDM Corpora-
tion, February 1988.

Gilmer, J.B., and Hong. “Replicated State Space Ap-
proach for Parallel Simulation”, Proc. of the Win-
ter Simulation Conference, pp. 430-433, 1986.

Hawkins, T.C., and F. Thompson. “Quickscreen”,
Proc. of the Winter Simulation Conference, pp.
575-585, 1985.

Nicol, D.M. “Performance Issues for Distributed Bat-
tlefield Simulations”, Proc. of Winter Simulation
Conference, pp. 624-628, 1987.

Nicol, D.M. “Mapping a Battlefield Simulation onto
Message-Passing Parallel Architectures”, Proc. of
the SCS Multiconference on Distributed Simula-
tion, pp. 141-146, 1988.

Nicol, D.M., and R. Fujimoto, “Parallel Simulation
Today”, Manuscript, Department of Computer Sci-
ence, College of William & Mary, 1994.

Prasad, S.K. “Efficient Parallel Algorithms and Data
Structures for Discrete-Event Simulation”, Ph.D.
Thesis, Department of Computer Science, Univer-
sity of Central Florida, December 1990.

Van Brackle, D. “GISMO - (Game for Intelligent Sim-
ulated Military Opponents)”, Tech. Report, Insti-
tute for Simulation and Training, Orlando, 1992.

Weiland, F., L. Hawley, A. Feinberg, M.D. Loreto,
L. Blue, P. Reiher, B. Bechman, P. Hontalas,
S. Bellenot, and D. Jefferson. “Distributed com-
bat Simulation and Time-Warp: the Model and its
Performance”, Proc. of the SCS Multiconference on
Distributed Simulation, pp. 14-20, 1989.

AUTHOR BIOGRAPHIES

N. CHANDRASEKHARAN is an Assistant Pro-
fessor in the Department of Mathematical Sciences at
the Loyola University of Chicago. His principal areas
of research interest are in parallel algorithms, parallel
simulation, and combinatorial optimization. He is a
member of ACM and IEEE Computer Society.

UDAYA B. VEMULAPATI is an Assistant Pro-
fessor in the Department of Computer Science at the
University of Central Florida, Orlando, His research
interests are in the parallel scientific computing, par-
allel simulation, parallel and distributed operating
systems. He is a member of ACM and SIAM.

ALLEN T. IRWIN is a vice president and senior
engineer with Science Applications International Cor-
poration (SAIC) in Orlando, FL. His chief areas of
interest are simulations and training devices. He is a
member of ACM and the IEEE Computer Society.

