Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

AN ARCHITECTURE OF A KNOWLEDGE-BASED SIMULATION ENGINE

Madhav Erraguntla
Texas A&M University
College Station, TX

ABSTRACT

This paper describes the architecture of a Knowledge-
Based Simulation Engine (KBSE). It summarizes
ongoing efforts at Knowledge Based Systems Laboratory,
Texas A&M University and Knowledge Based Systems
Inc., College Station, TX, in developing knowledge
based simulation. The KBSE provides support for: 1)
developing a simulation model from a description of the
system and the user concern in the form of a question to
be answered, and 2) analyzing the simulation output.
The support for output analysis includes assistance for
statistical analysis, explaining a set of observations, and
generating alternative ways to improve
performance/solve a problem. The approach used to
develop KBSE was to integrate simulation expert
knowledge with domain knowledge, commonsense
reasoning techniques, and qualitative and quantitative
simulation techniques. The Phase I KBSE automates the
generation of simulation models from system
descriptions. Phase II provides intelligent support for
simulation output analysis. This paper presents a
summary of the Artificial Intelligence (Al)-based
algorithms and heuristics developed in Phase 1.

1 INTRODUCTION

The increasing complexity of organized enterprises has
enhanced the attractiveness of simulation modeling as a
decision support tool. However, this powerful tool still
remains beyond the reach of many application domain
personnel. The use of simulation among practitioners
has been hindered for several reasons, two of the most
salient being: 1) the long lead time and the considerable
effort required to build a simulation model, and 2) the
extensive training and skill required for the effective
design and use of simulation modeling techniques.
Recent advances in the area of simulation
modeling have focused on improving simulation
modeling languages. These advances have attempted to
reduce the semantic gap between a simulation model
design and the corresponding execution simulation
program. They represent important advances for
improving the productivity of simulation modelers, but
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do little to aid the non-simulation trained decision maker.
The research presented here addresses this problem
directly by providing automated support for the
simulation design activities from a description of a
system and an user concern in the form of a question to
be answered. The motivation for our research is the
observation that domain experts often find it convenient
to communicate their knowledge by relating an ordered
sequence of activities that forms a description of “how
things work” in their domain. These descriptions, often
unstructured, contain much of the knowledge needed to
reason about the problem at hand (Benjamin et al.,
1993).

Output analysis is an important, but often
neglected part of simulation. Research in the use of Al
for analyzing simulation output has gained momentum
in the past decade. Most of the research has focused on
the statistical aspects of output analysis (Deslandres,
1991, Sargent, 1986). Researchers in the use of Al for
statistical analysis have developed stand-alone software
systems that assist statistical analysis (Pregibon, 1984).
Most of the research focuses on the tactical analysis
activities and fail to address the strategic aspects of
simulation output analysis. Recent work by (Prakash,
1989) attempts to develop intelligent support for
simulation model redesign using a knowledge based
approach. The Qualitative Reasoning (QR) approach to
simulation result interpretation was proposed by (Mayer,
1988). This research further investigates the utility of
the QR approach and rapid transfer of the research to an
implementation architecture. In this effort, we address
the issue of providing knowledge based assistance to the
user in this process of gathering information about the
system, where simulation is the mechanism through
which information is obtained. Our support for output
analysis thus includes not only the statistical analysis
but also knowledge-based reasoning to support the
information gathering process.

2 APPROACH

The goals of KBSE are: 1) to support the design of a
simulation model from a description of the system and
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the user concern in the form of a question to be
answered, and 2) to support the interpretation of
simulation output. This section describes our approach
to accomplish each of these goals. Figure 1 shows the
simulation activities supported by the KBSE.

The Simulation model Design Process

1) Capture system description: Domain experts often
find it convenient to communicate their knowledge by
relating an ordered sequence of activities that form a
description of how things work in their domain. These
descriptions, often unstructured, contain much of the
knowledge needed to reason about the problem at hand.
The first step in the KBSE is to capture these system
descriptions.

2) Capture user concern: The application domain
personnel (henceforth referred to as the ‘user’) often
wants to use simulation to solve some perceived or
imagined problem. The second step in the KBSE is to
capture these user concerns.

3) Establish model boundaries: This activity involves
selecting the processes and objects of interest in the
model. Elements of the system providing information
that assist in accomplishing the modeling goals will be
included inside the model boundary; those elements that
do not contribute in an informational way towards
attaining the goals are excluded.

