Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

UNKNOWN UNKNOWNS: MODELING UNANTICIPATED EVENTS

Lobna A. Okashah

Industrial Engineering and Management Systems
Department
University of Central Florida
P.O. Box 162450
Orlando, Florida 32816-2450, U.S.A.

ABSTRACT

In simulations involving uncertainty, two types of
unknowns must be taken into account: (1) known
unknowns and (2) unknown unknowns. For known
unknowns, the nature of the task is known, adequate
historical data is available, and although the value of
the model variable is unknown, either a theoretical or
an empirical probability density function can be
established to describe the variable. For unknown
unknowns, the value of the variable can be zero, if the
task or event does not actually occur, or may go to any
amount (either negative or positive) if the event does
occur. For example, there may be no definable upper
limit if an in-house activity fails catastrophically or a
subcontractor fails to deliver the work. These unknowns
invariably result in disruptions to operations and
significant cost overruns.

In industry today, we are particularly concerned with
designing proactive control systems. These "unknown
unknowns" therefore cannot be ignored. This paper
discusses a methodology to incorporate this second type
of unknown into a simulation model. Examples include
modeling a forklift-pedestrian collision, a labor strike at
a critical supplier, and a natural disaster at a factory.

1 INTRODUCTION

The concept of "unknown unknowns" has not been
widely researched, especially in simulation. Section 2
discusses work that has been done to date in modeling
and estimating unknown factors. Section 3 draws a
distinction between Internal Unknown Unknowns
(IUUs), which should be the product o --rather than an
input to--a simulation, and External Unknown
Unknowns (EUUs), which are occurrences outside the
bounds of a model that nonetheless impact the model.
Section 4 presents three examples of unknown
unknowns, including a discussion of how they can be
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incorporated into simulation models. Finally, Section 5
offers conclusions.

2 LITERATURE SEARCH

Unknown unknowns in simulation are generally
absent from current literature. Most references to
unknown parameters come from control applications,
but simulation and control are inherently different: in
control, one generally desires to eliminate or at least
minimize the effects of unknowns. In simulation, the
goal is to preserve the integrity of the unknowns by
realistically modeling them.  Where references to
unknown variables are found, work typically focuses on
estimating the value of the unknown or on estimating
limits of the value of the unknown.

2.1 Simulation Applications

Mo, Hegge and Wangensteen (1990), in a model to
optimize the selection of power generation options,
characterize the unknowns of their problem as fuel
prices, energy demand, water inflow for hydropower,
and investment costs. Simulation is presented as one
possible solution, in which "different realizations of the
uncertain variables" are input to simulation runs and
"the final investment decisions are made by means of
decision analysis."

This model has no unknown unknowns because all
variables addressed by the model are defined in
advance. Only the values of the variables are unknown.
There is no way to predict accurately the behavior of
several of the variables, specifically the price of fuel and
water inflow, over the long life of a power plant. Other
variables, such as energy demand, can be at least loosely
modeled in accordance with demographic trends and
other assumptions. The ability to know, however, that
all of these factors are present and will influence the
investment decision makes them "known unknowns."
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Most simulations deal with known unknowns. In the
best case, not only is the presence of the variable and its
impact on the system known and understood, but the
occurrence distribution is also known allowing an
accurate distribution to be modeled. In the worst case,
the presence of the variable is known but its impact on
the system is based on assumptions (not observations)
and its occurrence is based on an assumed distribution
as well. In this case, estimation algorithms are of use,
as discussed in Section 2.3.

2.2 Control Applications

There are many references in the literature to
unknown factors in control problems. There are several
foci of research in this field. One approach is to
develop techniques to estimate the unknown, thus
turning it into a known factor (although with imperfect
precision). Some researchers concentrate on estimating
the value of the unknown factor; others instead try to
estimate its bounds. One method of estimation for
control applications is Delay Time Controller (DTC), in
which an estimate of uncertainty is made by evaluating
the time derivative of the system state during a time
delay (Chen, 1990). This technique requires that the
system uncertainties vary continuously during the delay
interval.

2.3 Estimation Algorithms

Assessing the probabilities associated with an
unknown is a challenge when there is little or no prior
data or knowledge about the random variables
associated with the incident. Nonetheless, there are
methods suggested in the literature by, among others,
Law and Kelton (1991), Bratley and Fox (1987), and
Keefer and Bodily (1983).

