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ABSTRACT

Models management with a large number of models
has placed demands on a highly structured and rig-
orous framework. This paper proposes a new frame-
work, called the RASES (Relational Algebraic Sys-
tem Entity Structure), for the models management.
It is based on the concepts of system entity structure
(SES) and relational algebra (RA). SES is accepted
as a conceptual basis to organize a family of hierar-
chical structures of models. Under the RASES, SES
itself is represented in the form of relations which may
be stored as tables in a relational database. Further-
more, several operations on SES can be formulated
in terms of relational algebra which can be coded in
a standard query language.

1 INTRODUCTION
Modeling of complex systems and models manage-
ment with a large number of models have placed de-
mands on highly structured and rigorous framework.
To control the complexity of the modeling and mod-
els management, the structures of models must be
separately managed from the behaviors of models.
Furthermore, models must be specified in a modu-
lar form so that a composite model can be hierarchi-
cally constructed just by coupling input/output ports
of the models (Zeigler 1984). The structure of such
a hierarchical model is termed as a model structure.
Hierarchical management of such models and unified
representation of the model structures are essential
to efficiently construct models of complex systems.
Therefore, our models management problem concerns
how to manage models in a library of models, how
to organize a family of model structures in a unified
form, and how to construct new models from existing
models and model structures.

This paper proposes a new formalism, called re-
lational algebraic system entity structure (RASES),
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to cope with the models management problem. It is
based on the system entity structure (SES) formal-
1sm (Kim et al 1990, Sevinc and Zeigler 1988, Zei-
gler 1984, Zhang and Zeigler 1989) and the relational
algebra (RA) formalism (Codd 1970). The SES for-
malism i1s adapted as a conceptual basis to organize
a family of model structures in a unified represen-
tation. The RA formalism is accepted as a vehicle
to manage the models and model structures within a
relational database. Several applications in different
domains (Kim 1990, Sevinc and Zeigler 1988) have
proved that SES can be successfully employed for the
models management. It provides a unified represen-
tation scheme within which one may systematically
integrate a family of model structures and extract
new model structures from it. SES itself, in turn,
can be formulated in terms of relations under the RA
formalism. Furthermore, several operations on SES,
such as the pruning operation, can be defined in re-
lational algebra.

The relationally formalized SES (RASES) can ex-
ploit the power of relational database. Relational
database has been applied successfully to several ap-
plications, and accepted as a method to overcome
limits of traditional approaches. In the models man-
agement problem, there may be a large number of
models and model structures which must be stored
to provide sharable repository for many modelers.
This problem can be alleviated by the database ap-
proach because relational database management sys-
tem (RDBMS) provides rich facilities to efficiently
manage large amounts of data. As a consequence,
the RDBMS is an attractive platform for implement-
ing a framework for the models management.

In the work described here, we are developing a
RASES framework for the models management on a
general purpose RDBMS, the INFORMIX. Using the
facilities of the framework, modelers can create mod-
els which meet their modeling objectives, and conduct
appropriate experiments on the models. Further-
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more, the framework is sufficiently general enough
that it can be extended to manage the knowledge of
other domains, and to serve somewhat different needs
of users.

This paper is organized as follows. Section 2
briefly reviews SES with a more formalized form of
SES. In Section 3, we propose a relational formaliza-
tion of SES with a relational algebraic pruning algo-
rithm. Section 4 discusses an implementation of the
RASES framework on a RDBMS, the INFORMIX,
and section 5 illustrates a simple example with buffer-
processor models. Finally, some concluding remarks
are in Section 6.

2 SYSTEM ENTITY STRUCTURE

SES, proposed by Zeigler, is a declarative knowledge
representation scheme which systematically organizes
a family of possible alternatives for a system’s struc-
ture. Such a family characterizes decomposition, cou-
pling, and taxonomic relationships among entities.
The entity represents a real world object. The de-
composition concerns how an entity may be broken
down into sub-entities, and the concept of coupling is
to specify how these sub-entities may be combined to
reconstitute the entity. The taxonomic relationship
concerns admissible variants of an entity.