4) Translate user concerns to simulation parameters: In
general, the user concerns are broad in their scope and
can't be answered directly. These broad concerns need to
be broken down into detailed issues that could be
addressed by simulation. The KBSE approach involves
breaking the user concerns into sub-questions,
performance metrics, and units of measurements. This
step is a domain knowledge acquisition process.

5) Determine abstraction level: This activity involves
determining the degree of detail (or abstraction) the model
should have. The model should be detailed enough to
draw valid conclusions, and abstract enough so as to
reduce model development time and simulation run time.
6) Generate executable model: The final step in
automated model generation is to generate executable
simulation code. In the present version of KBSE, the
models are generated in WITNESS™.

Activities 3, 4, and 5 together constitute the
conceptual model design process. Thus, conceptual
model design involves establishing the model
boundaries, translating user concerns to simulation
parameters, and determining the level of abstraction.

Perform tactical
analysis and design
of experiments

Capture system
description

—

sl
v $ 1
S/ :
C § Perform strategic
apture user | |analysis and design
concern / of experiments
N4 Y
Yes
Establish model
go boundaries
3 T
A
% Translate user concerns Interpret output
b= to simulation
= arameters
2 3 .
a,
(3]
e .
5 Determine Perform statistical
© abstraction level analysis
3 1
Execute

Generate
executable model —» simulation model

The Simulation Model
Design Process

The Simulation Output
Analysis Process

Figure 1 : Simulation Process

Output Interpretation and Analysis

1) Perform Statistical analysis: This activity involves
statistical analysis of the output of the simulation runs
such as confidence interval determination, etc.

2) Interpret output: This step involves knowledge based
reasoning about the simulation output. Various
hypothesis are proposed to explain why the system
behaves in the way it does. For example, the user might
be interested in determining system capacity. If, after the
initial simulation runs, it is believed that the capacity is
low, various hypothesis such as: a) the capacity is low
because of low utilization, b) the capacity is low because
of high breakdown rate, etc. will be proposed. These
hypothesis will be tested in the subsequent stages for
validity.

3) Perform strategic analysis and design of experiments:
In this stage, the validity of the various hypothesis
proposed in the previous step are determined. Wherever
possible this will be done through Qualitative Reasoning
(QR) (DeKleer, 1984, KBSI, 1991, KBSI, 1992,
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Kuipers, 1987). In the cases where it is not possible to
do so, additional simulation models are designed to test
the validity of these hypothesis.

4) Perform tactical analysis and design of experiments:
This step involves generation of additional simulation
models, in case it was decided to use simulation to test
the validity of the various alternate hypothesis proposed
to explain the behavior of the system. This step
involves interaction with the simulation model generator
as shown in Figure 1.

As stated earlier, automated support for
simulation model design was implemented in the Phase I
KBSE. Support for output analysis will be implemented
in Phase II. The various algorithms/heuristics developed
and implemented in Phase I are presented in Section 3.
An outline of our approach to some of the activities in
the Phase II of KBSE are presented in Section 4. The
issues in Section 4 are still in a research stage and are yet
to be implemented. We present the broad approach we
have in mind.

3 KBSE MODULES

3.1 System Description Capture

For the unstructured descriptions to be useful, we need a
systematic methodology that: 1) can be used to capture
the descriptions, 2) is formal enough to support some
validation of the descriptions, and 3) captures these
descriptions in a manner that facilitates automated
reasoning. The Air Force IDEF3 Process Description
Capture Method was used to facilitate the capture of
structured system descriptions (Mayer, 1991) (A brief
tutorial on IDEF3 is included in the Appendix).

3.2 User Concern Capture

The users very often wants to use simulation to solve
some perceived problem. While they know what they
want, in general, they are not sure if their concerns can
be addressed by simulation. Hence, the first step in
knowledge-assisted simulation model development is to
assist the users in deciding whether their concerns can be
solved through simulation or not. We propose to do this
by capturing the domain knowledge about the set of
concerns that can be answered through simulation. Based
on interviews with domain experts, we identified the
concerns given in Table 1 as some of the typical
concerns that are relevant to the manufacturing personnel
and that could be answered through simulation. The user
concern capture is a domain knowledge acquisition
activity. Based on the feedback of the customers and
users, this set will be continuously refined. Not only is
such a set informative to the users in deciding whether
their concerns can be addressed by simulation, it is also

the driving force for the entire knowledge-based
simulation engine. The captured user concerns help
establish the objectives of the simulation exercise. The
automated simulation engine we are developing will
present this list to the user. The user can just browse
through this list and select the relevant questions. On
the basis of the selections and the IDEF3-based
description of the system, a simulation model will be
automatically designed. The user can then run the model
and generate data that will (hopefully) enable answering
the questions.

