Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

DISTRIBUTED STOCHASTIC DISCRETE-EVENT SIMULATION
IN PARALLEL TIME STREAMS

Krzysztof Pawlikowski
Victor W. C.Yau
Don McNickle

University of Canterbury
Christchurch
NEW ZEALAND

ABSTRACT

Quantitative stochastic simulation suffers from the fact
that sound simulation studies require very long runlength
to obtain the results with sufficient accuracy. In this pa-
per we look at traditional approaches to distributed
quantitative stochastic simulation and propose a new
scenario, Multiple Replications in Parallel Time Streams
(MRIP), that solves the problem in an efficient way. An
implementation of MRIP in a simulation package
AKAROA is also described. AKAROA accepts ordinary
(non-parallel) simulation models and creates automati-
cally the environment required for running MRIP on
workstations of a local area network. Presented results
show that MRIP offers linear speedup of simulation.
Limitations of this scenario for running distributed quan-
titative stochastic simulation are also discussed.

1. INTRODUCTION

An inherent problem of stochastic simulation is that sim-
ulation of even moderately complex models can be com-
putationally intensive and require very long simulation
runs. The obvious solution is to speed up simulation by
executing it on a multiprocessor or distributed computer
system. Traditionally, distributed or parallel stochastic
simulation has meant Single Replication in Parallel
(SRIP), based on many processors cooperating in execut-
ing a single replication of a simulated system. An alterna-
tive scenario is to run Multiple Replications in Parallel
(MRIP), with processors engaged into running their own
replications of the simulated system but cooperating with
central analyzers (one central analyzer for each perfor-
mance measure analyzed) that are responsible for observ-
ing the stopping criteria of the simulation.

Research in distributed and parallel simulation has
been almost entirely focused on SRIP. In this scenario, a
simulation process and/or simulation model is partitioned
between a number of processors. When a simulation pro-
cess is distributed then this distribution is done at a func-
tional level, and the logical topology of interprocessor
connections may reflect different functional elements of

723

the simulation (event set processing, input/output pro-
cessing, etc.); see eg. (Biles, Daniels and O'Donnell
1985). It is obvious that this method cannot offer a sub-
stantial speedup in itself, since the degree of such dis-
tributiveness is limited.

The second option for SRIP is to partition a given
simulation model into a set of submodels to be simulated
at different processors, of tightly or loosely coupled mul-
tiprocessor systems. The processors responsible for run-
ning processes related with different simulation submod-
els occasionally have to synchronise the advance of sim-
ulated processes. Many different methods have been pro-
posed to achieve such a synchronisation; see €.g. survey
by Fujimoto (1990). Generally speaking, it is achieved
by exchanging timestamped messages between partici-
pating processors. Reasonable speedup is possible, pro-
vided that a given simulation model is highly decompos-
able. Unfortunately, this feature is not frequently ob-
served in practise, thus the efficiency of this approach is
strongly application-dependent (Wagner and Lazowska
1989).

MRIP has focused relatively little attention [see papers
by Heidelberger (1986), (1988), Glynn and Heidelberger
(1991), Pawlikowski and Yau (1992), Rego and
Sunderam (1991), (1992), Sunderam and Rego (1991),
and Yau and Pawlikowski (1993)], despite that, as our
experience has shown, it is an attractive alternative sce-
nario for quantitative stochastic simulation that poten-
tially offers good speedup, linear with the number of
processors involved. Also, considering statistical proper-
ties of results when applying SRIP and MRIP in steady-
state simulation, it is possible to show that the latter sce-
nario is more efficient than the former, in the sense of the
mean squared error of final estimates, if the problem of
the initialization bias is effectively solved (Heidelberger
1986).

