Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

DEADLOCK DETECTION AND RESOLUTION IN SIMULATION MODELS

Murali Krishnamurthi
Amar Basavatia
Sanjeev Thallikar

Department of Industrial Engineering
Northern Illinois University
DeKalb, Illinois 60115, U.S.A.

ABSTRACT

Even though simulation models are validated and
verified during the development process, a problem
known as "deadlock" can still occur and go unnoticed in
large, complex simulation models. Of all the commercial
simulation languages currently in use, none can
currently detect or prevent deadlocks and this can lead to
incorrect results and decisions.  Unfortunately, a
deadlocking situation will not show up as a syntax or
run time error since it is a modeling error. In this paper,
the issues related to deadlock detection and resolution in
discrete event simulation models will be analyzed and an
algorithm for detecting deadlocks in simulation models
will be presented and illustrated with examples. Issues
related to deadlock resolution will also be discussed.

1 INTRODUCTION

Simulation involves the building and execution of
models of systems and the analysis of their output
statistics for the purpose of making decisions regarding
the systems. The conceptualization, design, and
development of simulation models is often a complex
and time-consuming task. In a simulation study, the
correctness of a simulation model is determined through
two distinct steps, namely, Validation and Verification.
Verification is concerned with determining that a
simulation program performs as intended and this may
involve debugging the program. Validation is concerned
with determining whether a simulation model is an
accurate representation of the system under study (Law
and Kelton 1991) and this may involve comparing the
behavior of the model with the real system. Even
though these steps are generally taken to ensurc the
correctness of simulation models, a problem known as
"deadlock" can still occur in simulation models, as well
as in real systems.

708

Several definitions of deadlock exist and most of
these definitions have come from operating systems and
distributed database systems literature. Isloor and
Marsland (1980) state that "a deadlock arises when
members of a group of processes which hold resources
are blocked indefinitely from access to resources held by
other resources within the group." A deadlocking
situation in discrete event simulation models can be best
illustrated with the following example: Part A held by a
Robot wants to be loaded on the Machine for processing,
but there is a finished Part B on the Machine which
wants to be unloaded off the Machine by the same
Robot. Until Part B is unloaded from the Machine, Part
A cannot be loaded on the Machine and until the Robot
relinquishes Part A, Part B cannot be unloaded off the
Machine by the Robot. Until this deadlock is resolved,
all parts involved are blocked indefinitely. A simulation
model of this situation developed in SIMAN (Pegden et
al. 1990) for the deadlocked and undeadlocked versions
is shown in Figure 1 along with the outputs generated.
It can be easily seen from the simulation output of this
simple example that the entities are indefinitely blocked.
However, this type of a situation cannot be readily
identified from the output of a large scale simulation
model.

Deadlocks can not only occur in simulation models
but also in real systems such as flexible manufacturing
systems (Leung 1994). Deadlocks can be detected and
resolved more easily in real systems since humans can
observe, intervene, and resolve the deadlock. However,
in large scale, complex simulation models the existence
of a deadlock can be identified only after a simulation
model has been run and the output has been inspected
thoroughly. It is gencrally very difficult to predict how
long it will take to detect a deadlock in the output of a
large scale simulation model. if at all it can be donc
successfully.



Deadlock Detection and Resolution 709

WITH DEADLOCK

;MODEL FILE:

BEGIN;
CREATE, 10;
QUEUE, Load Q;
SEIZE: Robot;
QUEUE, MachineQ;
SEIZE: Machine;
DELAY: 1;
RELEASE: Robot;
DELAY: 5;
QUEUE, UnLoadQ;
SEIZE: Robot;
RELEASE: Machine;
DELAY: 1;
RELEASE: Robot;
COUNT: Jobs: Dispose;

END;

;EXPERIMENT FILE:

BEGIN,
PROJECT,With Deadlock, MK
QUEUES: UnLoadQ: LoadQ: MachineQ;
RESOURCES: Robot: Machine;
COUNTERS: Jobs;
DSTATS: NR(Robot), Robot Utilization:
NR(Machine), Machine Utilization:
NQ(LoadQ), Robot LoadQ:
NQ(UnloadQ), Robot UnLoadQ:
NQ(Machine), Machine Q Length;
REPLICATE, 1, 0, 100;
END;

