Proceedings of the 1994 Winter Stmulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

A STANDARD SIMULATION ENVIRONMENT: A REVIEW OF PRELIMINARY REQUIREMENTS

Chair

Mary Ann Flanigan Wagner

SysTech Software Solutions
P.O. Box 413
Annandale, VA 22003, US.A

Panel Presentation

Suleyman Sevinc

Knowledge Systems Group Basser
University of Sydney
N.S.W. 2006, AUSTRALIA

Oryal Tanir

Bell Canada

Quality Engineering and Research

2265 Roland Therrien Blvd.

Longueuil. QC J4N 1C5. CANADA

Respondents
James D. Arthur

Pcter L. Haigh

High Performance Software, Inc.
PO Box 292466
Dayton, OH 45449, USA

Richard E. Nance

Systems Research Center
Department of Computer Science
Virginia Polytechnic Institute & State University

Herbert D. Schwetman

Mesquite Software, Inc.
8920 Business Park Drive
Austin, TX 78759, USA

Blacksburg, VA 24061-0251, USA

A Standard Simulation Environment:
A Review of Preliminary Requirements

Oryal Tanir
Suleyman Sevinc

ABSTRACT

The concept of a simulation environment combines
different aspects of the simulation process into one
complete powerful tool. The environment should
provide the necessary state-of-the-art advances and
concepts that a modeler may require during the
simulation development and execution process. The
"environment” requirements must address the end user
needs while minimizing the necessity of learning a new
language. The requirements must specify the useful
features. independent of different platforms and
implementation languages. Hence the opportunity
exists for standardization of environments. This paper
opens a discussion on challenges and rewards awaiting
the simulation community with the advent of a standard
environment.

664

1 INTRODUCTION

Simulation is accepted as an integral part of the product
life cycle in many industries. The concept of a
simulation environment encompasses the underlying
simulation language and support tools. The real world
of simulation is an amalgam of different environments
striving to meet similar objectives. Although these
environments provide similar features, they rarely use
the same modelling language. A frustrating endeavour
for many system modelers is to utilize a large model
that was carried out by another group in the same
company. using a different simulation language.
Obstacles such as learning a new paradigm,
incompatible models, and incompatible data formats
prevent the exploitation of previous work.

This paper prescnts some ideas as to possible avenues
that can be taken to ease model exchange. re-use of
modcl components between simulation environments,
and other amiable connotations of a standard simulation
environment. The paper will first summarize the notion
of a reference model for simulation environments
introduced in Tanir and Sevinc (1994). The reference

A Standard Simulation Environment 665

model categorizes specific groups of requirements that
an environment should possess, partitioning them into
layers of functionality. The potential standardization of
the different layers of the model is then discussed to
promote some thought as to what a standard may
provide to the community.

2 THE REFERENCE MODEL

The various constructs of simulation environments can
be better understood by defining different layers that
characterize their functional behavior. This
representation is classified as the "reference model" for
a simulation environment. The intent of the model is to
permit a uniformity of features. Guided by this model,
standards could be defined for different layers of the
model that would permit the development of simulation
independent tools.

The model consists of five distinct layers with all of
them accessing the bottom most layer (layer 0). The
top-most layer (the application layer) is allowed access
to all layers. This enables application devclopers to add
application specific constructs to their environment.
Properties of lower layers make it possible to implement
similar features at higher layers. The lowest layer, layer
0, provides basic language level support for the
environment. Layer 1 defines the requirements for
model specification. Layer 2 deals with model
knowledge management. Layer 3 is the system design
layer. A summary of the basic requirements of the
layers follows below.

2.1 Layer 0: The Host Language

Layer 0 provides the basic facilities for supporting
model specification. This layer can be any gencral
purpose programming environment. However, to
properly support the higher level activitics of modelling
and simulation, the layer needs to support high level
data structures and operations.

The choice of the host language will affect the
freedom of the modeler at higher levels of simulation. It
is not our intention to determine one unique language
for layer 0. It may well be a set of languages that are
used as the host language. Even after the host language
is chosen, one must still emphasize the specific
implementation of the language so that it will not
restrict the higher level activities of simulation.

2.2 Layer 1: Model Specification

This layer provides the basis for the specification of
models and a model base. It is generally agreed that
modelling is the most basic activity of a simulationist.
Modelling is an activity in which real or imaginary

worlds are expressed in a symbol space of a formal
language.