2.3.1Law and Kelton

Law and Kelton define two approaches. The first,
called the triangular approach, requires subjective
estimates of optimistic, pessimistic and most likely
estimates of the unknown phenomena under
consideration.  These estimates should come from
experts in the field of the unknown phenomena (such as
oil traders and economists for the unknown price of oil
in the power plant example of Section 2.1). The
distribution of the unknown is assumed to lie within the
interval [a,b], where b>a, a is the value of the
pessimistic estimate and b is the value of the optimistic
estimate. The estimates are used to generate a
triangular random variate that can be used in simulation
(such as a Monte Carlo simulation). The results

obtained from running the simulation represent the
results of subjecting the model to such estimate of the
unknown.

The second approach assumes that the unknown has
a Beta distribution on the interval [a,b] with shape
parameters a] and a,. Since the Beta distribution
assumes many shapes according to the values of shape
parameters o and a9, this allows more modeling
flexibility. The authors choose two methods to find
appropriate values for aj and . One method sets a
and oy to equal 1, which results in a Uniform
distribution with (a,b) parameters. The other method
assumes that the density function of the unknown is
skewed to the right with a9 5 o> 1; this method is
considered to be more realistic by the authors. They
provide the following formulas to calculate the mean p
and the mode c:

p=a+ay®-a)o) oy
c=at(ap-1)(-a)o)+tagy+ayp-2

The authors also provided formulas to calculate
estimates of o} and o, .

a;=(m-a)Q2c-a-b)/(c-p)(b-a)
and

ar=@b-woy/(p -a

The estimated factors are used to generate a Beta
random variate that is then used in the simulation.

2.3.2 Brateley and Fox

Brately and Fox (1987) offer another method that
they call a "quasi-empirical distribution." This method
depends on the fact that a number of observations are
known, but their distribution is not known. An
empirical distribution can be used to fit the data,
however that distribution is probably a poor fit of the
original distribution. The authors' theory is based on
fitting an exponential distribution to the end tail of the
empirical distribution.

2.3.3 Keefer and Bodily

The previous methods depend on estimates of the
interval [a,b]. Keefer and Bodily (1983), on the other
hand, based their methods on subjective estimates of the
0.05 and 0.95 percentiles. They also evaluate various
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methods done by other researchers, and document their
results in a table. The basis of their evaluation is to
estimate means and variances at different percentiles
and to evaluate the value of error in the estimates. They
then recommend the methods with the lowest errors.
The method that they recommend as being the best one
uses the following equations to estimate the mean and
the variance:

mean = 0.63x(0.05) + 0.185[ x(0.05) + x(0.95)]

variance = ([x(0.95) - x(0.05)]/3.25)2

where x(0.05) and x(0.95) are, respectively, the fifth and
ninety-fifth percentile values of the random variable x.

3 INCORPORATION OF UNKNOWN
UNKNOWNS IN SIMULATION

Aggregately, unknown unknowns are quite common,
but individual, specific unknown unknowns such as a
strike, or a hurricane are difficult or impossible to
predict. (If specific unknown unknowns were
predictable their presence would be expected, making
them known unknowns). Unknown unknowns can be
viewed in two classes: internal and external. Internal
unknown unknowns (IUUs) are those unexpected,
usually unexplained things that happen within the
confines of the system being modeled. Examples of this
are a forklift hitting a wall or a worker, or a robot or
machine tool moving wildly out of control. External
unknown unknowns (EUUs) are the result of forces
external to the system being modeled. A hurricane
threatening or destroying a factory, or a strike at a
critical supplier are both events that clearly affect a
factory's operations but fall outside the factory model.

3.1 Internal Unknown Unknowns (IUUs)

IUUs should be the output of, not the input to, a
simulation.  This is not possible in traditional
simulation, for all events must be programmed into the
model, and [UUs by definition are unknown. With
autonomy, however, IUUs are not only possible but
expected. Because individual entities in the system are
modeled, they are free to interact with each other
according to their individual logic. ~For example,
assume that two drivers each have the goal of occupying
the same parking spot. In traditional simulation, they
would be put in a queue. In autonomous simulation,
each driver would proceed to the spot and a conflict
would be identified. The conflict was allowed to
develop by permitting the autonomous behavior of the
entities. in the same manner, JUUs can develop. By

contrast, in traditional simulation, the entire system is
modeled as a coherent unit.