PARTIAL OUTPUT FILE:

DISCRETE-CHANGE VARIABLES
Identifier Avg. Var. Min. Max. Final
Robot Util. 1.0000.00000.000001.00001.0000
Machine Util.  1.0000.00000.00000 1.0000 1.0000
Robot UnLoadQ .94000.25265.000001.00001.0000
Robot LoadQ 8.0100.01242.000009.00008.0000

MachinQ .99000.10050.00000 1.00001.0000
COUNTERS

Identifier Count Limit

Jobs 0 Infinite

WITHOUT DEADLOCK

;MODEL FILE:

BEGIN;
CREATE, 10;
QUEUE, Load Q;
SEIZE: Machine:Robot;
DELAY: I;
RELEASE: Robot;
DELAY: 5;
QUEUE, UnLoadQ;
SEIZE: Robot,
RELEASE: Machine;
DELAY: 1;
RELEASE: Robot;
COUNT: Jobs: Dispose;

END;

;EXPERIMENT FILE:

BEGIN,;
PROJECT, Without Deadlock, MK
QUEUES: UnLoadQ: LoadQ;
RESOURCES: Robot: Machine;
COUNTERS: Jobs;
DSTATS: NR(Robot), Robot Utilization:
NR(Machine), Machine Utilization:
NQ(LoadQ), Robot LoadQ:
NQ(UnloadQ), Robot UnLoadQ;
REPLICATE, 1, 0, 100;
END;

PARTIAL OUTPUT FILE:

DISCRETE-CHANGE VARIABLES
Identifier Avg. Var. Min. Max. Final
Robot Util. .200002.0000.000001.0000.0000
Machine Util.  .60000.81650.000001.0000.0000
Robot UnLoadQ .00000-- .000001.0000.0000
Robot LoadQ 3.15001.0053.000009.0000.0000

COUNTERS
Identifier Count Limit
Jobs 10 Infinite

Figure 1: An Example of a Simulation Model and Output With and Without Deadlock



710 Krishnamurthi, Basavatia, and Thallikar

Of all the commercial simulation languages currently
in use, none can detect or prevent deadlocks and this can
lead to incorrect results and wrongful conclusions.
Manual detection of deadlocks is relatively easy in
small simulation models. However, in large simulation
models with thousands of programming statements it
becomes a substantial task. It is also difficult to train
modelers to avoid dcveloping simulation models with
deadlocks since the modeling process, duc to its creative
nature, is not readily conducive to formalization. This is
especially true in the case of large models developed in
modules at different locations by different modelers.
Therefore, the fundamental concept of simulation
modeling itself may have to be modified radically before
modelers are trained to avoid programming in deadlocks
(Fujimoto 1990). Furthermore, in large models with
many entities seizing and relinquishing resources and
entering and departing the system, deadlocks can still
occur due to the randomness in the system and for the
same reason modelers cannot anticipate when deadlocks
can occur. Therefore, this warrants the design and
development of an automated technique for detecting
deadlocks in simulation models.

2 REVIEW OF RELEVANT RESEARCH

Past work relevant to this research has come primarily
from the operating systems and database systems
literature [Hunt 1986, Lee and Kim 1992, Coffman
1971]. In the existing literature, four conditions have
been mentioned as necessary for a deadlock to exist and
they are: mutual exclusion, hold and wait, no
preemption, and circular wait [Peterson and Silberschatz
1983, Wojcik and Wojcik 1989]. Mutual exclusion
means that a resource can be used only by one process at
a time and a resource cannot be shared. If another
process requests a busy resource, then the requesting
process must be delayed until the resource has been
relecased. The second condition, hold and wait, means
that a process that is holding at least once resource is
waiting to acquire additional resources that are currently
being held by other processes. The third condition, no
preemption, simply means that a resource cannot be
preempted. A resource can only be released voluntarily
by the process holding it, after the process has completed
its task. The fourth condition, circular wait, means that
there exist a set of waiting processes {Py, Py, . . . P}
such that Py is waiting for a resource held by Py, Py is
waiting for a resource held by P, . . . P, is waiting for
a resource held by Py, and P, is waiting for a resource
held by Py.