In this paper we report results of our research project
on developing a fully automated version of MRIP and its
implementation in AKAROA (a user-friendly package
for running distributed quantitative stochastic simula-
tion), started in 1991. It solves both main problems of
such a simulation, by applying fully automated control of

724 Pawlikowsk1, Yau, and McNickle

accuracy of the final results (principles of which are
summarised in Section 2), and fully automated paral-
lelisation of simulation for concurrent execution on
many procesors, see Section 3. The potentials and
limitations of our version of MRIP, together with results
of experimental studies of AKAROA are reported in
Section 4. While AKAROA has many features in com-
mon with EcliPse discussed by Rego and Sunderam
(1991), (1992), and Sunderam and Rego (1991), it
creates a very different environment for running simu-
lation. A user, having prepared a sequential simulation
program has only to declare the required level of
precision of the final results, e.g. 5%, and the maximum
possible length of the simulation run (say, no more than
10 000 000 observations to be collected). All other
decisions and functions are transparent for users.
Without a loss of generality we discuss simulation
models based on queuing networks, and the application
of quantitative stochastic simulation for studying per-
formance for simulated systems in steady-state.

2 PRELIMINARIES: STATISTICAL ASPECTS
OF NON-DISTRIBUTED STEADY-STATE
SIMULATION

Any performance evaluation studies of systems based on
quantitative stochastic simulation should include proper
statistical analysis of output data. To control the preci-
sion of steady-state estimators, the final estimate of an
analysed parameter ® should be determined together
with its confidence interval (6-Aj, 6+A3), at a given
confidence level 1-a, i.e. by P(0 - A1<0<6 + A))=1-q,
where 0 is the final estimate of ®, and (Ap+A1) is the
width of the confidence interval. The precision of esti-
mates can be then measured by £ = 0.5 (A2+A1)/6,
known as the relative precision. In the context of quanti-
tative steady state simulation, the precision of the final
results can be controlled if it is sequentially checked at
consecutive checkpoints, and compared with the (worst)
acceptable level of precision, gqmax. The simulation is
stopped at a given checkpoint if the stopping criterion
(the current value of relative precision £ being not
greater than e ax, for given emax, O<emax<l) is satis-
fied for the first time.

This approach can be easily applied when analyzing
performance measures using cumulative estimators. The
simplest performance measure of this type is the sample
mean [y, that, for a given sequence of observations x1,

X2, ..., Xp, is estimated by the arithmetic average 6= X(n)
=(1/n)(x]+x2+...+xp). In this case, by the Central Limit

Theorem, A} =A2 = th.1 1.a/2 O[X(m)], where G[X(n)] is

the estimator of standard deviation of X(n) and ta-1,1-0/2
is the (1-0.5a) quantile of Student t-distribution. The
main analytical problem is to get a reliable estimate of

ol[)_((n)]. since the classical formulae require that

collected observations x], x7, ..., xp are realizations of
independent and normally (or at least identically)
distributed random variables Xj, X, ..., Xp. Unfortu-
nately, observations collected during typical stochastic
simulations are neither independent or identically distri-
buted, but usually highly correlated.

A number of techniques for accurate estimation of

02(X(n)] have been proposed for non-distributed sequen-
tial simulation; see surveys by Law (1983) and
Pawlikowski (1990). Our studies of these techniques
(Pawlikowski and Yau 1991) led us to selection of
SA/HW [the method based on spectral analysis, in its
version proposed by Heidelberger and Welch (1981)] as

the method of analysis of o2[X(n)] in fully automated
quantitative steady-state simulations. SA/HW produces
reliable estimates in the sense of their coverage
(correspondence between the theoretical and experimen-
tal confidence levels) provided that simulated systems
are not too heavy loaded, ie. are utilized no more than
90%. This is the common weakness of all techniques de-

veloped for automated analysis of o2[X(m)].

SA/HW requires that collected observations belong to
stationary time series, thus observations collected during
initial transient periods of analysed processes should be
discarded. For detecting the length of initial transient
period one can use a sequential stationarity test such as
those surveyed in (Pawlikowski 1990) or (Stacey,
Pawlikowski and McNickle 1993). Under SA/HW only
one (long) simulation run is executed at each setting of
input variables. A useful practical feature of this tech-
nique is that it can work with reduced data sets. During
the whole course of a single simulation, we can work
with a fixed number of (aggregated) output data points,
being batch means calculated over batches that have their
size increased as new observations are collected.

3 DISTRIBUTED QUANTITATIVE STOCHASTIC
SIMULATION

Traditionally, applications of distributed, parallel pro-
cessing in the area of stochastic simulation have focused
on speeding up execution of single replications of simu-
lation models. Another possible approach is to speed up
such simulation experiments by generating statistical
data in parallel, i.e. running replications of the simulated
system in parallel, on many processors, under control of
a global analyzer(s) responsible for analysing submitted
data and detecting when the stopping condition of simu-
lation is satisfied. Here, these two scenarios of distributed
quantitative stochastic simulation are called Single
Replication in Parallel (SRIP) and Multiple Replications
in Parallel (MRIP), respectively .