The requirements for layer 1 specifies the
functionality and features that can be accessed by and
incorporated at the higher two layers. With this in
mind, the following requirements constitute the
minimum basis for flexible and powerful modelling
capabilitics. It is also to be noted that the requirements
for the higher layers mostly rely upon the features
defined in layer 1. However, for added flexibility to the
modeler, the upper layers can also access layer 0.

THE MODEL ABSTRACTION: A model represents
a segment of the domain being studied. It replicates the
behavior of its real counterpart in symbol space by
generating trajectories consistent with those of what it
represents. A model is the most basic construct
available to a simulationist—analogous to an object in
the object-oriented paradigm. Therefore, support for
defining a model in a simulation environment is
fundamental.

A model consist of a set of operations, data and
interfaces. A model can be described using a set of
operations on data. A data structure, often referred to as
state or representation, may take the typical form such
as a stack, list or queue. Operations manipulate the data
and necd to be consistent with the structure. Although
the operations are primarily intended for data
manipulation, other operations for pre- and post-
processing purposes such as window drawing and
filtering may be desired.

Interfaces are intended to ensure that models can
interact with their environments, including other
models. in a predelined manner. Typically,
communication is established by traditional message
passing mechanisms between classes. This enhances
modularity, which is both a powerful and necessary
requirement in a simulation environment.

HIERARCHICAL MODEL COMPOSITION AND
DECOMPOSITION: Building up models from simpler
ones or decomposing a complex model into its sub-
models is a powerful and necessary requirement.
Decomposition facilitates the model verification and
validation. A large model can potentially be
decomposed into simpler sub-models. The problem of
verification of the large model can then be reduced to
verifying the simpler sub-models. Modularity and
decomposition are complementary concepts. It is useful
to separate models which are decomposed from those
that are not. A model with no components is an atomic
model; otherwise, it is a coupled model.

The major distinction of coupled models is the
existence of a coupling scheme to connect the interfaces
of its component models. Coupled models may have

666 Wagner et al.

operations for pre- and post-processing, as well as for
manipulating their component models and outputs.

The modeler should be free from implementation
details of high level constructs in the environment. That
is, the environment should provide facilities for
debugging which will recognize constructs such as
atomic or coupled models. as well as simpler types of
operations.

FORMAL BASIS: The validity of the modelling
process for discrete event simulation can be established
with a sound underlying basis. Many mathematically
sound formalisms exist as options, such as DEVS (from
System Theoretic foundations) or Petri-Nets (from
graph theory). The formal basis that is chosen may well
define the ease of validation or representation of a
model and model base.

MODEL SPECIFICATION LANGUAGE: The
language sclected to represent the model will impose
limitations, specific to its peculiarities, on the ease of
representation. The specification language can be
distinct from the implementation language, allowing the
modeler to mostly work oblivious to the underlying
language syntax.

MODULARITY: Models are distinct objects that can
communicate with one another and the environment
through their interface specifications. Hence. adherence
to the concept and structure of "model" implies
modularity. The level of communication between
models will be defined by the attributes that are
inherited from layer 0.

VERIFICATION: An important and often neglected
aspect of a simulation environment is the ability to test
and verify the behavior of each sub-model of a larger
model. With the ability to test each model before
building a larger and complex one, the modeler
minimizes verification problems in the larger model.
The interface specification of the model must permit
viewing the behavior of a given model with respect to
controllable stimuli. Decomposing a large model into
its smaller constituents, generally facilitates the
management of the verification process.

EXPERIMENTATION FACILITIES:
Experimentation is the phase that follows modelling in
a design or analysis task. The purpose of
experimentation is to learn more about the system under
study by subjecting its model to various input sequences
selected from the legitimate inputs of the model.

Since developing experiments can be regarded as a
modelling activity. experimentation specifications used
in the modelling environment should be similarly
applicable to design experiments as well. The key
issues can be summarized as:

e Data or statistics gathering capabilities. Such
capabilities should provide the ability to monitor
specific points in a model, i.e. inputs and outputs.

e Observation of interactions between the
components models. Facilities for intercepting
data (messages) exchanged between sub-
component models and means to rclate the cause
and effect of such exchanges.

e Facilities for redefining basic algorithmic
components of the simulator. e.g., flexibility in
choosing internal random number generators or
utilizing an external algorithm or data file.

o Facilities for presentation of information related
to experimentation. Some examples; check-
pointing, resetting, restarting, stopping, etc.