The existing deadlock detection algorithms analyze a
system for the four mentioned necessary conditions. For

the purpose of deadlock detection, a dynamic
representation of the state of the process-resource
interaction of the system is usually modeled as a graph.
This graph is referred to as the system resource
allocation graph or as the general resource graph. This
graph consists of a pair G = (V,Z) where V is a set of
vertices and Z is a set of edges. The set of vertices is
partitioned into two types, P={P,P,, . . . ,P,}, the set
consisting of all processes in the system, and R={I} 1, .

- .Tn}. the set consisting of all resource types in the
system. Edges of the graph are represented by (u,v); that
1s, an edge starts at vertex u and ends at vertex v. The
edges can be either request or assignment edges. A
request edge is directed from the node of a requesting
process to the node of a requested resource. An
assignment cdge is directed from the node of an
assigned resource to the node of the process assigned. A
system is deadlocked if this graph contains a directed
cycle. A cycle is a path whose first and last nodes are
the same. A sink is a node with no edges directed from
it, and an isolated node is a node with no edges directed
to or from it.

Another variation of the system resource allocation
graph is simply the state graph. This is a directed graph
whose nodes correspond to the resources and whose
edges are defined so that if some process P has access to
resource r; and is waiting for access to resource 1j, then
there exists an edge directed from node ri to node T
(Isloor and Marsland 1978). In this graph also, a
directed cycle is necessary for a deadlock to exist. All
the graphs found in the literature on the topic of
deadlock are similar and refer to the same concept of
cycles. Given one graph, a variation of it can be easily
constructed and the use of a particular type of graph is
dependent on the algorithm.

Several algorithms have been developed by computer
scientists and their work can be classified under three
categories: prevention, avoidance, and detection
[Singhal 1989].  Prevention requires ensuring that
deadlocks cannot take place and prevention methods
have to be custom designed for each individual system.
Several methods of prevention exist, including
requesting all resources at once, preempting resources
held, and linearly ordering resources (Isloor and
Marsland 1980).

Deadlock avoidance techniques ensure that there is
at least one way possible for all processes to complete
execution after a resource is granted. The "banker's
algorithm" is a common avoidance scheme (Isloor and
Marsland 1980). This algorithm manages multiple units
of a single resource by requiring that the processes



Deadlock Detection and Resolution 711

specify their total resource needs at initiation time. In
addition, each process acquires or returns resource units
one at a time and denies the requests of processes whose
needs exceed available resources

Detection requires only that a deadlock needs to be
found, if there is one when the algorithm is invoked.
Resolution breaks the deadlock or may provide
information to help break the deadlock. Detection
methods generally involve two steps: the construction
and maintenance of the state graph and the searching of
the state graph for cycles. To recover from the detected
deadlock, resolution is required. Some possible methods
for resolution include violating the mutual exclusion
condition by allocating to several processes
simultaneously, aborting one or more processes to break
the circular wait condition, or preempting some
resources from at least one of the deadlocked processes.

It can be seen from the existing literature that much
has been done on deadlocks related to operating systems
and distributed database systems. However, it can also be
seen that very little has been done on deadlock detection
and resolution in discrete event simulation models.
Much of past research on deadlocks is directly applicable
to discrete event simulation, but first the issues related to
deadlock in simulation models and their specific
requirements must be analyzed.

3 ISSUES RELATED TO DEADLOCKS IN
SIMULATION MODELS

There following issues related to deadlock detection
must first be analyzed before designing and developing
an algorithm: (1) stage of deadlock detection in
simulation model development, (2) possible scenarios of
entity-resource interactions during a deadlock, (3) point
at which deadlock detection must be enforced, and (4)
other necessary features of deadlock detection.

3.1 Stage of Deadlock Detection

The first issue to address is where does deadlock
detection fit in the stages of simulation model
development. Verification and validation seem to be the
obvious answer. In a sense, deadlock detection should
be a part of both verification and validation. If a real
system does not contain a deadlock, but the simulation
modes, then the model is not true to the system
simulated. However, when the deadlock is detected, the
modeler may have to modify reality captured to prevent
the deadlock from occurring.