To promote the discovery of [UUs, uncertainty should
be introduced into the model. One way of
accomplishing this is with confidence factors (Widman
and Loparo, 1989). To model noise, unavailable data,
incorrect data or inconsistent expert knowledge, a
quantifiable "confidence factor" analogous to a
probability can be associated with each datum and rule.
These confidence factors are combined to yield
confidence factors for each intermediate conclusion and,
ultimately, for each final action. While the authors note
that the mathematical validity of this approach is
controversial, it is one method to model uncertainty.
Section 4.1 of this answer offers a demonstration of this
approach.

3.2 External Unknown Unknowns (EUUs)

EUUs, like IUUs, cannot be known to the modeler.
But unlike IUUs, EUUs will not result from exercising
an autonomous model. The best way presently known
to address the general case of an EUU is to model its
effect, not the EUU itself. The effect of a tornado or a
flood, for instance, may be to shut a factory down for
some amount of time, render some of its equipment
temporarily inoperable, and render another portion of its
equipment permanently inoperable. This scenario can
be modeled in both traditional and enhanced simulation
as a random occurrence, with a frequency based upon
researched occurrences of disasters. The length of the
shutdown and the selection of disabled equipment would
be a probabilistic input.

The main problem with this approach is that it is not
based upon specific, causal data. There is no way of
knowing whether the assumption of downtime and
destruction are correct because there is insufficient data
upon which to base the simulated distribution (if there
were sufficient data, the phenomenon would be a
"known unknown"). It is possible to model EUUs more
accurately if there is sufficient reason to suspect a
specific type of EUU. Sections 4.2 and 4.3 offer two
examples of specific EUUs and how they could be
modeled.

4 EXAMPLES
The following three examples show how one IUU and

two EUUs could be incorporated into simulation
models.
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4.1 IUU: Discovering Forklift-Pedestrian Collisions
in a Factory

An IUU that can be easily imagined is a factory
collision of a forklift and a pedestrian. Suppose that the
model of the forklift requires its driver, upon seeing a
pedestrian obstructing his path, to honk his horn and, if
the pedestrian does not move, stop the forklift.
Probabilities would be assigned to each of these actions
as shown in Table 1. The model of the pedestrian
would have corresponding probabilities shown in Table
2.

Table 1. Probabilities Associated with Operator Model

Operator sees pedestrian 0.98
Operator remembers to honk horn 0.99
Horn functions 0.99
Operator remembers to stop 1.00
Forklift correctly stops 0.99
Table 2: Probabilities Associated with Pedestrian
Model
Pedestrian sees approaching vehicle 0.70
Pedestrian hears horn 0.95
Pedestrian moves if he is aware of problem 1.00

If the uncertainty model as proposed by Widman and
Loparo is used in the model, the probability P of
occurrence for the IUU of a forklift striking a pedestrian
1s

P =11 -(0.98)(0.99)(0.99)(1.00)(0.99)] *
(1-0.70)(1-0.95)

P=0.00074

4.2 EUU: Modeling a Labor Strike at a Critical
Supplier

Suppose that when simulating a factory that there is
reason to suspect that a particular supplier may
experience a labor strike. This could be modeled as
described in the following three steps.

1. Model normal operations

The normal simulation model consists of nodes
representing arrival of parts and in-factory processes.
An excerpt from a full simulation might be as shown in
Figure 1.

Critical part arrival In-plant process Ship product

0

Mean process time = 30 days
Process time sigma = 2 days

Mean arrival = 7 days
Arrival sigma = 0.5 days
Mean lot size = 10 units
Lot size sigma = 1 unit

Figure 1: Example Model of Part Arrival

Ignoring capacity, and therefore queuing, for the
purpose of this example, execution of the model would
yield a distribution of product shipment approximating
the following;

Mean ship time = 7 + 30 days
Mean ship time = 37 days

Ship sigma = ( 0.52 + 22)1/2
Ship sigma = 2.062 days

2. Model a strike generator

To effectively model a strike, a separate event
generator would be added to the model, based on
historical or expert knowledge. The modeler must
know the likelihood of a strike occurring, when it would
likely begin, and how long it would likely last.

The likelihood of a strike could be ascertained by
interviewing the company's contract negotiators and
looking at past responses by the union when issues
similar to current issues were at the heart of labor
disputes. When a strike would likely begin can also be
estimated by interviewing the company's negotiators,
and by studying past labor disputes. A Beta-type
distribution is one possibility; the exact form would
probably be unknown because to gather enough data,
one would need to look several decades into the past.
Labor relations have changed significantly during this
time. A possible distribution is shown in Figure 2.