ARCHIVE CAPABILITIES: The layer must provide
provisions for storing a specific model as well as
retrieving it.

MODEL REPLICATION: Models within a model
base must be replicable. This implies that their
respective attributes and integral components can be
copied to a new model. This requirement enables
models to be reused within a project.

MODEL REUSE: This requirement dictates the
ability to inherit or reuse the whole or a part of a given
model. Modularity alone implies reusability at the
model level. However, more support is required to
ensure rcuse of parts of a complex model at higher
levels.

EXTENSIBLE MODELS: This requirement refers to
the ability to extend the definition (or specification) of a
model. Therefore a new model can be generated from
another by inheriting its specifications and
incorporating additional features. The last two features
are both required to support model composition.

2.3 Layer 2: Knowledge Management

Layer 2 provides the mechanisms for utilizing and
manipulating the models specified at layer 1. The
current state of the art in simulation provides ways of
organizing and using the model knowledge at this layer.
However, developing requirements at this level requires
considerably more investigation and analysis as to
avenues of interest to the simulation community.

Modelling is usually not a stand-alone activity. It is
typically a part of a design or analysis project. Therefore
the models may be used in many different ways. For
example, a model may neced to be stored and checked
against other models for equivalence, etc. Consequently
there must be higher level constructs to manage such
functions in an efficient way which we call knowledge
management.

A Standard Simulation Environment 667

A typical example is a mechanism for organizing
models in a structured manner whereby model
interconnection can be managed by a knowledge
management and library support system. When a
complex re-usable sub-model is requested from the
library, the environment can determine and create the
necessary model connections and resources to effectively
configure the model to function with the parent model.

2.4 Layer 3: System Design

This layer is the level dealing with design oriented user
issues. There is a significant amount of work to be
performed in defining requirements and features at this
layer. Typically the issues are more complex and not
clearly defined. This implies support for the design
methodology using the primitives of the lower layers.
Important advances at this level have been reported.
However, since there is not a general consensus for
defining requirements at this level, specification of
requirements for a reference modecl at this time is
difficult.

2.5 Layer 4: Application Layer

At this layer the environment is influenced by the
application domain. There is necessarily no restriction
upon applicable domains, as they can vary from
manufacturing to computer network simulation. What
should be clear however is that this layer will be specific
to a given application and we are not suggesting
standardizing at this level. What is perceived for this
layer is a set of domain specific extensions to the
standard. For example, within this layer, the
telecommunications domain may wish to make available
features for easy modelling of transmission lines, digital
switches or modulators. Most of these requirements
would not be applicable to another domain such as
flexible manufacturing systems. Hence separate
requirements would need to be generated for the two
domains.

Simulation technology has been evolving by
developing upon concepts such as parallel computing
and distributed simulation. The choice of language can
be affected by the computer platform that will execute
the simulation. An object-oriented language can be
nicely implemented in a distributed simulation
environment compared to a structured programming
language. Hence requirements of different applications
can demand additional ones. The environments
endeavour to remain flexible in allowing future
requirements to integrate into the various layers.

3 AVENUES FOR STANDARDIZATION

The reference model is a starting point for pursuing
avenues of standardization of simulation environments.
The level of standardization for each layer of the model
is not the same and the potential benefits also vary.
This section examines some of the issues evolving at the
different layers, in the hope of promoting further
discussion.

3.1 Layer 0

The implementation layer is simply a computer
language, hence standardization within the scope of this
paper is not applicable.

3.2 Layer1

This layer presents most opportunities for standards to
evolve. The requirements defined at this layer are
necessities that current simulation practices demand. A
standard firmly establishing the requirements can
provide a common conceptual platform for the
modelling capabilities of environments. Certainly
environments will differ in the way in which they
abstract data, however the capabilities can be recognized
in a global manner.

For example, a definition of a formal basis for models
can permit the verification of model properties across
different simulation paradigms adhering to the same
standard. This would imply that a model created in a
particular language would be translatable into the
common formal paradigm.

3.3 Layer2

The knowledge management layer also presents strong
standardization possibilities. This layer has the added
potential of permitting model interchange or re-use
within a limited scope. Mechanisms for organization of
models are to be described in the layer, hence a possible
equivalence of models can be contrived if models are
archival in terms of specific properties attributed to
each.

