Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

ACHIEVING RELIABILITY IN SIMULATION SOFTWARE

Ronald C. Van Wagenen
Charles R. Harrell, Ph.D.

PROMODEL Corporation
1875 South State Street
Suite 3400
Orem, Utah 84058, U.S.A.
(801) 223-4600

ABSTRACT

The complexity of simulation software makes it on¢ of
the most challenging software products to test and
dcbug. Providing reliable simulation software requires
that the user interface, graphic editor, statistical
generators, database and memory management systcms,
simulation engine, output rcport generator, graphical
animation, etc. are all working correctly. This paper
provides an inside look into the challenges and issues
associated with insuring the reliability of simulation
software. Special emphasis is given to automated
testing methods.

1 INTRODUCTION

Simulation software is becoming increasingly more
complex as users demand more powerful and intclligent
constructs. It is not uncommon for simulation software
to contain over 500 different featurcs and functions.
The possible combinations of language features are
almost infinite. Throughout the software, hundreds of
equations are used to evaluatc expressions of many
types. Each equation must, in and of itself. be computed
correctly in order to achicve accuratc results.
Additionally, algorithms are writtcn for handling, not
only standard logic, but also a variety of "special
cases”. Simulation software is very dynamic in nature,
with enhancements and new language features being
added continuously. Thcrefore it is critical that it
perform correctly over time, since the model driving
the program may contain any possible combination of
language elements and statistical inputs.

Reliability in software is the ability of the software to
perform, as documented, over a period of time. This
includes the proper exccution of statements or
commands. If the softwarc has logic clements, such as
variables. attributes. if-then statements, elc., it is casy

695

to see how the combinations of such functions can be
endless. Rcliable simulation software must be able to
execute the many combinations of logic -- no matter
how long a model runs and no matter how many
different types of models are developed.

Totally rcliable simulation software given the
complexity and rapid pace of change, is only an ideal.
In today's simulation technology, there is no such thing
as "bug free" software. Errors in software can be
measured by two criteria: probability of occurence and
severity (see Figure 1). Priority 1 errors are critical and
must be resolved immediately. Priority 2 errors are
moderate in importance and should be resolved only
after all priority 1 errors are rcsolved. Priority 3 errors
are usually cosmetic or of minor importance. All errors
must be evaluated in terms of correction time. Spending
time to correct modcrate or minor errors must be
weighed against the time involved in implementing
new fcatures in the software. After all, the goal is to
maximize the ability of a modeler to successfully
complete his/her project.

100%
90% £
0% |
70% 3
60%
50%
40%
0%
20%
10%
0% 8

— 4 M T W O~ 0o o o
—

M Prionity 1
¥ Priority 2
B Priority 3

Probability of Occurence

Severity

Figurc 1: Error Classification



696 Van Wagenen and Harrell

A lot of emphasis is placed on validation of
simulation models. However, if the software itself is not
reliable for the intended use, there is no point in
validating the model. At PROMODEL Corporation, we
believe that software reliability can be achieved through
a combination of 1) Quality software design and
coding and 2) The proper organization and execution
of tests to validate the software. Since proper treatment
of both concepts would exceed the size limitations of
this paper, we will only discuss the latter. This
includes: the function test process, comprchensive
auxiliary testing, logic and output verification in each
test model, and automation of testing.

2 GENERAL TESTING CONCEPTS

A logical approach to debugging simulation software, is
to organize the various functions the software provides
into groups of functions and test each function in the
group in a similar fashion. Each function can be given
a number/letter reference ID similar to a part number.
Special test cases can be developed for the function to
ensure that the operation of the function is not only
accurate but repeatably accurate.

When a function is being designed to be incorporated
into the software, the options that may be used with the
function, the limitations of the function, and the valid
usage of the function must be determined. This is done
through written specifications. A function may have
multiple options associated with its use. For example, a
zoom function may allow zooming to any percentage or
to pre-defined positions. A write statement may allow
for writing a string value, the value of a token (such as
a variable), the number of digits of the token, etc. to an
external file. Test cases can be developed to test all
options of a function. A sct of tests or test cases is
known as a test procedure.

3 FUNCTION TEST PROCESS

Once the specifications for the function have bcen
developed, the function must pass through a serics of
tests we call the function test process (shown in Figure
2). Testing of the basic operation of the function is
known as Unit Testing. Test cases arc developed to
make sure that the fundamental aspects of the functions
are intact. If there arc any problems, software fixcs
must be made before the function can be advanced to
more detailcd testing.