Distributed Stochastic Simulation 725

3.1 Single Replication in Parallel

This can be achieved at a functional level of simulation,
or it can be done by distributing the simulation model.
These two solutions we call here briefly as SR/P.F and
SRIP .M, respectively. In the former, the logical topology
of interprocessor connections reflects different functional
elements of the simulation and such activities as random
variate generation, event list manipulation, and statistical
analysis of output data are performed at separate proces-
sors. But the extent of functional distributiveness of any
simulation is generally not significant, cf. (Comfort and
Miller 1981), (Briner 1988). Let us also note that the
fine granularity of decomposition of support functions
needed for their parallel execution necessitates frequent
communication among subprocesses. Apart from con-
suming processor power, interprocess communication
puts limitations on multiprocessor architectures that can
be used in such applications. Communication between
processes on different processors may substantially in-
crease total traffic on the time-shared bus and/or multi-
ple-bus of multiprocessor systems to such extent that it
becomes the bottleneck, increasing the amount of time
the processors are blocked waiting for access to a com-
mon memory module. Even if the number of shared
buses were increased, contention for memory (processors
queue for accessing common memory module(s)) can
create another bottleneck limiting effective processing
power. Thus, one should not expect that this strategy al-
lows to achieve a significant speedup (Burk 1990).
Because of that, SRIP.F is not satisfactory efficient to be
used on its own.

In SRIP.M, speedup is achieved by executing (inter-
dependent) parts of the simulation model in parallel, at
different processors. It is done by abandoning the con-
cept of shared objects, such as the global simulation
clock and event list, and using a synchronisation algo-
rithm instead, to ensure that causality of events is main-
tained. The synchronisation of parallel (sub)streams of
events simulated at different processors is achieved by
exchanging time-stamped messages, in an attempt to
protect against causality errors. For this purpose, either
an optimistic or conservative synchronisation algorithm
can be used; see (Fujimoto 1990).

There are natural weaknesses and limitations on effi-
ciency of SRIP.M. Firstly, it has been shown that a high
structural parallelism of simulation models does not im-
ply similar high parallelism in the simulation of that
model. For example, Wagner and Lazowska (1989)
showed that the maximum speedup achievable when
simulating a simple computer system (a CPU, two 1/O
devices and N terminals forming a closed queueing net-
work) cannot be greater than 3.7. On the other hand,
there are reports of many successful applications of dis-
tributed stochastic simulation executed in SRIP.M sce-
nario, using either optimistic and conservative synchroni-
sation algorithms. For example, a speedup as high as
1900 was demonstrated on a 16384 processor Connec-

tion Machine (Lubachevsky 1989). Generally, an exper-
ienced simulator should be able to obtain a good speed-
up, provided that a given simulation model is highly
decomposable. Unfortunately, this feature is rarely
observed in simulation practise. Thus, the success is
strongly application-related. And. if deadlocks and
causality errors occur too often, or mechanisms for
protection against them are too complicated, the resulting
simulation can be even slower then non-distributed one.
This scenario of distributed stochastic simulation is also
generally not well suited for running on distributed
computer systems, such as networks of workstations,
since there are substantial costs connected with inter-
process communication. SRIP.M is also not fault-tole-
rant. If one processor or workstation running a sub-task
fails, then the simulation fails too, due to causality
between subtasks.

