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ABSTRACT

This paper summarizes a conceptual framework for
computer-assisted Simulation Experiment Design and
Analysis (SEDA). We argue that this SEDA frame-
work is & good one based on its properties. A proto-
type SEDA CS, which is not described in this paper,
is under development for demonstrating the feasibil-
ity and appropriateness of this framework.

1 MOTIVATION

Computer simulation is a useful tool for supporting
decision making, especially when there is no available
analytical method. However, computer simulation is
a complex task for many users. Simulation exper-
iment design and analysis (SEDA) is as critical as
simulation modeling to obtaining useful results. Our
concern is how simulation users can be assisted with
SEDA. This paper presents a conceptual framework
for SEDA. In order to be concrete we focus on the
problem of comparing mean or expected performance
of queueing-network systems.

A typical simulation project includes the following
stages (Taylor et al. 1988): Formulation, program-
ming, verification, validation, experiment design and
analysis, and recommendations. Accordingly, = tra-
ditional simulation environment requires four classes
of knowledge (O’Keefe 1986): Knowledge about the
problem domain, knowledge about simulation mod-
eling, knowledge about the programming language,
and knowledge about statistics.

Shannon (1985) estimated that one needs to spend
“at least 720 hours of formal classroom instruction
plus another 1440 hours of outside study (more than
1 man-year of effort)” to acquire the basic simulation
tools. This does not include the extra effort required
to gain real-world, practical experience in order to be-
come proficient. Therefore, it is not easy for a novice
to perform a thorough simulation study.
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A survey of large U.S. firms by Thomas and Da-
Costa (1979) indicated that only 28 percent of in-
dividuals in operations research departments have
backgrounds in statistics or mathematics. Another
survey by Nelson et al. (1987) showed that computer
simulation is the second most used OR tool in pro-
duction management, after regression analysis. A re-
cent survey by Dyer et al. (1993) ranked computer
wser skills, probability and statistics, and simulation
techniqgues as the number 1, 2, and 3 technical skills,
respectively, for a recent graduate of a master’s pro-
gram, and the number 1, 2, and 4 technical skills,
respectively, for a seasoned professional in MS/OR.

The implication of the three survey results is that
the lack of understanding of how to correctly design
the simulation experiments, and analyze and inter-
pret the simulation output, may be a problem in the
simulation user population. Moreover, based on our
experience, users with basic statistical background
nevertheless may not know how to appropriately ap-
ply statistics in simulation. As a result, even though
ithe population of simulation users who have statis-
tics background may increase, the problem still ex-
ists. Therefore, a computer system (CS) that can
shield the users from the knowledge of statistics in
simulation is critically importani and useful te the
success of a user population without qualified statis-
ticians or adequate knowledge of the SEDA problem
solving.

2 OVERVIEW

We are interested in knowing how we can help simu-
lation users with SEDA through a CS. We agree with
Freeman (1980) in “The Nature of Design:”

It is essential that one have a conceptual
understanding of a complex activity in or-
der to master its intricacies. Without such
a framework, one has only isolated facts and
techniques whose interrelationships may be
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obscured. Without an understanding of
broad classes of phenomena, one is con-

demned to understand each new instance by
itself.

This paper presents a conceptual framework for
the complex activities in SEDA, and illustrates the
framework with a brief example. The definition of six
SEDA components forms the basis of the framework.
The framework itself includes a dynamic and a static
model. The dynamic model is a generic description
of the sequential nature of SEDA. The static model,
on the other hand, is a very specific description of
our choser problem domain, comparison of expected
performance of queueing networks. We close by ar-
guing that the proposed SEDA framework is a good
one based on its properties.

To sum up, the organization of this paper is to first
define the basic terms in SEDA in Section 3, followed
by a framework consisting of the dynamic and static
models of the SEDA task in Section 4. Then Section 5
argues that this is a good framework.