Table 1: Sample User Concerns for Production Systems

1. Will I be able to meet my production requirements?

2. Will I be able to meet my due-date commitments?

3. Are my operational costs going to be too high?

4. What are the strategic decisions I need to make to
maximize my productions and/or profits?

5. What should be my strategic production planning
decisions?

3.3 Boundary Setting
3.3.1 Problem Description

A preliminary activity in developing a simulation model
is determining the model boundaries. This activity
involves selecting the processes and objects of interest in
the model. This implies filtering out of irrelevant
information. The ability to identify dependency links
between items in the model and the modeling goals is
vital to this process. Elements of the system providing
information that assist in accomplishing the modeling
goals will be included inside the model boundary; those
elements that do not contribute in an informational way
towards attaining the goals are excluded. For example,
when modeling a shop floor control system with the
goal of determining machine utilization, the machining
and set-up activities might be relevant because they affect
the utilization level. The material procurement process
will be outside the boundaries of the model because it
has no impact on utilization. We present in this Section
a boundary fixing heuristic for the manufacturing
domain, based on IDEF3 descriptions.
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3.3.2 Boundary Setting Algorithm

The boundary setting algorithm we present here is based
on the concept of an upstream process (Lin, 1990). A
process A is said to be the upstream process of a process
B if the output from A is an input (either directly or after
some intermediate processes) to the process B. Itis
possible to determine the upstream processes of a given
process in IDEF3 by tracking down the links and
referents. The boundary setting algorithm we propose is
based on this concept of upstream processes.

1) If the performance metric of interest is of global
scope (like capacity of the entire plant), include the entire
description.

2) If the performance metric of interest is of local scope
(like capacity of a specific machine), consider the
processes at the machine and all the upstream processes.
Let’s call this set the set of relevant processes.

3) For each resource in each process included in the
relevant process set, if any other process uses the same
resource, include that process also in the relevant process
set.

4) For each process included in Step 3, add all the
upstream processes.

5) For each process included in Steps 3 & 4, repeat 3 &
4 until no further process is included in the relevant
process set.

The relevant process set is the set of processes
of interest for the concern that needs to be answered. All
the extraneous process are automatically deleted from the
description or highlighted to the user for removal from
the description before simulation model development.
This makes the simulation model concise and will result
in savings in simulation run time.

3.4 Translate User Concerns into Simulation
Parameters

This step involves translating the broad concerns of the
user into detailed parameters that can be measured
through simulation. The user is often interested in broad
issues such as the ones identified in Section 3.2. These
broad issues can’t be answered directly (by simulation or
any other analytical means in general) and need to be
broken down into detailed sub-questions. For each of
these sub-questions, the performance measures and units
of measurements then need to be determined. The
process of determining performance measures starting
from a set of user concerns is a domain knowledge-
intensive reasoning process. In KBSE, all this domain
knowledge is explicitly captured through discussions
with domain experts and KBSE users. Just like the
domain knowledge in Section 3.2, this domain
knowledge will also be constantly updated based on the

user and domain expert feedback. Users are guided
through these mappings until they are able to translate
their concerns into detailed issues that can be addressed
by simulation. As soon as the user selects a concern
from Table 1, all the relevant sub-questions will be
displayed on a dialog box. Once the user selects all the
relevant sub-questions, the appropriate performance
measures and units of measurement will be displaced for
selection. In this manner, the user’s broad concerns are
translated into detailed performance metrics. Thus,
translating user concerns into simulation parameters
consists of hierarchical decomposition and concept
mappings (Figure 2). Some of the mappings that we
developed for the manufacturing domain are shown in
Table 2. Only a part of the domain knowledge we
captured is presented in this paper. Additional details can
be obtained from the authors. User concerns can be
grouped into three categories:

1) Concerns that can be answered directly by model
execution. These are the questions that can be
answered in one execution of the model (with a
suitable number of runs to get the desired confidence
interval). These type of questions most often
involve determining some system performance
metrics such as capacity, utilization, etc.