Time
Current
contract
expires

Figure 2: Representative Likelihood of a Strike at a
Supplier

The possible duration of a strike can be ascertained
by studying the union's history, any information known
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about its finances, and the company's current financial
and market position. For example, public service
unions (firefighters, police, trash collectors) typically
strike for between a few days and a few weeks. Teacher
strikes may last several weeks. Coal miner strikes, on
the other hand, are known to last for many months.
Companies with unique products or who depend on
brand loyalty usually are more reluctant to endure a
long strike than those with commodity-type products.
Strike longevity would be expressed as an estimated
mean and sigma, probably with a normal distribution
assumed (unless research points to a different
distribution).

From this information, the strike generator element
would be programmed into the model. Its function is to
generate a message, based upon the above parameters,
that a strike will begin at time x and be of duration y.

3. Mlodel strike operations

Under strike conditions, the node in the original
(normal) model which represents the arrival of the
subcontractor's product will behave in a dramatically
different manner than in non-strike conditions. Upon
triggering by the strike generator, the model must
change the parameter values of that node to reflect
strike conditions:

Critical part arrival In-plant process Ship product

e

Mean process time = 30 days
Process time sigma = 2 days

Mean arrival = 21 days
Arrival sigma = 3 days
Mean lot size = 5 units
Lot size sigma = 1.5 units

Figure 3: Part Arrival Under Strike Condition

The resulting impact on product shipment, as shown by
the simulation, would be approximately as shown
below:

Mean ship time = 21 + 30 days
Mean ship time = 51 days

Ship sigma = ( 32+ 22)12
Ship sigma = 3.606 days

After an amount of simulation time equal to the strike
duration y from Step 2 has elapsed, the parameters of
the "normal" condition should be restored to the
"Critical part arrival" node.

4.3 EUU: Modeling a Hurricane Strike of a
Factory

There is ample evidence that a major hurricane hits
the Southeast Coast of the United States, on average,
every few years. If one were modeling a factory located
near the coast in this region, the EUU of a major
hurricane strike could be modeled as follows:

First, the modeler should obtain from reliable
weather historians (for this example, the U.S. National
Weather Service) the dates and severity of hurricanes
which have hit the plant's location, and the history of
hurricane predictions for the location. From this data,
an element which generates messages of hurricane
warnings and strikes could be modeled. Finally the
modeler would include appropriate actions in the other
elements of the model. Candidate actions for the
supervisor might be:

IF ( HURRICANE_WARNING =2 DAYS)
Order production control to suspend normal
operations and move outdoor stock inside
Order round-the-clock supervision and
maintenance to prepare factory
Alert employees to emergency notification
procedures for plant closure
IF (HURRICANE_WARNING =1 DAY)
Order windows boarded
Prepare machines for long-term shutdown
(drain oil, secure moving parts, etc.)
IF ( HURRICANE_WARNING = CANCELED)
Reverse emergency actions taken

Production workers have different responsibilities
than their supervisor, and may not necessarily share the
supervisor's priorities when faced with an emergency
such as a hurricane. Suppose that production workers
are modeled as shown below:

IF ( HURRICANE WARNING =2 DAYS)
Reduce performance by 0.30
Reduce attendance by 0.50

IF ( HURRICANE_WARNING =1 DAY )
Reduce attendance by 0.95

As can be plainly seen from this example, the
autonomy of the supervisor and the production worker
entities are not synchronized for optimal system
performance as many traditional simulation models
would assume. The model incorporates the reduced
performance and increased absenteeism that would
result from workers urgently focusing their attention to
protecting their homes and stockpiling emergency
supplies, at the expense of their job performance. In
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this model, the supervisor will have many emergency
tasks needing to be done, and few workers available to
do them. Execution of the model would show failure of
the plant preparation plan; plant management could
then take actions to improve emergency performance.
Candidate actions might be to implement plant
preparation activities earlier and to encourage
employees to stockpile emergency supplies at the
beginning of each hurricane season.

4 CONCLUSION

It is necessary to model unknown unknowns in
simulation, for they represent occurrences of the real
world that, although they are rare, often have dramatic
and expensive effects. In practice, few models include
these phenomena. This area of research is an
interesting topic that should be investigated in the
future.
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