For example, if the knowledge management system
permits the organization of processor models in terms of
speed, architecture-type, data width etc., then different
processor models adhering to the given attributes and
are stored in a database could be transparently utilized
by the knowledge management system.

3.4 Layer3

The system design layer is difficult to fit into a single
standard. The reason for this is that system design can
take place within different abstraction levels of design,

668 Wagner et al.

each having different goals and requirements. For
example, at an abstract architectural level of design,
system requirement focus more message based
communicating processes. At a lower level of design
(for example circuit level hardware design), models may
involve more detail on timing constraints and voltage
levels.

It is envisioned that layer 3 could consist of a set of
standards for the differcnt system design abstractions
employed throughout the design community.

3.5 Layer 4

The application layer is also amiable to a set of
standards. This layer is application domain dependent
and would require a sub-standard for potential domains.
The manner in which a domain is partitioned is
significant and successful only if achieved by consensus
of the domain modelers. For example, a potential
domain may be telecommunication systems. A potential
starting point may be to utilize existing standards (such
as the Specification Description Language - SDL) for
specifying telecommunications constructs in conjunction
with added simulation symbols and constructs to define
a standard.

4 CONCLUSIONS

Issues that are likely to be involved in defining a
standard simulation environment have been
investigated. A multi-layered reference model is
proposecd as a means of systematically defining the
requirements of such an environment. This paper has
highlighted some possible avenues for standardization.
We hope that the article will stimulate discussion and
further development in this area. As a result the user
would be provided with a richer set of tools to produce
more reliable models, and suppliers would be provided
with a potentially rewarding market to explore.

REFERENCES

Tanir, Oryal and S. Sevinc, "Defining Requirements for
a Standard Simulation Environment," IEEE
Computer Magazine, February 1994, pp. 28-34.

Defining Requirements for a Standard Simulation
Environment:

An Examination of Environment Design and the
Applicability of Software Enginecring
Rcquirements to the Standard Simulation
Environment

James D. Arthur

An environment can be described loosely as those parts
of a system that a user perceives. This perception
extends beyond the immediate user interface to facilities
that provide ancillary user support. It includes the
psychological "feel" of the system as well as the details
of its functionality. In essence, the environment defines
how one expresses computations as well as what one
can express. More specifically, an environment is the
synergistic integration of software modules to provide a
strong, cohesive framework for formulating and solving
a given set of tasks.

As so appropriately stated by Tanir and Sevinc, "the
world of simulation is really an amalgam of different
environments striving to meet similar objectives.” [
applaud their efforts in taking the first step toward
establishing consistency and structure in the
development of a standard simulation environment.

The following critique is intended to provide
constructive suggestions from two perspectives: the
general design of environments and the promotion of
fundamental software engineering concepts which are
also applicable to simulation.

Based on their reference model the authors
convincingly argue requirements for each individual
layer. From an environment perspective, however, what
has been overlooked (or at least under-emphasized) is
the additional requirement that each layer must present
a consistent and integrated interface to each other. All
environment tools must work in harmony. The authors
state such a requirement for tools within each layer, but
this must be extended to encompass the interaction
among tools between different layers. Moreover,
because components defined at lower layers of the
reference models support specification abstractions at
successively higher layers, the definition of
requirements promoting a unified, synergistic
relationship among tools should (must) start at layer 0
and be propagated upward.

The authors also state that components developed at
the application layer can directly address elements of
the lower three layers. While this is certainly a
desirable and beneficial — arrangement, interface
accommodations must be addressed if multiple layer 4
abstractions can include (or make visible), as part of

A Standard Simulation Environment 669

their own interfaces specification, those interface
specifications attributable to tools defined at different
lower layers. For example, tool A (defined at layer 0)
and tool B (defined at layer 3) might produce
structurally similar data elements, but which contain
information encoded by different algorithms. If C and
D (layer 4 tools) employ A and B, respectively,
information exchange between C and D will produce
erroneous results.

Because the user can (and will) interact directly with
all four (4) layers during task definition, the
requirement for one (or more) specification language(s)
at each layer should also be considered. For any given
layer, the resident specification language should embody
orthogonal constructs that reflect abstractions
appropriate to that layer, composition mechanisms for
combining those constructs, and operations that permit
such structures to be manipulated in a manner
consistent with the objectives underlying the definition
of each respective layer. Effectively, layers 2, 3 and 4
should support a model manipulation language, a
system design language, and a user specification
language, respectively. For layer 0, the base language
itself will serve as its own specification language.