Concerns
Domain
Knowledge
Sub-
/\ /\ Questions
O - O O O OO Performance
Domain+ Metrics
Simulation
Knowledge Units of
measurements

Figure 2. Hierarchical Decomposition and Concept
Mapping Technique

2) Concerns that need comparison of results of different
simulation models. Sometimes users are interested
in selecting between two or more alternatives. Such
problems involve comparing the results obtained
from different simulation executions.

3) Concerns that involve optimization. Sometimes
users are interested in finding the optimum of some
system parameter setting. For example, they might
be interested in questions such as, “How many
resources do I need?” and “What is my best make-
buy ratio?” Answer to such questions need an
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optimum seeking heuristic in addition to
performance evaluation at each setting.

We found that user Concerns 1, 2, 3 in Table 1
are of the first type, where as Concerns 4 and 5 are of the
second and third types in the above classification.
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Concerns of the first type will be of primary interest in
Phase I of KBSE. We have developed optimization
seeking heuristics that integrate simulation and Response
Surface Methodology (RSM) techniques (Benjamin,
1991) for concerns 3 and 4. These will be implemented
in Phase II of KBSE.

Table 2. Concern->Sub-Question->Performance Metrics->Unit of Measure Mappings

Concern Sub-questions Performance Metrics Units
Will I able What is my capacity? a. Capacity of the entire unit output/time
to meet my b. Capacity of a particular m/c process time
production What is my utilization? a. Avg. machine utilization % utilization
requirements? b. Avg. labor utilization % idle

c. Specific machine utilization % set up

d. Specific labor utilization % breakdown

3.5 Abstraction Level Determination

3.5.1 Problem Description

Once we allow the user to model at multiple levels of
abstraction, the natural questions that the user faces are
“what processes need to be decomposed?” and “to what
level should I decompose?” If the user has any
preferences based on domain knowledge, experience, or
intuition, we follow them. This section addresses the
issue of providing the user with knowledge based
assistance in the case where there aren’t any default
preferences.

3.5.2 Example
Consider the description of a production process in
IDEF3 (Figure 3).

The questions that need to be answered include
the following types: 1) what is the ideal level of
decomposition, 2) should I decompose all the Units of
Behavior (UOBs), 3) should I decompose one level or
two levels, 4) should I decompose only UOB 4 and
leave UOB 3 etc.

3.5.3 Philosophy
The ideal level of decomposition is determined in KBSE
on the basis of the following:

1) Level of abstraction is determined based on the
objective of the simulation, that is, based on what
questions need to be answered.

2) Determination of the appropriate level of
decomposition is an iterative process. We first create the
simulation model at the highest level of abstraction and
run the model. If the results are satisfactory, we are

done. Otherwise, we use the knowledge gained during
the execution of the model to determine which UOBs to
decompose.

Turn Drill
4
Pe 3 I ~ 7 l
7 ~ 7 N ]
Set up Eir:onn Set up ge'li{on'n
the part [} . the part ')ﬁ e
operation operation
3.1.10 | 3.1.11] |[4.1.12] 4.1.13 |
~ - ~
Pick up Load
o o [thepart >|part o
12.1.20] 12.1.21]

Figure 3. Description of a Production Process in IDEF3

3.5.4 Approach

Our approach to determining the appropriate level of
abstraction is summarized as follows:

1) Build and run the model at the highest level of
abstraction.

2) Based on the objective of the simulation, determine
an abstraction parameter. Abstraction parameter is a
parameter on the basis of which UOBs are decomposed.
Right now, the abstraction parameters are limited to
either time or cost. All the others can be reduced to
some combination of these basic abstraction parameters.

3) While running the simulation model, apportion the
abstraction parameter to each process. For example, if
the question that needs to be answered is: “what is my
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capacity?” the abstraction parameter could be process
time. So we apportion the time the entity spends in the
system to each of the processes.

4) If there is a single UOB contributing to more than
(say) 30% to the abstraction parameter, then that UOB is
the candidate for decomposition. For example, if we are
interested in finding the capacity of the plant and we
know that the part spends more than 30% of it’s time in
a particular process, it makes sense to decompose that
process.