Another possibility is that a real system can itself
contain deadlocks and they could be captured in the
model also. In this case, the simulation model will be
true to the real system, but without a method for
deadlock detection, the deadlocks may easily go
undetected. The model may considered to be a valid
one, but without a deadlock detection method, deadlocks
may go undetected in both the model and the real
system. If a method is available to detect deadlocks in
the model, it will be beneficial to the real system also.

3.2 Entity-Resource Interactions During a Deadlock

The four conditions stated in the previous section for a
deadlock to exist arc applicable in simulation also.
However, the possible scenarios of entity-resource
interactions that can occur in simulations during a
deadlock must be explored further. The possible
scenarios are that: (1) each resource may have only one
unit, and (2) each resource may have multiple units.

In the case of each resource having exactly one unit,
a cycle found in the entity-resource interaction graph
may imply that a deadlock has occurred. For example, if
resourccs R) and R; and entities E; and E; are
examined, and let it be assumed that R, is allocated to
E;, R, is allocated to E;, and E; has requested R, as
shown in Figure 2. Now if E, requests R;, then there is
a cycle as shown in Figure 3 and hence there is a
deadlock. Thus, a cycle is a necessary and sufficient
condition for the existence of a deadlock in this scenario.

If each resource can have multiple units, then the
necessary and sufficient conditions change. For
example. let it be assumed that three resources, Rj, R,
and Rj exist along with four entities, Eq, E,, E3, E4 . Let
R; and R; have one unit of each and are allocated to E,
and Ej, respectively. Rj has two units available and
they are allocated to E; and E,. Further, E; has
requested Ry and E, also has requested R; as shown in
Figure 4. Now suppose that E3 requests a unit of R3. A
request edge (E3, R3) is added to the graph as shown in
Figure 5. It can be seen from the figure that two cycles
exist. Entities Eq, E;. and E3 are deadlocked. In this
case, a cycle implies a deadlock and it is both necessary
and sufficient.

In the scenario shown in Figure 6, if each resource is
allowed to have more than one unit, then a cycle in the
graph does not necessarily imply that a deadlock has
occurred. For example, suppose that two resources R,
and R, each have two units of resources. Then one unit
of Ry can be allocated to E; and the other unit can be



712 Krishnamurthi, Basavatia, and Thallikar

— — — P Resource request edge

©)

Figure 2: No cycles

\ (E3)
/
@4— Ry — (&)

Figure 4: Resources with multiple units but no cycles

+

[

R

7
El

T ®
E3
e

Figure 6: Resources with multiple units but no cycles

allocated to E,. Similarly, one unit of R; can be
allocated to E; and the other unit can be allocated to Ej,
thus eliminating the cycle and the possibility of a
deadlock as shown in Figure 6. Now suppose that Ej3
requests a unit of R, and E; requests a unit of Ry as
shown in Figure 7, since no resource unit is available, a
request edge (E3, Ry) is added to the graph. Now there
is a cycle E{-R;-E3-R,-E; in the graph. However, no
deadlock can occur in this example since entity E4 may
release its unit of resource R at any time. Then, this
unit of resource can be allocated to E3 and break the
cycle.

The above example introduces two types of
deadlocks, namely, femporary and permanent
deadlocks. An example of a temporary deadlock is
illustrated by the temporary cycle exhibited in Figure 7.
This type of deadlock, may temporarily exhibit the
characteristics of a deadlock, but will be eliminated as
soon as the necessary unit of a resource is available. An
example of a permanent deadlock is illustrated in Figure
5 and this will remain indefinitely. From these
examples. it is safe to conclude that if there are no cycles
for multiple resources, then there will be no deadlocks.
If however, there are cycles, then the model may be in a
state of deadlock. Therefore, cycles are a necessary, but
not a sufficient condition for deadlocks.

——® Resource assignment edge

m ~
Ot (E»

Figure 3: Cycle exists

R] R, |
/ - / ]
®<—.R3‘ (Es)

Figure 5: Resources with multiple units and 2 cycles
.-
2 @
Ve
-
[® @
R>

Figure 7: Cycle exists but no deadlock

A

3.3 Point of Deadlock Detection in Simulation

Assuming for now that there is an algorithm available
for deadlock detection, the next issue to address is at
what point during a simulation run, deadlock detection
must be enforced. There are several possible answers to
this issue and they are discussed below.