From a software engineering perspective, specific
provisions (or requirements) should be introduced to
support documentation at each level (or layer) and
traceability among layers. Documentation requirements
should focus on succinctly capturing the initial system
design and subsequent evolution (or maintenance)
thereof, as well as the rationale behind each
design/maintenance decision. Traceability of system
requirements has been a long-time (yet elusive) goal of
software engineering. The tracing of high-level
requirements to their lower-level embodiments is crucial
to verification, validation, testing and maintenance. All
four of these activities are inherent to simulation model
development. A layered model development
environment, like that suggested by the authors,
underscores the need for a traceability requirement.

In support of system design the authors suggest the
need for a methodological approach to dealing with the
attendant complex and ill-defined issues. A
methodology is defined by a collection of methods, and
a set of rules for applying them. More specifically, a
methodology (1) organizes and structures tasks
comprising the effort to achieve a global objective, (2)
defines methods for accomplishing individual tasks
within the framework of the global objective, and (3)
prescribes an order in which classes of decisions are
made which lead to the overall desired objective.
Present in each of these elements is the notion of a
global objective. Realizing such an objective, however,
requires the use of specific principles in the

development (or specification) process. In identifying
candidate requircments for a standard simulation
environment, if a methodology is included (or
encouraged) in its definition, then derived
requirement(s) for tools to support the employment of
principles to achieve the stated methodological objective
should also be considered.

Standards for Simulation Environments
Pcter L. Haigh
GENERAL

The following comments are offered from the
perspective of a practitioner and a vendor in the field of
computer system and network performance engineering,
as opposed to that of a researcher in the field of
simulation technology or methodology. Practitioners
are usually pragmatists, and are concerned with the
practical matter of cost effective and timely simulation
projects. We are less concerned with the formalities of
elegance, structure, object orientation and environment
standards. These things, however, can make our work
easier and improve our craft, which is an objective of
researchers and tool developers.

INTERACTION

Probably the greatest practical advantage of a standard
environment would be to be able to execute multiple
models simultaneously and have them interact. Models
implemented in different languages could then be
integrated to form larger models. This demands that
multiprocessing and inter-process communication
features be inhecrent in the operating system. The
environment would provide a convenient mechanism to
accomplish this.

PROPRIETARY VENDOR ENVIRONMENTS

Vendors hope to attract users to their product offerings
by providing a comprehensive tool set designed to
facilitate ease of use of their core product or products.
There may be a motivation for a vendor to produce a
proprietary environment and tools and develop a
familiarity of the user to the vendor's orientation. Users
can develop a bias toward a particular world view and
tool set. Another vendor's product, even if superior in
several ways, may be rejected by the user because it
doesn't look and feel like the familiar product. If there
were a standard environment definition, users could
judge which parts of the environment are provided by

670 Wagner et al.

various simulation products. This would be helpful in
evaluating and selecting simulation products.

Vendors who do not embrace an open architecture do
themselves and their users a disservice. As a user of a
hypothetical simulation product, I would like to be able
to integrate with it, for example, a different vendor's
statistical analysis software or a graphics package. The
current availability of such packages serves to illustrate
that few, if any, 'environments' contain all the features a
modeler might need. Indecd, the best situation from the
modeler's viewpoint would be to be able to integrate all
one's favorite tools produced by several different
vendors into a single environment and have them all
accessible and able to interface with each other.

EDUCATION

A set of standards for simulation environments could
benefit both decision makers and modelers by having a
common reference when discussing simulation projects.
It might also facilitate easier movement of
simulationists among projects and employers. As
simulation is still a specialized (and under-appreciated)
field, education of the decision making management, as
well as modelers, in standards for simulation
environments is desirable to help promote awareness of
simulation technology. Simulation is still an under-
applied discipline, and anything that would get business
planners and managers talking knowledgeably with
system designers about simulation early in a project
cycle would be a step forward.

IMPLEMENTATION

The problem with defining and implementing standards
in a discipline which has evolved without a standard
'environment' is that there are some excellent products
in use, each with its own version of an environment.
Converting these products to a standard environment
may be difficult for vendors and yield minimal benefit
for users.