5) Once we have identified the set of processes that need
decomposition, we decompose these processes in the
next iteration and repeat the procedure. The stopping
criterion is that there shouldn’t be a single process
contributing significantly (30%) to the abstraction

parameter. This defines the satisfactory level of mixing
of abstractions.

3.6 Generate the Executable Model

Once we have the detailed performance metrics and their
units of measurement, the boundary of the model and the
level of abstraction, generation of an executable model is
a straightforward exercise. It will involve deciding issues
such as how exactly to measure the performance metrics
of interest, what variables to introduce, where to store
the values, etc., as well as the actual translation of the
description of the system to executable simulation code.
In KBSE, the executable simulation code is generated in
WITNESS™.

Table 3. Question, Abstraction Parameter, and Apportion Strategy Mappings

Question Abstraction Parameter Apportion To
1.a) Capacity of the entire Time an entity spends in the | Processes
unit system.
1.b) Capacity of a particular Time an entity spends at the| Processes occurring at that
resource specific resource. resource

4 OUTPUT
ANALYSIS

INTERPRETATION AND

In this Section, we present our overall approach to
output interpretation and analysis.

4.1 Explaining Behavior Based on
Qualitative Simulation Traces

An activation trace that is output from a qualitative
simulation engine is an ordered sequence of instances of
activities and events along with a history of changes that
occurred to the state of the qualitative model. Such a
trace will walk through different paths of an IDEF3
process flow diagram. The generated sequence of events
will be governed by both the constraints implicit in the
IDEF3 language (Mayer, 1991) and constraints about the
real world processes described that are explicitly recorded
in the IDEF3 description. Qualitative IDEF3 models are
partial, requiring very loose “‘completion criteria.” Their
partiality is advantageous for activities such as IDEF3
description validation for assisting quantitative
simulation model design [see (KBSI, 1991a)].

Our approach will be to analyze the information
contained within the activation trace to generate an
explanation for observed behavior. We will develop
reasoning mechanisms that will enable the automated
construction of such explanations. Initially, we will
restrict the scope to generating explanations in response

to specific queries. For example, suppose that the
activation trace indicates that a particular machine in a
manufacturing IDEF3 model is always idle. Suppose
that the question to be answered is “Why is this machine
idle?” Examining the “preconditions” for starting
processing on the machine showed a constraint “if the
part type is A and Operator #5 is available, then start
processing.” Further examination revealed that Operator
#5 could never be available whenever parts of type A
arrived at that machine. It is apparent that deriving this
explanation requires reasoning with selected parts of the
activation trace. It is also the case that generation of an
explanation may require information in the original
IDEF3 description that was not included in the model
itself. In the process of designing even the qualitative
model, only portions of the original system description
are considered relevant.

4.2 Generating Alternative
Performance Improvement Strategies

Solution/

This activity can be performed on two kinds of output:
1) summary statistics from qualitative simulations or 2)
summary statistics from quantitative simulations. The
main difference between an activation trace and the
statistical simulation output is that the information in
statistical output is both more summarized and more
focused. Statistical outputs contain data that have been
collected over time and compiled to focus attention on
key performance aspects of the model. The interpretation
of simulation output statistics will therefore require an
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approach that is considerably different from that needed to
interpret the activation trace.

We now present an example to illustrate our
approach to generating hypotheses based on observed
simulation results. Consider a production line with
three machines in series (Figure 4). Suppose the
manager of the line conducts a simulation study with the
goal of determining capacity. Suppose that the mean
capacity (measured in terms of production rate in #/day)
is found to be 100. Suppose that this measured capacity
is not acceptable and the manager would like to increase
the capacity to 240. Thus, the next objective is to
determine if and how to increase the line capacity as
desired. The proposed system must provide support that
will assist accomplishing the manager’s goal. Using
heuristic domain knowledge, the system might suggest
one of the following strategies:

1) Increase the # of bottleneck resource(s).
2) Reduce the processing times of the
bottleneck resource(s).
3) Combine strategies 1 and 2.
Perform Perform Perform

Operation 1 Operation 2 Operation 3
(Machine A)[P](Machine B) [®](Machine C)