3 DEFINITION OF TERMS

Our world of SEDA consists of six components which
form the basis of the SEDA framework. They are:

1. SYSTEM: a black box with one or more pa-
rameters, which takes prescribed input and produces
corresponding output.

A system in our world is a collective term, such as
the M/M/1 system, which represents a class of simi-
lar system instances with different parameter values.
The term system as it is commonly used refers to one
instance of a class of systems in our SEDA world.

2. PARAMETER: a collection of constants that
define an instance of a system.

The instances of one system are distinguished by a
common set of parameters, but with different values.

3. RESOURCE: a constrained quantity that is
necessary to solve a problem. The resources consid-
ered in our SEDA world are (real) time, the computer
system, and the user.

We believe that real time is the most impor-
tant resource in SEDA and other resources, such as
CPU time (power), can be expressed in terms of it.
The computer system and the user contribute infor-
mation, including knowledge and decisions, to this
SEDA problem-solving environment.

4. DESIGN: the design in our SEDA world con-
sists of the number of replications, the stopping time
for each replication, the random number assignment,
and the data aggregation.

Data aggregation is any reduction of the raw out-
put data which may be needed if we are not be able
to efficiently keep and utilize all the raw data or to
transform the data into a more useful form. Within
our world, data aggregation includes batch size and
data deletion, for batching and weighting the data,
respectively. Other types of aggregation could be in-
cluded.

5. DATA: all of the simulation output.

The data are characterized by a multivariate joint
distribution that is typically unknown to us.

6. ANALYSIS: deriving statements about sys-
tems. The term “statement” will be formally defined
in Section 4.1.

The above definitions for the components in our
SEDA world establish common ground for further
discussion. Although they may not be exhaustive,
these components represent our view of the SEDA
world. These components are strong organizing prin-
ciples for SEDA. Their definitions are precise, but not
at a working level. Using these organizing principles,
the framework of SEDA is presented next.

4 A FRAMEWORK FOR SEDA

We now present a framework for the SEDA task con-
sisting of a dynemic and a static model. The dynamic
model in Section 4.1 defines fundamental SEDA con-
cepts, and describes how SEDA proceeds dynamically
through the primatives consisting of the concepts and
the components in our SEDA world. The static model
in Section 4.2 presents the structure of simulation
problems, SEDA building blocks, and statistical pro-

cedures in a hierarchical fashion.

4.1 Dynamic Model of the SEDA Task

By the dynamic model of the SEDA task we mean a
description of the interplay between the SEDA prima-
tives in an interactive environment. The “primatives”
include the SEDA components (defined in Section 3),
and the concepts, introduced next. In brief, com-
ponents are generic building blocks of SEDA while
concepts define SEDA dynamics. The relationship
between primatives is given in Section 4.1.1 with an
llustrative example in Section 4.1.2.

4.1.1 Fundamental SEDA Concepts

The SEDA concepts are:
1. SYSTEM INSTANCE: a system with a set
of fixed values of the system-dependent parameters.
The difference between a system and a system in-
stance is that several system instances could be de-
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rived from the same system with different values of
the parameters.

2. STATEMENT: any declaration about the sys-
tem instances.

The sources of statements are prior knowledge
and experimental analysis. Prior knowledge includes
knowledge of the problem domain and of similar
classes of systems, while experimental analysis draws
intermediate and final conclusions based on data.

3. SCOPE: the subset of data upon which a state-
ment is based.

The scope of a statement therefore implies the ap-
plicable system instances.

4. PROCEDURE: a function of data and state-
ments that produces a new statement.

Parametric and non-parametric statistical proce-
dures are two major categories of procedures.

5. EXPERIMENT: executing a system instance
according to a design to produce data.

The terminology used for these concepts may not
be standard, but their meanings (definitions) are un-
ambiguous in our SEDA world. As opposed to the
SEDA components defined in Section 3, the defini-
tions of these concepts are at a working level that
describes the SEDA task.

Concepts and components are both SEDA prima-
tives. The reason we separate them is because a com-
ponent is more concrete and traditionally known in
SEDA, while a concept is more ambiguous, confusing,
and is often ignored.