REFLECTING ON THE REQUIREMENTS FOR
A STANDARD SIMULATION ENVIRONMENT

Richard E. Nance
INTRODUCTORY REMARKS

We are indebted to Tanir and Sevinc for the focus paper
and the earlier paper from which it is derived (Tanir
and Sevinc 1994). In seeking to define requirements for
a standard simulation environment, the authors have
affirmed the degree to which simulation model

development and analysis has transitioned from a
"programming" to a "modeling" focus, noted some ten
years ago (Nance 1983, p.326). Much of what the
authors offer is perceptive, descriptive and accurate;
however, the tenor of the respondents' remarks must
focus on omissions and differences. That is the nature
of this type of session, and the basis for progress toward
the laudable goal of a standard simulation support
environment.

CRITICAL ANALYSIS

My principal criticism of the authors' description of
their approach is that a confusion is created between
desirable characteristics, ergo requirements, of the
model and those of the environment—the set of tools
used to create the model. (The reference to the
environment with which a model interacts provides an
additional obfuscation.) Does "message passing
between classes" (actually class objects) enhance the
modularity of the environment or the model? The
authors appear to make the claim for the former. While
it may be "useful to separate models which are
decomposed from those that are not,"” what requirements
are placed on the environment to make this distinction?

The use of a reference model is understandable;
however, justification of the layered partitioning is not
clear. The characterization of System Design (Layer 3)
is so sketchy that the intended functionality is
indiscernible. Description of functionality at the
detailed level of the NIST Reference Model (NIST
1993) is not necessary, but the authors are operating at a
very gross level. Permitting upper layers to access
Layer O directly for added flexibility sacrifices
environment modularity in a major way.

Environment support for model archival, reuse, and
extension are stipulated as requirements, but are
decomposition and composition the only forms of
abstraction to be provided? Are the principles of
itcrative refinement and progressive elaboration to be
supported? What about inheritance—single or
multiple? Should model documentation be supported—
as a byproduct or addition to model specification?
Verification is noted, but little is said about validation.
In fact, several of the requircments stipulated in Balci
(1986), cited by Tanir and Sevinc, are either relegated
to layers 3 and 4 or disregarded, such as automated
model diagnosis, on-line modeler assistance in using the
environment, and seamless tool integration.

A Standard Simulation Environment 671

ADDED GUIDANCE IN
DEFINITION

REQUIREMENTS

Requirements definition is difficult. Our colleagues in
software engineering have repeated this conclusion
loudly and often. The efforts of Tanir and Sevinc are
timely and well-intentioned, but in my opinion three
fundamental precursors to requirements definition are
missing from their approach as described:

1. the recognition of the problems that confront the
development of and experimentation with large,
complex simulation models,

2. the decfinition of a methodology intended to
reduce or eliminate such problems. and

3. user feedback from experience with environment
prototypes designed to support the defined
methodology to overcome the recognized
problems.

Some might challenge the necessity for a defined
methodology, but without it, the result is likely to be a
suite of tools with minimal or non-existent interfaces
rather than an environment.

Fortunately, all three precursors are at hand, or
nearly so, and stimulated by the efforts of Tanir and
Sevinc we should continue with the arduous task of
requircments definition. Clearly, we should use the
results of related efforts, such as (PSESWG 1993; NIST
1993), while being mindful of the distinctive
requirements for supporting simulation modeling and
experimentation.

REFERENCES

Balci, O. 1986. Requirements for model dcvelopment
environments. Computers and Operations Research
13:53-67.

Nance, R.E. 1983. A tutorial view of simulation model
development. In Proceedings of the 1983 Winter
Simulation Conference, ed. S.D. Roberts, J. Banks,
and B. Schmeiser, 325-331. Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey.

NIST (National Institute of Standards and Technology).
1993. Reference model for frameworks of software
engineering environments. Special Publication 500
211 (Technical Report ECMA TR/55, 3rd Edition),
August.

PSESWG (Project Support Environment Standards
Working Group). 1993. Reference model for project
support environments, Version 1. NAWCADWAR-
93023-70, February.

Tanir, O. and S. Sevinc. 1994. Defining requirements
for a standard simulation environment. /EEE
Computer 43:28-34.