3.2 Multiple Replications in Parallel (MRIP)

In the light of these restrictions and limitations of SRIP,
we have recognized that the duration of quantitative
stochastic simulation directly depends on the time needed
for collecting the required number of observations. If a
few performance measures are studied during one simu-
lation experiment, then the simulation is finished when
all sequences of observations (one sequence for each
performance measure) contain sufficiently many data
items. Thus, a simple way for increasing the rate at
which observations are generated is to produce them in
parallel time streams, i.e. to run statistically different
replications on many processors, using the same simula-
tion model. One can view these simulation replications
run at different processors as simulation engines work-
ing in a team and producing samples of output data (one
sample per each performance measure). Observations
generated by different simulation engines, but represent-
ing values of the same performance measure, are submit-
ted to the global analyser responsible for analysing this
performance measure. The current precision of results are
checked at consecutive checkpoints. The analysis of each
performance measure is then continued until its stopping
condition is not satisfied. All simulation engines run as
long as the analyses of all performance measures is fin-
ished. At that instant of time all simulation engines are
stopped and global analysers produce the final results.
Distributed simulation in MRIP can be carried on with
any simulation model, either on multiprocessor comput-
ers or multicomputer networks. Very little is know about
estimators, even about estimators of sample mean, that
could be applied in MRIP. Parallel versions of the
method of Independent Replications, in the context of
non-steady state simulation were analysed by
Heidelberger (1988) and Glynn and Heidelberger (1991).
It was shown that an extreme care has to be taken when
selecting estimators since some obvious choices were
shown to guarantee convergence to the wrong value
when the number of processors increases. On the other

726 Pawlikowski, Yau, and McNickle

hand, studying properties of MRIP as the scenario for
running steady-state simulation, it was shown that MRIP
can be more efficient that SRIP.M if the problem of ini-
tial transient is effectively solved Heidelberger (1986).
From our previous experience in non-distributed
stochastic simulation, we have decided to adopt the
method of SA/HW (discussed in Section 2) also in dis-
tributed simulation, in the MRIP scenario. Our proposal
is a parallel generalization of SA/HW, Spectral Analysis
in Parallel Time Streams (SA-PTS). According to SA-
PTS, P logically equivalent instances of a simulation
model are launched at P processors at the beginning of
the simulation. Each instance is run in a parallel time-
stream, using different sequence of (pseudo)-random
numbers. At the beginning, stationarity tests are applied
locally within each replication, to determine the onset of
steady state conditions in each time-stream separately,
and the sequential SA/HW method is used to estimate
the variance of local estimates at consecutive check-
points. At each checkpoint the current local estimate and
its variance are sent to the global analyser which com-
putes the current value of the global estimate and its pre-
cision. Thus, when the simulation engine i reaches its
check point j, it sends a message containing the triple

{n;,)—(i(nj), V= GZD_(i(nj)}. number of observations, the
mean and its variance, to the global analyser responsible

for analysis of X. Thus, the global precision of each es-
timator is analysed following partially ordered sequence
of checkpoints (checkpoints associated with the same
simulation engine are ordered in time, but we get a ran-
domly ordered sequence of checkpoints from different
processors as they followed by a given global analyser).
If P processors are used in a given simulation, each time
when the global analyser is active it can use up to P par-
tial estimates of variance, {Vij1.V2jp+ e Vpjp}. sub-

mitted from independent replications of the simulated
process that reached the checkpoints j 1-Jp .+ - andjp,

respectively. When p of P processors have reached at
least the first checkpoint of the process they simulate, the
pooled mean is estimated over k= n); 1+02j0+.+0pin
observations, i.e. using nj il data collected by processor
1 at its checkpoint j{, i) data collected by processor 2
at its checkpoint jp, etc. Natural estimators with good

statistical properties to use for the mean value of the re-
sponse and its variance are

R lit KB LD+ i X(App)
’ i1+ Hg
11 PIp

= VAT VAT
2 = (@ Vi ++op)4V

, and

Let us note that for determining the confidence interval
for the sample mean f1x, one has to know the probability

distribution of (X(k)-px)/ GS ApTs[X (). This is approxi-
mately governed by Student t-distribution with p times d
degrees of freedom, where d equals the number of de-
grees of freedom of t-statistic coming from one replica-
tion. Let us note the obvious fault-tolerance of MRIP re-
garding simulation engines. Sudden loss of one or more
processors running simulaiton engines is not catastrophic
as long as at least one simulation engine remains able to
continue submitting data to the global analyser(s).

At this stage no theoretical studies of SA-PTS are
available. But our experimental results show that it pro-
duces good estimates in the sense of experimental con-
verage of the final confidence intervals. SA-PTS has
been implemented in AKAROA, our simulation package
for rapid modeling, automatic generation of multiple
processes and process control for concurrent stochastic
simulation in MRIP scenario.