The main reason why these fundamental concepts
are valuable is because through defining them the
components of SEDA—the system, the resource, the
design, the parameter, the data, and the analysis—
can be connected and reasoned in a dynamic, sequen-
tial, problem-solving process, as described in Sec-
tion 4.1.2.

4.1.2 Dynamics of SEDA

Because the SEDA problem solving is basically an
iterative process, we first describe the generic cycle.
Then, based on this generic cycle, the sequential na-
ture of the SEDA task is presented.

One SEDA-cycle describes the possible activities
and interactions between the primatives. In brief:
Resources + Pre-Analysis + Experiment Design +
Statements + Data + Post-Analysis => New state-
ments + Scope.

Stated differently, the SEDA-cycle proceeds as fol-
lows: under the real time constraint, a pre-analysis
is performed for deriving new statements and an ex-
periment design that generates the data. Then, a
post-analysis is performed using both the data and

available statements for producing new statements
and their scope. The computer system and the user
provide the necessary knowledge and decisions during
this SEDA-cycle within their capabilities.

Although a generic SEDA-cycle attempts to de-
scribe all the possible interactions between these pri-
matives, all the activities will not necessarily hap-
pen in every SEDA-cycle. Nevertheless, one or more
statements are produced in every SEDA-cycle.

Statements are produced sequentially during the it-
erative SEDA-cycles, so their scope may reach back-
ward several cycles. In other words, any statement
may depend on previous statements. For example

statements = procs(datas, procs(data,...))).

Notice that the system instances and the subset of
data are embedded within this sequential representa-
tion of the SEDA task.

Theoretically, if there is no resource limit, the true
values of the system performance measures of inter-
est can be obtained. In reality this sequential SEDA
process has to stop before the available real time runs
out. Accordingly, the goal of SEDA problem solving,
in practice, is to produce a simulation result within a
desired error level under the real time constraint.

A final comment is that these fundamental con-
cepts and components are well-defined and precise
elements of the dynamic SEDA task. However, in
real SEDA problems, distinct concepts or components
may not be easily identified and separated. For exam-
ple, experiment design and analysis are tightly bound
together and thus it is not easy to clearly identify
which is which. Also, procedures very often affect the
experiment design and thus they do not necessary fol-
low the process exactly. An expert understands bet-
ter than a novice about this tight coupling, which is
the ability to look ahead.

Yet this generic SEDA cycle also demonstrates the
strength of our SEDA primatives which represent the
complex SEDA process in a simple but well-defined
manner.

4.1.3 An Example

The sequential nature of SEDA can be illustrated by
a few segments of a simplified example, which is based
on a protocol script from a real simulation problem
solved by an SEDA expert.

A user wants an SEDA expert to help find the
smallest average waiting time among three queue-
ing system instances with mean interarrival times and
mean service times (1.05, .9), (1.0, .8), and (.9 , .7),
respectively. Since the final report will be due within
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eight hours, the user can only spend four hours of

simulation study before writing it.

System: the queueing system.

System Instances: the queueing system with
three different sets of values for the system
parameters, interarrival time and mean service
time.

Parameters: (interarrival time, mean service time)
= (1.05, .9), (1.0, .8), and (.9, .7) for the three
system instances, respectively.

Resource: four hours of real time and the user and
the SEDA expert, where the user may supply the
knowledge about the system and major SEDA
decisions, and the SEDA expert may supply the
knowledge of SEDA and queueing systems.

“I (the SEDA expert) am going to make replica-
tions and look at the bias for one of the system in-
stances. I have no other reasons for choosing this
approach but to get a better look at the bias.... Look
at the traffic intensity and find out which is the most
congested system. I will use system instance 1 since
it has the highest traffic intensity.”

Analysis: the quote above is part of the pre-
analysis.

Resource: the SEDA expert who is contributing
his knowledge of SEDA and queueing systems.

Systemn Instance: the queueing system with the
first set of parameters.