Once the function has been proven to perform when
used correctly. the function must be tested when uscd
incorrectly and under extreme conditions. Programs
that crash when functions arc uscd incorrectly are not
considered user-fricndly products. Warning messagcs

and/or automatic corrcctions must be provided to aid
the user in responding to problems. If errors still occur,
they should not result in data losses or system crashes..
The testing of incorrect usage or extreme usage of the
function (such as testing the maximum and minimum
options) is known as Component Testing. This is
typically the most time consuming step in the function
test process. It somctimes may tie up hardwarc or
testing resources for long periods of time. For example,
when testing the minimum and maximum values that
can be used for run length of a simulation, a test
enginecer may nced to run the test model dozens of
times under different conditions (with warm-up hours,
without warm-up hours, with an expression
representing the run hours, etc.) in order to prove that

the function is rcliable.
Function Complete

4——‘>L System Testing ]
A

- Q0 =m =M

4—" Component TesﬁngJ
A

@ S =X =

|

Unit Testing |
A

Start Tests

Figure 2:  Function Test Process

Finally, a function may work great when used by
itsclf but have difficultics when used with another
function. The testing of multiple functions when used
in combination is known as Svstem Testing.

With simulation software, the best way to test the
combinations of functions is through application
modcling. In the development of an application model,
multiple interface functions will be used to create the
model, and cach application modecl will contain a
different combination of logic clements. During the
modcl building and running, errors can surface simply
because a function that was used conflicted with
another function.



Simulation Software Reliability 697

Once the function has successfully passed through a
variety of system tests, the test procedure for the
individual function is complete. A function may need to
pass through the process many times in order to reach
complete status.

4 AUXILIARY TESTING

When the functions of a simulation product are
working well together, auxiliary tests must be
performed to ensure that the product will function as a
whole under a variety of circumstances. Display
Testing procedures test the look and feel of the product
to ensure that dialogs, menus, and other interface
functions are consistent and balanced. Configuration
Testing procedures test the functions of the product on
a variety of hardware and software configurations to
ensure that the product executes functions independent
of the computer's hardware or software configuration.
Stress Testing involves the repeated operation of test
procedures in a variety of sequences and under varying
memory loads to make sure the product has integrity or
can withstand the stresses and demands placed upon it.
Documentation Testing must be performed so that help
screens, menus, dialogs, syntax, etc. match the
manual(s) that accompany the program. Usability
Testing experiments can also be performed to
determine ease-of-use, proper documentation, and
proper functional performance.

Before a simulation product can be released to the
field, a select group of users can test the program using
a variety of application models to make sure the
interface, animation, and results are completely stable.
This is known as Beta Testing.

5 AUTOMATED TESTING

Whenever a change is made to the source code of a
simulation product, there is the potential for regression

of the functionality of the software. Sometimes even the
slightest changes to one feature can disable or hinder
the functionality of other features in the software. In
order to cnsure that all of the functionality is
maintained, a battery of tests can be run against the
software, including running many simulation models,
comparing the output results to previous runs, and
testing the program interface. This can be very tedious
when you consider the fact that there may easily be 10
to 30 different tests for each of the 500 or more
functions. For this reason, automated software testing
is extremely beneficial for performing regression
testing.

There are a number of tools available which allow
users to create automated tests. Such tests are written in
various programming languages and are designed to
test interface functions and other functions of software
products. For example, an automated test can be written
to load a file. such as a model, run the model, and
compare the results file to the results file from a
previous run.

Automation tests or scripts can be batched together
and can run unattended. This is particularly useful for
long model runs or long interface tests which can be
run at night and not tie up computer resources during
the day. Unattended testing also does not tie up
personnel and can be done much more quickly than by
manual methods.

Specific functions include the ability to capture
menus, windows, specific regions, and text. In addition,
wait states can be programmed in to re-test for a
specific condition according to a time interval and to
time out after a specified amount of time has clapsed.
Other functions include: file existence tests, module
existence tests, keystroke exccution, and mouse clicks
and drags. Table 1 shows which automation tools are
most commonly used for the various types of testing
being performed.

Model verification is a key clement in automated

Table 1: Applications of Automated Testing Tools

Automated Testing Tools

Interface Testing | Model Run Testing

Output Testing

Dclays and Wait States

Window Capture Tests y
Text Capture Tests v V
Module Existence Tests V
Filc Existence Tests V N
File Comparison Tests \
Mouse Clicks v V
Mouse Drags v Y
Keys Presses V j




698 Van Wagenen and Harrell

testing. Verification in simulation mecans that logic
elements in the simulation modcl execute according to
specification during the run, the animation is accurate,
and the results are generated correctly. Once a test
model has its own logic verification algorithm. the
model logic, output and animation can be verificd
during the automated test using the tools mentioned
previously.