3.3 An Implementation of MRIP in AKAROA

AKAROA (a simulation package for automatic genera-
tion and control of processes for parallel stochastic simu-
lation) accepts ordinary (non-parallel) simulation pro-
grams, and fully automatically creates the environment
required for running MRIP on workstations of a local
area network. Our main considerations when selecting a
development language and designing programming inter-
face were simplicity, space and code efficiency, as well
as compatibility with existing sequential simulation pro-
grams. Recognizing the naturality of the object-oriented
approach in constructing simulation models by means of
hierarchically encapsulated classes of objects, AKAROA
is written in C++. A user of AKAROA is required to add
only one extra line of code to his/her sequential simula-
tion program before AKAROA transparently parallelizes
it. Thus, users do not even need to be aware of the exis-
tence of multiple (parallel) simulation engines and con-
trol processes during simulation, since their creation, lo-
cation (machine and port addresses), cooperation, and
inter-machine interprocess communication, are hidden
from users. AKAROA consists of three modules:
Control, responsible for controlling simulation run-time
and analysis of output data collected during MRIP-type
steady-state simulation; Parallel Simulation Manager
(PSM), responsible for automatic initialization of parallel
simulation processes, process management and interpro-

cess communication; and Build, a module which can be

used for speeding up construction of typical simulation
models.

Sequential precision control services are arranged by
declaring an object for output data analysis. Its member
function responsible for precision control is later called
whenever a new observation is recorded. The function
accepts the value of a new observation as a parameter
and returns one of two values that either orders the simu-
lation to be continued (desired precision of estimates has
not been achieved) or to be terminated (all estimates have

Distributed Stochastic Simulation 727

reached the required level of precision). Such implemen-
tation of MRIP is semantically identical to a normal non-
distributed simulation; only the type of object that needs
to be declared is different. The syntax for object declara-
tion and calls of object's member functions are also iden-
tical to those in the non-parallel case. Internal binding of
simulation processes to various control processes is per-
formed dynamically, yielding a flexible and fault-tolerant
system, featuring totally transparent parallelization from
the users’ point of view, both in a semantic and a syntac-
tic sense.

PSM automatically creates and maintains an environ-
ment in which MRIP can be executed, as well as paral-
lelizes and runs the simulation. Launching one simulation
replication by activating a simulation program equipped
with the necessary objects of Control and PSM creates a
simulation engine. PSM provides dynamic binding
between simulation engines and global control processes.
Development of an efficient, portable and flexible
Interprocess Communication (IPC) subsystem of PSM
was regarded as the critical factor for achieving high ef-
ficiency in AKAROA. 1t is known that a careless imple-
mentation of IPC can even reduce speed of parallel pro-
cessing, if high IPC overhead is generated. UNIX facili-
ties for implementing IPC mechanisms include streams,
pipes, socket-pairs, and various types of sockets
(Quarterman, Silberschatz and Peterson 1985).
AKAROA’s IPC subsystem must support communicat-
ing processes located on different machines, and possibly
belonging to different file systems. The IPC selected for
AKAROA uses an extension of a (synchronous) Remote
Procedure Call (RPC) mechanism decribed by Brian,
Anderson and Lazowska (1990). and appears as an in-
termachine interprocess communication based on UNIX
Internet domain datagram-type sockets that allow for
fully file-less exchange operations.

4 PERFORMANCE OF MRIP

Dynamic properties of AKAROA, and the quality of
SA-PTS estimators, were tested in a series of 1600
benchmark simulation experiments using P=1,2, 4, and 6
processors. Initial studies of AKAROA's performance
were done on a local computer network (a multiprocessor
SUN Server with two SPARC CPUs, various SUN 4 and
SUN SPARC workstations) based on Ethernet. Apart
from the obvious differences in processing power be-
tween the workstations available for our investigations,
none of the machines was dedicated solely to
AKAROA’s use.

In this situation, simulation experiments that we con-
ducted for evaluating AKAROA on single processors
(P=1) were done using the fastest machine available,
during its low load periods, while all multimachine ex-
periments involved a mix of the fast and lower rated
workstations during normal working hours. Further, the
priority of simulation processes engaged in parallel
simulations was lower, to accommodate other users of

the network, while the non-parallel simulations were run
at the highest priority level. Thus, the results reported
here are very conservative.