PORTABLE SIMULATION MODELS
Herbert D. Schwetman
ABSTRACT

This presentation discusses some of the issues which
limit the movement of models among different computer
systems. The major factor which impact model
portability include:

e Programming language
Operating system
File format
Processor
Database interface

o Graphics user interface
Experiences with two simulation software products
highlight some of the successes and some of the
difficulties found in moving simulation models between
systems.

e o 9 o

INTRODUCTION

Many users want to move a simulation model from one
system to another. In many cases, an analyst has
developed a model for his/her own use. Later, another
organization (or group within the organization)
discovers the model and wants to use it on another
system. Many times, consultants have models which
could be used by clients. if the model could execute on
the client's systems. In universities, students would like
to use models from a class on their home-based systems.

There are several approaches to dealing with these
kinds of problems. This paper will discuss some of
these approaches and give some insights into which
approaches work in which situations.

LEVELS OF MODEL PORTABILITY

In this discussion, there needs to be a distinction
between the host system and the target system. The
host system is the one on which the model was
originally developed. The target system is the system to
which the model is to be moved.

There are also different kinds of uses of simulation
models. In some cases, all that is required is that the
model be able to execute on the target system. This
assumes that all changes to the model have been
anticipated and can be handled by the model at runtime.
The model itself does not have to be changed; only the
inputs to the model are changed as user needs dictate.

Some models need to be changed in ways which
require the model to be recompiled. In these cases, the
compiler for the language used to write the model has to

672 Wagner et al.

be available on the target system. In addition, some
models may call on routines in different subroutine
libraries. Copies of these routines have to either be
provided with the model or have to be available on the
target system.

Some models make use of a graphical user interface
(GUI). either to visualize and modify the model and to
view the output or the operation of the model (model
animation). In these cases, the target system has to
support the GUI used by the model on the host system.

Finally, some models may wuse a database
management system (DBMS) to store model outputs for
use in summary reports. Again, either the DBMS
software has to accompany the model, or it has to be
available on the target system.

EXECUTION LEVEL COMPATIBILITY

The most elemental level of model portability is when
the host and target systems are very similar. Both
systems have the same type of processor (instruction set)
and the same operating system. Furthermore, both
systems have all of the support software required by the
model.

Today, many people have access to a IBM compatible
PC with Windows 3.1. Such systems range from laptop
or notcbook systems up to powerful workstations and
servers. Thus, a model which can runs on a PC with
Windows is potentially portable to a large number of
sites.

If the first kind of portability is assumed (model
execution), then the model can by supplied to the target
system as an executable file. With most widely used
systems, such as PC's, Macintoshes and UNIX
workstations, this is easy to do. However, it is crucial to
make certain that not only do the host and target system
have the compatible processors, but that the operating
systems are also compatible.

LANGUAGE LEVEL COMPATIBILITY

It is possible to distribute software which can be
modified and recompiled on different target systems. If
the host and target are very similar and if they both have
the same versions of the compiler and the same runtime
libraries, etc., then this is fairly straightforward. If, on
the other hand, the host and the target systems are
different (such as different processors, different
operating systems and/or different compilers). then the
task of moving a model which must be recompiled
becomes more difficult. The model developer can take
care to use features of the language which are common
(almost) to all compilers for the target systems. Another
issue here is whether or not all parts of the model can be

distributed in source form. In some cases, the
underlying library of simulation routines cannot be
distributed in source form.

Another solution to this problem is to distribute a
compiler with the model. If the compiler for the
language of the model runs on the target system, then
modified versions of the model can be recompiled and
executed on the target.

PORTING MODELS WITH GUI'S, ETC.

If the model makes use of many features of the host
system, then moving the model to a different kind of
target system becomes much more difficult. If the
model (or the simulation environment used to develop
the model) use machine language code or features
which are unique to a particular system, the porting the
model is almost impossible. Similarly, if the model has
a GUI which is not supported on the target, moving the
model is difficult, if not impossible. In some cases, it is
literally cheaper to purchase a new platform which is
similar to the host platform than to try to move the
model and its support software.

These problems present special challenges to people
developing, selling and supporting simulation products
and simulation models.

WHAT WORKS

Moving a model which just needs to execute on the
target system is easy, if the system is very similar to the
host system. Most sophisticated simulation
environments are developed for a limited number of
platforms. The developers make guesses as to which
platforms most of their customers will have and then
target only those platforms.

Some developers support a wider range of platforms.
CSIM17. a product from Mesquite Software, runs on
most UNIX workstations, as well as PC's and
Macintoshes (with floating point hardware). However,
CSIM17 does not support a GUL

In the final analysis, the modeler has to make choices
about what levels of support they need (in terms of
features in their simulation environment) and what
degrees of model portability they need.