If the deadlock detection algorithm is invoked at the
beginning of a simulation run and remains in effect
throughout the simulation, it can have a serious impact
on the simulation run time. Checking for deadlocks
every time a resource is requested and updating the
status of the entity-resource interaction graph can be
very inefficient and time consuming. It is also
unnecessary to do this since once a deadlock has
occurred it will remain in effect for the rest of the
simulation run. The advantage of this approach is that
the existence of a deadlock can be detected and
displayed as soon as it has occurred.

Instead of invoking the deadlock dctection algorithm
at the beginning of the simulation, it can be invoked
periodically to check the existence of deadlocks. This
can be more efficient than the previous alternative and
less time consuming. However, deciding how often to
invoke the algorithm may be difficult and the detection



Deadlock Detection and Resolution 713

pf the existence of a deadlock may not be immediatc as
in the previous case.

A third alternative would be to invoke the deadlock
detection algorithm at the end of the simulation run.
and this would still result in the detection and display of
deadlocks. If a deadlock is a permanent one, it will
remain in effect for the entire simulation run, and
therefore, the algorithm need not be invoked from the
beginning or periodically during the simulation run.
The disadvantage is that the entire simulation may have
to be run before detecting a deadlock, but the detection
time spent on this may be less compared to the other two
alternatives. This alternative seems to be a better and an
efficient choice when compared to the other two.

3.4 Features for Deadlock Resolution

The final issue that must be analyzed is related to the
resolution of deadlocks detected. In operating systems
and distributed database systems, deadlock resolution is
much more crucial since they deal with actual and not
simulated systems and aborting a process may be
destructive. In simulation models, deadlock detection is
more important than resolving them. Resolving a
deadlock correctly in a model is much harder than it
may appear since it requires a thorough knowledge of
the entity-resource interactions and their constraints.

In a simulation model, an easier way to resolve a
deadlock may be to preempt a deadlocked entity holding
a resource. However, preemption requircs attention to
three issues (Peterson and Silberschatz 1983): selecting
the proper entity to abort, rollback, and starvation.
Rollback will involve turning back the simulation clock
to a certain point so that entity-resource interaction can
take place again without a deadlock. Starvation will
involve denying an entity access to a requested resource
for a long time. Once an entity has been selected, then
the extent of rollback has to be determined. However,
selecting a proper entity for preemption is easier said
than done in a conceptual model and the cost of doing
these tasks will be generally prohibitive compared
detecting the deadlocks and leaving it to the modeler to
resolve it by correcting the model. Further, in some
cases such as manufacturing simulations, preemption
may not be possible since it may result in a part to be
scrapped. Therefore, a better solution to deadlock
resolution in simulation models is not to resolve it at all
since a deadlock cannot be correctly resolved without
additional information about the entities deadlocked and
if the modeler is required to provide this information,
then it may be much easier for the modelcr to resolve the

deadlock.

4 THE DEADLOCK DETECTION ALGORITHM

An algorithm for deadlock detection should be based on
the following requirements that resulted from the
analysis of the issues presented in the previous section:

1. The algorithm should be invoked only at the end
of the simulation run.

2. The algorithm should capable of detecting
different types of deadlocks caused by resources
with one unit or multiple units.

3. The algorithm should distinguish between
temporary and permanent deadlocks.

4. The algorithm should identify deadlocks
regardless of if the deadlock existed in the
system modeled or not.

The implementation details of the algorithm are not
presented here and only a simple, generic version that
illustrates the concepts is demonstrated with examples.

4.1 Details of the Algorithm

This algorithm basically eliminates candidates that
cannot be involved in a cycle and uses the concept of
sink nodes. Sink nodes have only one edge connected to
them and have either a directed edge to them and no
edge leaving them, or have a directed edge leaving them,
but no edge coming to them. Any node that is a sink
node is eliminated as a candidate for a cycle and a
deadlock. Only resources that do not have a request
made for them and are assigned to an entity can be sink
nodes. Entities can be sink nodes it they have either a
request edge or an assignment edge.