Figure 4. Example to Illustrate Intelligent Hypothesis
Generation

We now describe how a QR approach can be
used to modify the above strategies. Suppose it is
known that there is a degree of imbalance in the line: the
mean processing time for Machine A is three minutes,
Machine B five minutes, and Machine C four minutes.
The imbalance in the line (a structural problem) is the
cause for the bottleneck at Machine B and also the cause
of lower production and the accumulation of inventories
at Machine B. This additional structural knowledge will
help decide the actual levels of the resources re-allocation
and/or changes in processing time (for example, it may
not be wise to reduce the processing time of Machine B
below four minutes to maintain balance between
Machines B and C). To further illustrate the use of
structural information, suppose that the UOB Operation
2 (Machine B) has a decomposition; that is, a description
at a finer level of detail. A strategy to reduce the
processing time will be to examine the constraints
within each of the processes within this decomposition
and determine the effect of changing parameters that
affect these constraints. In summary, the approach we

suggest is to derive such “performance improvement”
strategies by the automated analysis of the system
structures starting from the IDEF3 descriptions.

5 CONCEPTUAL ARCHITECTURE OF
KBSE

Due to space constraints the section on the conceptual
architecture of KBSE is removed from the final draft.
The original, complete draft can be obtained from the
authors.

6 SUMMARY

This paper documented the conceptual architecture of a
Knowledge-Based Simulation Engine (KBSE). The
KBSE provides support for: 1) developing a simulation
model from a description of the system and the user
concern in the form of a question to be answered, and 2)
analyzing the simulation output. The algorithms and
heuristics that were encoded in the KBSE were described.
The research illustrates the integration of Al, qualitative
reasoning techniques, and discrete-event simulation
methods. The research provides significant benefits to
the simulation research and user communities.
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APPENDIX A: OVERVIEW OF IDEF3

The IDEF3 Process Description Capture Method
provides a mechanism for collecting and documenting
processes. IDEF3 captures precedence and causality
relations between situations and events in a form natural
to domain experts by providing a structured method for
expressing knowledge about how a system, process, or
organization works. IDEF3 captures the behavioral
aspects of an existing or proposed system. Captured
process knowledge is structured within the context of a
scenario, making IDEF3 an intuitive knowledge
acquisition device for describing a system. IDEF3
captures all temporal information, including precedence
and causality relationships associated with enterprise
processes. There are two IDEF3 description modes,
process flow and object state transition network. A
process flow description captures knowledge of “how
things work” in an organization, e.g., the description of
what happens to a part as it flows through a sequence of

manufacturing processes. The object state transition
network description summarizes the allowable transitions
an object may undergo throughout a particular process.
Both the Process Flow Description and Object State
Transition Description contain units of information that
make up the system description. These model entities,
as they are called, form the basic units of an IDEF3
description. The resulting diagrams and text comprise
what is termed a “description” as opposed to the focus of
what is produced by the other IDEF methods whose
product is a “model.”

The IDEF3 term for elements represented by
boxes is a Unit Of Behavior (UOB). Each UOB can have
associated with it both “descriptions in terms of other
UOBs” and a “description in terms of a set of
participating objects and their relations”. We refer to the
former as decompositions of a UOB and the latter as an
elaboration of a UOB. IDEF3 provides this capacity by
allowing multiple decomposition of the same UOB.

BIOGRAPHIES

MADHAYV ERRAGUNTLA received his Master’s
degree in Industrial Engineering from the National
Institute for Training in Industrial Engineering in
1989. Currently, he is a Ph.D student in the Industrial
Engineering department at Texas A&M University.
His research interests are knowledge representation and
reasoning, simulation, planning, qualitative reasoning,
manufacturing, and operations research.

PERAKATH C. BENJAMIN received his
Master’s degree in Industrial Engineering from the
National Institute for Training in Industrial
Engineering in 1983. He received his Ph.D in
Industrial Engineering from Texas A&M in May
1991. He is currently Vice President (Innovations and
Engineering) at Knowledge Based Systems, Inc.
(KBSI). He is responsible for managing and providing
technical input to research and development projects.

RICHARD J. MAYER received a Master of
Science in Industrial Engineering from Purdue
University in 1977. In 1988, he received a Ph.D in
Industrial Engineering from Texas A&M University.
From 1984 to 1989, he was Project Manager and
Principal Investigator on thirty-nine funded research
efforts in the Knowledge Based Systems Laboratory.
He founded Knowledge Based Systems, Inc. in 1988
and has received funding for applications in
engineering design assistance, systems analysis and
concurrent engineering methods and tools. Currently,
he is an Associate Professor of Industrial Engineering
at Texas A&M University, College Station, Texas.