All results presented here were obtained from steady-
state simulations of M/M/1/ee queueing systems with
traffic load p=90%. Each result is an average over 200
experiments. The measure estimated was the mean time
spent in the system. The required level of precision of fi-
nal estimates was < 5%, at the 0.95 level of confidence.
We tested also two different strategies for determining
the distance between consecutive checkpoints during the
simulation: one in which that distance was geometrically
increasing and another one, in which it was kept con-
stant. While former strategy is typically used in sequen-
tial steady-state simulations run on single processors, our
results clearly show that the latter strategy (to keep
checkpoints uniformly spaced) is much better in the
MRIP scenario.

The results showing the real time speedup of simula-
tions achieved with AKAROA, as a function of the num-
ber of workstations used, are depicted in Figure 1 and 2.

6+ : : }
Q
2
©
()
8
wn

1 2 < 6
No of Processors (P)
Figure 1: Real time speedup vs the number of

processors employed. Geometrically spaced checkpoints.

6 + t t
5_
4 .
S
e 37
2
o
2
1..
0 -
1 2 4 6
Number of Processors

Figure 2: Real time speedup vs the number of processors
employed. Uniformly spaced checkpoints.

728 Pawlikowski, Yau, and McNickle

Both figures show the nearly linear speedup offered by
AKAROA in the case of geometrically spaced check-
points, and even better speedup in the case of uniformly
spaced checkpoints.

The CPU-times, normalized to the average time re-
quired for generating an observation, for different levels
of parallelization, are compared in Figure 3 and 4. There
are three results for each value of P: the average
minimum run length of a simulation engine within 200
repeated MRIP simulations; the average number of
observations per simulation engine produced during an

| |
T T -
me # Av.Minimum Rep. Length é_
] B Overall Av. Rep. Lengths]
B Av. Maximum Rep. Length]
i
2 3
< T
[E
)]
8 El
o .
Yt pu
o E
=}
Z L

2 4
No. of Processors (P)
Figure 3: Speedup measured by reduction in CPU time

vs the number of processors employed. Geometrically
spaced checkpoints.

1 |
T

E3 Av. Minimum Rep. Length
E Overall Av. Rep. Lengths
E Av. Maximum Rep. Length

|||{|||l|||||1:|1||

No. of Observations x 10 °

2 4
No. of Processors (P)

Figure 4: Speedup measured by reduction in CPU time
vs the number of processors employed. Uniformly
spaced checkpoints.

experiment (averaged over 200 replications); and the
average maximum run length of a simulation engine.
Comparing the maximum replication lengths as a
function of P, one can see that the reduction in CPU time
with P workstations is greater than 1/P, suggesting super-

linear speedup (!). This may be due to the fact that
AKAROA uses CPU time more efficiently, and n
observations generated by P workstations in parallel case
(P>1) have higher entropy than if they were collected
from a single replication. The results also show that using
uniformly spaced checkpoints we can achieve substan-
tially shorten simulation runs.

Finally, Figure 5 and 6 show the average numbers of
messages (datagrams) exchanged in AKAROA as a
function of P. One can see, the communication overhead
grows slower than linearly with the number of communi-

140 t } t

120+

No. of Datagram Transmissi

1 2 4 6

No. of Processors (P)

Figure 5. Average number of datagrams exchanged vs
the number of processors employed. Geometrically
spaced checkpoints.

1200 f f t

1000 -+

800

600 |

g

Number of Datagram Transmissions

S
o
|
U

1 2 4 6
Number of Processors

Figure 6: Average number of datagrams exchanged vs

the number of processors employed. Uniformly spaced
checkpoints.

cating processors in the case of geometrically spaced
checkpoints, and becomes practically constant for uni-
formly spaced checkpoints, showing a clear advantage of
MRIP over traditional SRIP scenario, and a good effi-
ciency of our IPC subsystem implemented in AKAROA.

Distributed Stochastic Simulation 799

4.1. Limitations of MRIP.

It is possible that when MRIP is applied in a heteroge-
nous network, with one processor much faster than oth-
ers, slower processors may not be able to contribute in
parallel production of data since none of them would
reach its first checkpoint when the fastest processor stops
the whole simulation by generating the required number
of observations.