The algorithm maintains in a linked list information
about the resource allocations and requests by entitics.
During initialization of the algorithm, new nodes are
inserted for each resource. New nodes are also inserted
for every entity that seizes or requests a resource. An
entity that has been allocated a resource will have new
nodes for ecach request made for another resource. The
linked list contains the following five elements:

Node identification (resource or entity)
Identification number of resource or entity

Unit number, in the case of a resource

In the case of a resource node, no. of the assigned
entity, otherwise no. of the allocated resource

5. Number of the resource requested by entity

.-F-LJJMV-—-

The algorithm searches the linked list for the first
busy resourcc node, i.e, a resource that has been
allocated to an entity. The entity number is stored in a



714 Krishnamurthi, Basavatia, and Thallikar

BEGIN:
A is the set of all resource units
B is a set of all busy resource units in A

For each resource R in B do
Mark R as "checked"
Find the entity E assigned to R and mark it as
"checked"
If entity E requests another resource then
do while((S=R) or (S or E is not a sink node) or
T is not marked "checked")
Find the resource S requested by E and check
whether S B
Find the entity F assigned to resource S
If entity F requests resource T then
E«F
S«T
Mark S as "checked"
endwhile
Endif

If S=R then
List deadlocked nodes
Unmark "checked" resources and entities
Endif
END.

Figure 8: The Deadlock Detection Algorithm

variable VAR1 and resource number is stored in variable
VARCYCLE. Then the search is made for the entity
node requesting a resource and whose number is equal to
VAR1. If the entity node is located, the requested
resource number is stored in a new variable VAR2. If
the entity node was not located, the search skips over to
the next busy resource node. If an entity node has been
found, the search continues and identifies the busy
resource node whose number is equal to VAR2. The
number of the entity that has been allocated the resource
is stored in variable VAR3. Next, the entity requesting a
resource and whose number is equal to VAR3 is
identified. The requested resource number is stored in
variable VAR4. Then VAR4 and VARCYCLE are
compared to see if they are equal. If they are, a deadlock
is detected and the corresponding nodes are displayed.
If a deadlock is not detected, VAR2 is set to the value of
VAR4 and the algorithm continues to check the other
busy resource nodes in the same sequence as in the
process of identification of variables VAR3 and VAR4,
and the process is repeated to identify deadlocks. Figure
8 shows a generic version of the algorithm which has
been implemented in C and tested with discrete event
simulation models developed in C.

Table 1: Linked lists created for the first example

No Deadlock Deadlock Exists

R |1 1 1 R |1 1 1

R|l2([1]2 R|2|[1]2

E |1 1 1 E | 1 1 1
E| 10702 E|1]0] 0] 2

Ef{2|1]2 E|l 2|12
E|2[]0]0]1

Table 2: Linked lists created for the second example

No Deadlock Deadlock Exists
R|1 1|3 R|1 1|3
Ri2|1] 4 R|2]|1] 4
R| 3 1 1 R |3 1 1
R|3|2]2 RI 31|22
E|1 1|3 E |1 113
E|1]0[0]1 E|1]0|O0]1
E|21]2]3 E| 2|23
E|2[0]0]1 E|2[0[0}]1
E | 3 1 1 E| 3 1 1
E| 4| 1]2 E|{3]0|0]|3
E|4 0] 0|3 E|4(1]|2
E|4]0|0]3

4.2 Example Applications of the Algorithm.

Two examples are presented in this section to illustrate
the application of the algorithm discussed above. The
first example, shown in Figure 2, contains an
undeadlocked model of the robot machine model shown
in Figure 1. In this example, there are 2 entities and 2
resources at the end of the simulation that need to be
considered for deadlock detection. Resource R; is
assigned to entity Ej, resource R; is assigned to entity
Ej;. Ej requests for R;. The search does not detect any
deadlocks because E, and R, are sink nodes.

The deadlocked version of the above model is shown
in Figure 3. In this example, the two entities vie for the
resources held by the other, thus causing a cycle as
shown in the figure. After the first pass of the
algorithm, the deadlock is detected thus indicating that
there is a cycle formed by entities E;, and E, and
resources Ry and R;. Only one pass is needed to detect
the deadlock in this example.