“Let me make a quick run of 2 replications of 2,500
observations for system instance 1.... It did not take
long (about 3 seconds) to make 2 replications.”

Design: the number of replications (2) and the
stopping time for each replication (2,500 waiting
times).

Data: the simulation output as planned in the
above design.

Experiment: Executing system instance 1 with the
design of 2 replications each with 2,500 waiting
times.

Statement: “3 seconds for 2 replications of 2,500
observations for system instance 1.”

Scope: system instance 1 with the data in the state-
ment.

“Look at the data. Some bias at the beginning....
It seems to climb quickly. I am taking a little gamble
to do 10 replications each with 200 observations.”

Procedure: visual inspection of the trend of data.

Statement: “Some bias at the beginning.” It has
the same scope as the previous statement.

Analysis: inspecting the trend of the data and
producing a statement about a new design.

Design: the new number of replications {20) and
stopping time (200 observations).

The following statements with their implicit scope
llustrate the sequential nature of the SEDA expert’s
problem-solving process:

Statement 4 “The three queueing system in-
stances are logically similar.”

Statement 20 “I am sure that the appropriate
initial bias deletion point is 500 for system instance
1.”

Statement 21 “I spent too much time in deter-
mining the initial bias deletion for system instance 1
and I have very limited time available now.”

Statement 22 “I will use this deletion point for
all three queueing system instances.”

Statement 23 “The current data, which looks ex-
ponential and has lag-1 correlation 0.51, fail the nor-
mal and the independence assumptions for system in-
stance 1.”

One major element that distinguishes an expert
from an intermediate user is that the expert is able
toc manage the resource limit, real time, in simulation
problem solving, but the intermediate user usually is
not. Also, the expert reasons by combining state-
ments to obtain a desirable new statement. Those
experts who well understand the sequential nature of
simulation problem solving know how to achieve the
goal effectively and efficiently with the available re-
sources.

4.2 Static Model of SEDA

The static model is a description of the SEDA struc-
ture for solving a particular class of problems, in our
case the problem of comparing expected performance
across queueing-network models. Our static structure
is represented as a three-layer model.

To help simulation users, we need a static model
that is not only based on a solid set of primatives,
but is also easily understood and learned by simula-
tion users. The static model need not be unique, but
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it should be able to be explained by the SEDA pri-
matives, and be able to explain the actual design of
an SEDA-CS.

Accordingly, the difference between the dynamic
model and the static model, in addition to the dy-
namic verses static view, is that the dynamic model
forms a high-level abstraction for the nature of SEDA
that will not change over time, while the static three-
layer model is a lower-level representation of the
SEDA task that may change as the technologies or
methodologies evolve.

Because this static model is a more detailed de-
scription, we present it within our research focus,
queueing-network simulation. Our static model of the
SEDA task consists of a classification of simulation
problems, a decomposition of simulation tasks, and
a hierarchy of simulation procedures (a three-layer
breakdown of SEDA is presented in Figures 1-3).

Layer one - classification of simulation prob-
lems: Figure 1 implies that any given simulation
problem on the top node can be classified into a de-
sired solution on the bottom nodes. Within the clas-
sification scheme, a comparison with known alterna-
tives problem can be divided into three subproblems:
basis of comparison, design, and analysis.

Before the basis of comparison, we first classify a
simulation problem into either a comparison problem
with known alternatives, or a comparison problem
without a known alternative. In our view, all simu-
Jation problems are comparison problems. The main
difference is to what a system instance is compared.
If a system instance is only evaluated to compare to
the true value of its performance measure of interest,
which is unknown but fixed, then this is a compari-
son without a known alternative. On the other hand,
when a system instance is compared to other known
alternatives, then this is a comparison with known
alternatives.

Layer two - decomposition of simulation
tasks: Since the representation of the task attempts
to consider the subtasks and issues involved at dif-
ferent stages of the simulation problem solving, and
since design and analysis are two iterative processes,
a lower level-representation of the subtasks for design
and analysis can be represented as in Figure 2.