On the other hand, the best speedup should be ob-
served in homogeneous networks, with all processors
(simulation engines) operating at the same speed. It is
possible that in such situation all P processors would
equally contribute in MRIP simulation, submitting, on
average, the same number of observations to global
analysers. Since the number of observations needed to
obtain the required precision of results is fixed, at some
stage each processor will be able to reach only the first
checkpoint, and the simulation will be stopped. Let Pyax
be the minimum number of processors when this hap-
pens. In such a situation, adding more processors would
not increase the speedup that has already reached its
limit value equal Ppax. The only effect of having more
data (generated by P>Pmax processors) would be better
final precision of results.

If n] is the mean number of observations, per simula-
tion engine, needed to reach the first checkpoint, and
Nmax is the total number of observations needed for
stopping the simulation with the required precision of re-
sults, then Pmax=[Nmax/n]7 Basing on our experience
it means that simulating such dynamic queueuing system
as M/M/1, loaded in 90 %, for typical values ny=1 000,
and Nmax=1 000 000. we get Pmax=1(m. When simu-
lating data communication networks such as DQDB (a
standard fiber optic metropolitan area network operating
at 150 Mbps) loaded in 50 %, for typical values n}=500
and Npax=50 000, one could achieve the maximum
speedup Pmax=100. These observations are yet to be
confirmed by experimental studies.

Let us note that if a distributed simulation originally
based on SRIP is speeded up by factor S , then applying
additionally MRIP, i.e. parallelizing P times a simula-
tion model already distributed according to SRIP.F or
SRIP.M, will additionally increase the speedup P times,
i.e. the final speedup would be PS, as long as P<Pmax.

5 CONCLUSIONS

We have discussed the main features of a "forgotten”
scenario for distributed quantitative stochastic simula-
tion, named Multiple Replications in Parallel, and com-
pared it with traditional Single Replication in Parallel.
The most important features of MRIP are its universality,
as it can be applied without exemption to any simulation
model, and the high level of speedup it offers.

We have proposed a new technique of output data

analysis (SA-PTS) and implemented it in AKAROA, our
simulation package for automatic generation and control
of processes for parallel stochastic simulation. The selec-
tion of SA/HW for sequential analysis of simulation out-
put data was motivated by our intention of full automa-
tion of distributed quantitative steady-state simulation.
This eliminated for example the method of regenerative
cycles and independent replications, both adopted in
EcliPse by Rego and Sunderam (1991, 1992) and
Sunderam and Rego (1992), that require some decisions
to be undertaken by simulators before a simulation, and,
to make these decisions properly, one should know well
the dynamics of the simulated system. Further design is-
sues of AKAROA, as well performance evaluation of
SA-PTS are under our current considerations.

ACKNOWLEDGEMENTS

The authors thank Dr Gill Bryant for her help in the final
preparation of the paper. This research was partially sup-
ported by the Research Laboratories of Australian and
Overseas Telecommunic-ations Co. in Melbourne,
Australia. The permission of the Managing Director of
AOQOTC to publish this paper is hereby acknowledged.

REFERENCES

Biles, W.E, C.M. Daniels, and T.J. O'Donnell.
1985."Statistical Considerations in Simulation on a
Network of Multicomputers. Proc. 1985 Winter
Simulation Conf., IEEE Press: 388-393.

Brian N.B., T.E.Anderson, and E.D.Lazowska. 1990.
"Lightweight Remote Procedure Call". ACM Tran-
sactions on Comput. Systems 8: 37-55

Briner, J. 1988. "A Framework for Analysing Parallel
Discrete Event Simulation". Proc. Int. Conf. Manag.
and Perf. Evaluation of Computer Systems, CMG'88:
180-185.

Burk, W.H. 1990. "Limitations to Parallel Processing".
Proc. Sth Int. Phoenix Conf. Computers and Com-
munications, IEEE Press: 86-93

Comfort, J., and A.Miller. 1981. "Considerations in the
Design of a Multiprocessor-Based Simulation
Computer”. In Modelling and Simulation on Micro-
computers, ed. L. Leventhal, So. of Computer Simula-
tion, laJolla, 1981.