The second example, shown in Figure 4, contains an
undeadlocked model. There are 3 resources, R; and R,
of 1 unit each and R3 with 2 units. Resource R; is
allocated to Ej, R, is allocated to E4, one unit of Ry is



Deadlock Detection and Resolution 715

allocated to E; and the other unit assigned to E,. It can
be seen from Figure 4 that R, and Ej are sink nodes
since R; does not have a directed edge leading to it and
E3 does not have a directed edge leading towards
another resource. The algorithm passes through all the
resource nodes but no deadlock cycles are detected.

Figure 5 shows the deadlocked model of the above
example with 4 resources and 3 entities. It can be seen
that there are 2 cycles. One deadlock involves R,, E;,
R3, and E3 and the other involves Ry, Ey, Ry, and Ej.
The algorithm detects both the deadlock cycles and the
corresponding nodes are displayed. Table 1 and 2 show
the link lists created by the algorithm for the deadlock
and undeadlocked cases of the two examples.

5 CONCLUSIONS AND RECOMMENDATIONS

In this paper, the issues related to deadlock detection
and resolution were presented and discussed. From the
issues presented, the requirements for a deadlock
detection algorithm were decided. A generalized
algorithm for detecting deadlocks in discrete event
simulation models was presented and this algorithm is
designed to be invoked at the end of a simulation run.
The application of the algorithm was also illustrated
with examples.

The issue of deadlock resolution was not included in
the algorithm since resolution requires additional
information about the simulation model itself. This is a
difficult requirement for a generalized algorithm to
handle and this issue must be explored further. One
recommendation to handle this is to design this as an
interactive, optional step for which the modeler can
input some additional information about the deadlocked
entities and resources.

REFERENCES

Coffman, E. G. Jr., Elphick, M. J. and Shoshani, A.
1971. "System Deadlocks," ACM Computing
Surveys, Vol. 3, No. 2, pp. 10-17.

Fujimoto, R. M. 1990. "Parallel Discrete Event
Simulation," Communications of the ACM, Vol. 33,
No. 10, pp. 29-53.

Hunt, J. G. 1986. Detection of deadlocks in
Multiprocessor Systems," SIGPLAN Notices, Vol.
21, No. 1, pp. 46-48.

Isloor, S. S., and Marsland, T. A. 1978. "An Effective
On-Line Deadlock Detection Technique for
Distributed Database Management Systems,"
Proceedings of IEEE Compsac 78, pp. 283-288.

Isloor, S. S., and Marsland, T.A. 1980. "The Deadlock
Problem: An Overview," Computer, September, pp.
58-77.

Law, A. M. and Kelton, W. D. 1991. Simulation
Modeling and Analysis, Second Edition, McGraw-
Hill, New York.

Lee, D, and Kim, M. 1992. "A Distributed Scheme for
Dynamic Deadlock Detection and Resolution,"
Information Sciences, Vol. 30, No. 5, pp. 149-164.

Leung, Y. T., and Sheen, G. 1994, "Resolving
Deadlocks in Flexible Manufacturing Cells,"
Journal of Manufacturing Systems, Vol. 12, No. 4,
pp. 291-304.

Pegden, C. D. et al. 1990. Introduction to Simulation
and SIMAN, McGraw-Hill, New York.

Peterson, J. L., and Silberschatz, A. 1983. Operating
System Concepts. Addison-Wesely, Reading,
Massachusetts.

Singhal, M. 1989. "Deadlock Detection in Distributed
Systems," Computer, Vol. 22. No. 11. pp. 37-48.

Wojcik, B. E., and Wojcik, Z. M. 1989. "Sufficient
Condition for a Communication Deadlock and
Distributed Deadlock Detection," IEEE Transactions
on Software Engineering, Vol. 15, No. 12. pp. 1587-
1595.

AUTHOR BIOGRAPHIES

MURALI KRISHNAMURTHI is an Assistant
Professor in the Department of Industrial Engineering
at Northern Illinois University. His research interests
include simulation, manufacturing systems, AI/ES,
operations research, and information systems. He is a
member of IIE, SME, and AAAL

AMAR BASAVATIA is a graduate student in the
Department of Industrial Engineering at Northern
lllinois  University. His research interests include
simulation and manufacturing systems.

SANJEEV THALLIKAR is a graduate student in the
Department  of Industrial Engineering at Northern
Illinois  University. His research interests include
simulation, manufacturing, and information systems.