To create a logic verification algorithm, language
elements can be used in the model to prove that the
function was performed properly. For example, the
following algorithm might be used to verify that a
consolidation of 5 parts into 1 is occurring:

Begin
5 parts enter location
Variablel is incremented for each part entering
the location
Each part is joined to batch
Variable?2 is incremented for each part leaving the
location
If Variablel is not equal to 5 or Variable? is not
equal to 1 Then
Write to automated log file "Logic failed”
Else continue
End

Many elements, such as variables, arrays, attributes
are programmed into the modcl with the sole purpose
of verifying that standard features and statements are
working correctly. In many cases, it is helpful to
interface with external files, such as reading from and
writing to external text files when a model passes a
given test. An automated test script can be writtcn to
load the model and run it. During the run, the logic in
the model will write out to the log file when a function
passes or fails. At the end of the automated test, a log of
test case results can be viewed to dctermine the status
of the software function.

A second verification mcthod used with automation is
output verification. Once a sct of results is proven to be
credible, through manual calculations, the results file
can be used as a master file which serves as the
standard for subsequent runs of the modcl. Whenever
changes are made in the software. the model can be run
again, and the results of the run can be comparcd to the
master results file for that modcl. There are various
software tools that perform line by line comparisons of
two files. Typically, such tools display a list of
differences between the two files. Depending on the
changes to the software, changes to the results may or
may not be expected. If so, the changes arc usually very
minor. Such changes will show up in the file
comparison analysis.

Still another important verification method which can
be automated is interface verification. This means that
the menus, modulcs, and keystroke functions of a
program are tested. Automation tools such as window
capturing, menu capturing, module existence testing,
etc. can be used to verify that the interface of the
product is intact. In fact, once tests have been
developed for the various elements of the interface, a
special scquence of keystrokes and menu clicks can be
developed to represent an actual user of the product.
This sequence can also be dcveloped into a random
sequence, which is especially useful for stress testing.

6 SUMMARY

Achieving complete reliability in simulation software is
no small task. There are three critical levels of testing
that must be performed for each function: Unit Testing,
Component Testing, and System Testing. Then the
product must be tested as a whole on different types of
configuration, under varying stress loads, etc. Once the
tests have been developed, automation tools can be used
to take over the responsibilities of regression testing.
This enables software vendors to "manufacture"
software. In other words, if a special change is needed
for a simulation user, the change can be made,
automated regression testing can be performed (usually
within a day), and the software can be sent out with
confidence and rcliability intact.

REFERENCES

Beizer, Boris 1984. Software System Testing and
Quality Assurance, New York, New York, Van
Nostrand Recinhold

Besterficld, Dale H., 1986. Quality Control, 2nd. Ed.,
Englewood Cliffs, New Jersey, Prentice-Hall

Hetzel. Bill 1988. The Complete Guide to Software
Testing, 2nd Ed.. Wellesley, MA. QED Information
Sciences, Inc.

Kelton, W. David and Averill M. Law 1991. Simulation
Modeling and Analysis, New York, New York,
McGraw-Hill, Inc.

Rabin, Steve 1993. Software Testing: Concepts, Tools,
& Techniques, Software Development, November,
pp. 63-71

Sargent, Robert G. 1992. Validation and Verification of
Simulation Modcls, Proceedings of the 1992 Winter
Simulation Conference, Arlington, Virginia, pp. 104
- 114

Softwarc Quality Automation Inc.. 1993, SQA Robot
User Guide, Woburn, MA



Simulation Software Reliability

AUTHOR BIOGRAPHIES

RONALD C. VAN WAGENEN is Testing Manager
and  Applications Engineer at PROMODEL
Corporation. He received a B.S. in Manufacturing
Engineering Technology from Brigham Young
University. He has worked for IBM in software testing
and development, JI. Case in manufacturing
engineering, and has worked for PROMODEL for the
past 4 years. He is a member of IIE and SME.

CHARLES R. HARRELL is Chairman and founder
of PROMODEL Corporation and an Assistant Professor
of Manufacturing Engineering at Brigham Young
University. Charles received his B.S. in Manufacturing
Engineering Technology from Brigham Young
University, M.S. in Industrial Engineering from the
University of Utah, and Ph.D. in Manufacturing
Engineering from the Technical University of
Denmark. He has worked as a simulation analyst and
systems designer at Ford Motor Company and Eaton
Kenway. Charles headed the design and development
of PROMODEL Corporation's  Windows-based
simulation products: ProModel, MedModel and
ServiceModel. He is a member of IIE and SME.

699