Fujimoto, R. 1990. "Parallel Discrete Event Simulation".
Communications of the ACM, 33: 30-60

Glynn, P.W., and P.Heidelberger. 1991. "Analysis of
Parallel Replicated Simulations under a Completion
Time Constraint”. ACM Transactions on Modeling
and Computer Simulation, 1: 3-23.

Heidelberger, P., and P.D. Welch. 1981. "A Spectral
Method for Confidence Interval Generation and Run
Length Control in Simulations". Communications of
the ACM 25:233-245.

Heidelbereger, P. 1986."Statistical Analysis of Parallel
Simulations”. Proc. 1986 Winter Simulation Conf.,

730 Pawlikowski, Yau, and McNickle

IEEE Press: 290-295

Heidelbereger, P. 1988. "Discrete Event Simulations and
Parallel Processing: Statistical Properties”. SIAM
Journal of Statistical Computing 9: 1114-1132

Lubachevsky, B.D. 1989. "Efficient Distributed Event-
driven Simulations of Multiple-Loop Networks".
Communications of the ACM 32: 111-123

Pawlikowski, K. 1990. "Steady-State Simulation of
Queueing Processes: a Survey of Problems and Solu-
tions". ACM Computing Surveys 22: 123-170.

Pawlikowski , K., and V.Yau. 1991. "Independent
Replications versus Spectral Analysis of Output Data
in Steady-State Simulation of High Speed Data Net-
works". Proc. 6th Australian Teletraffic Research
Seminar, University of Wollongong Press, Australia:
322-330.

Pawlikowski, K., and V.Yau. 1992. "An Automatic
Partitioning, Runtime Control and Output Analysis
Methodology for Massively Parallel Simulations".
Proc. European Simulation Symposium, ESS'92, So.
of Computer Simulation: 135-139

Quarterman, J.S., A.Silberschatz, and J.L Peterson.
1985. “4.2BSD and 4.3BSD as Examples of the UNIX
System”, ACM Computing Surveys 17: 379-418

Rego, V.J., and V.S.Sunderam. 1991. "Concurrent
Stochastic Simulation: Experiments with Eclipse".
Proc. Int. Conf. Perferformance of Distributed
Systems and Integrated Communication Networks:
253-271.

Rego, V.J., and V.S.Sunderam. 1992. "Experiments in
Concurrent Stochastic Simulation: the Eclipse
Paradigm”. Journal of Parallel and Distributed Com-
puting 14: 66-84

Stacey, C., K. Pawlikowski, and D. McNickle. 1993.
"Detection and Significance of Initial Transient Period
in Quantitative Steady-State Simulation". Proc. 7th
Australian Teletraffic Research Seminar, Melbourne,
RMIT Press: 193-202

Sunderam, V.S., and V.J.Rego. 1991. "EcliPse: a System
for High Performance Concurrent Simulation”. Soft-
ware-Practise and Experience 21: 1189-1219

Wagner, D.B., and E.Lazowska. 1998. "Parallel
Simulation of Queueing Networks: Limitations and
Potentials". Performance Evaluation Review 17: 146-
155.

Yau, V., and K.Pawlikowski. 1993. "AKAROQA: a
Package for Automatic Generation and Process
Control of Parallel Stochastic Simulation". In Proc.
16th Australian Computer Science Conf., ed. G.Gopal
et al., Australian Computer Science Communications:
15:71-82

AUTHOR BIOGRAPHIES
KRZYSZTOF PAWLIKOWSKI is a Senior Lecturer

in the Department of Computer Science at University of
Canterbury, New Zealand. His research interests include

quantitative stochastic simulation, and performance
modelling and evaluation of telecommunication net-
works. He received a PhD in Computer Engineering
from the Technical University of Gdansk, Poland, in
1975. Senior member of IEEE

VICTOR W. C. YAU is currently pursuing a PhD stud-
ies in the Department of Computer Science, University
of Canterbury, New Zealand. His interests include simu-
lation, computer architecture, telecommunication net-
works, and distributed systems. A student member of
IEEE.

DON MCNICKLE is a Senior Lecturer in Management
Science on the Department of Management, University
of Canterbury, New Zealand. His research interests in-
clude queuing theory and statistical aspects of simula-
tion. He received a PhD in Mathematics from the
University of Auckland, New Zealand, in 1974. Member
of ORSA.