Notice that in Figure 2 the comparison problem
with a known alternative is further divided into two
independent modules: the initial-bias recognition
problem and the core comparison problem. Under
these two subproblems are, then, the subtasks of de-
sign and analysis. One important point is that the
subtasks under design and analysis can be derived
from the primatives as defined earlier. This is what
we think is important in designing a CS: A funda-

mental conceptual understanding of a complex activ-
ity for explaining the empirical model based on some
task analysis.

Layer three - hierarchy of simulation pro-
cedures: The third layer is the procedure tree im
Figure 3. Figure 3 first classifies a simulation prob-
lem into either an output-analysis problem or an
initial-bias recognition problem. The decomposition
matches Figure 1 until the “means-comparison prob-
lem.” From here on, a statistical procedure can be
determined by branching down to the bottom levels
of this hierarchy.

The procedures in Figure 3 are just one set of ba-
sic procedures used in comparison with known alter-
natives. There are many other procedures used by
other experts, which are expert-dependent, and are
not shown here. Accordingly, although this layer is
necessary for actually solving a problem, the proce-
dures are not exhaustive. Thus, it should be empha-
sized that the methodologies are evolving and they
do not encompass all the details an expert considers
in the problem-solving process.

The advantage of this layer is that it can easily
map to the classification of simulation problems in
Figure 1. Therefore, our static model can encompass
a large ranges of statistical procedures and analysis.

Figures 1-3 are not complete. One reason is that
we only focus on a limited problem, that is, the
means-comparison problem with known alternatives.
Another reason is that we provide only one possible
scheme to represent the fundamentals of simulation
problems. However, this scheme is not unique. More-
over, even within this scheme our colleagues may fill
in or replace some of the details as the methodol-
ogy and research advance. In other words, we are
more concerned with the fundamental structure and
the sketch of SEDA rather than the details within
the structure. Consequently, the SEDA primatives
should embrace any new methodology and not be lim-
ited to the procedures provided in the third layer of
the SEDA model.

5 JUSTIFICATION

A prototype SEDA-CS is being developed based on
our framework, and an evaluation will be performed
to demonstrate the feasibility and appropriateness of
this SEDA framework. We briefly argue here that the
proposed SEDA framework is a good one.

We believe that an SEDA framework should be self-
contained, simple, specific only when necessary, and
comprehensive.

1. Self-contained: Our SEDA framework has in
total eleven primatives that are briefly but precisely
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Figure I: A Classification of Simulation Problems
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defined. These primatives help to derive and de-
velop both the dynamic model and the static model.
Since our framework 1s developed based on our SEDA
world. it 1s self-contained.

2. Simple: Our SEDA framework is simple since
it contains only the static and dynamic model of ihe
SEDA task. Each of them has only one central theme:
sequential natural and three-layer structure, respec-
tively.

3. Specific Only When Necessary: Our SEDA
framework 1nvolves only fundamental elements with-
out any implementation detail. Moreover, all these
fundamental elements are required to describe the
SEDA framework. Although there are some specific
details in our SEDA framework, they are necessary
to completely describe the static model in the bottom
level of the hierarchy of simulation statistical proce-
dures.

We believe that the dynamic model will not be af-
fected by technologies and methodologies over time,
and only the bottom level of the static model might
be

4. Comprehensive: Our framework is compre-
hensive 1p that it is compatible with any statistical
procedure. It covers everything from a complete for-
mal one-step data analysis to sequential data analysis.

A good representation not only needs to have the
characteristics defined above, but also to be arranged
in a smooth sequence for easy comprehension. To this
end, the dynamic and static models are decomposed
in a hierarchical fashion. Then, the bottom-up ap-
proach 1s used to introduce the dynamic model start-
ing from the SEDA concepts, and then the generic
SEDA-cycle and sequential statements of iterative
SEDA-cycles. On the other hand, a top-down ap-
proach is used to describe the three-layer structure
from the top layer to the bottom layer.
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