As shown in Figure 1, SES is represented as a la-
beled tree with attached attributes which satisfies the
following axioms: uniformity, strict hierarchy, alter-
nating mode, valid brother, and attached variables
(Zeigler 1984). There are three types of nodes in the
tree. Entity node, like A, represents a real world ob-
ject, and may have several aspects and/or specializa-
tions. There are two types of entity, namely com-
posite entity and atomic entity. Composite entity is
defined in terms of other entities (which may be ei-
ther atomic or composite), while atomic entity can
not broken down into sub-entities. An entity may be
attached with, and characterized by, variables. As-
pect node, connected by single vertical line from an
entity, like A-dec, represents one decomposition of
the entity. The children of an aspect node are en-
tities, distinct components of the decomposition. An
aspect has coupling specifications associated with it.
Specializalion node, connected by a double vertical
line from an entity, like B-spec, defines the taxonomy
of the entity. It represents a way in which general
entities can be categorized into specialized entities.
Selection rules may be associated with specialization
node, and guide the way in which specialized entities
are selected in the pruning process. Pruning process
extracts a specific system structure from a SES. Such
an extracted structure is called pruned entity struc-

A (-v1)
{(A.in, B.in)
(Aan, C.in)
A-dec (B.out, A.out)
| (C.out, A.oul))
B (-v2. -v3) C (v)
( {(v2=a -> B1) {(B.n, D.in) ((Can, B.in) ] {(C.in. H.in)

B-spec (yaob > B2)) B-dec (DOWLEIM ) (BoulGin)  C.dec2 (Hoout, Lin)

(E.out, B.out)) | (G.out, C.out)} (Lout, C.out)}

Bl B2 D(~1) E B Gi-#  H !
(vS) (v6) I I (~v10)
D-spec G-spec

frroeennaeas + Dl D2 «Gl G2

. (-v9)  {~vI1)

S =vi2) o (=v10)

.....................

Figure 1: Simple Example of SES

ture (PES), in which every entity has a single aspect,
and no specialization. Selection constraint concept
(Zeigler et al 1991), depicted as dotted arrow in the
Figure 1, means that not all specialized entities may
be selected independently. Once an entity of special-
1zation is chosen, some entities of other specializations
are rejected or selected.

We propose more formalized form of SES. It can
be formalized by items, the relations among them,
attributes attached to them, and the selection con-
straints as follows.

SES = <ITEM, REL, ATT, Gsel>

ITEM = E U A US : set of items
E : set of entities,
A : set of aspects,
S : set of specializations;

REL = Asp U Spec : relations among items
Asp C E x A x 2F . aspect relation,
Spec C E x S x 2% : specialization relation;

ATT = Evar U Acoup U Srule : attributes of items
Evar: E — 2V : attached variables,
Acoup : A — 20BJOXEIO) + 4t¢ached couplings,

Ssel : S — 27 . attached selection rules;
Gsel : (S x E) — 205%E) . global selection constraints.

where V represents a set of variables,
IO represents a set of input/output ports of entities,
R is a set of selection rules in the form of (cond — E).

Items, which are depicted as nodes in the treelike
representation, are composed of entities, aspects, and
specializations. Relalions among items define how
each item is related with each others, and are de-
picted as edges in the treelike representation. Aspect
relation relates each entity with sub-entities through
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an aspect, and specialization relation relates each en-
tity with specialized entities through a specialization.
Each item may be augmented by attached attributes.
Variables are attached to, and characterize each en-
tity. Couplings are attached to each aspect, and
can be described in terms of entities with their in-
put/output ports. Selection rules are also attached
to each specialization, and help the selection process
of the pruning. We also consider global selection con-
straints among specializations and their specialized
entities. For example, the entity structure in Figure
1 is defined as follows.

E = {A, B, C, B1, B2, D, E, G, H, I, D1, D2, GI,
G2}; A = {A-dec, B-dec, C-decl, C-dec2}; S = {B-
spec, D-spec, G-spec}; Asp = {(A, A-dec, {B,C}), (B,
B-dec, {D,E}), (C, C-decl, {B,G}), (C, C-dec2, {H,1})};
Spec = {(B, B-spec, {B1,B2}), (D, D-spec, {D1,D2}),
(G, G-spec, {G1,G2})}; Evar = {(A, {v1}), (B, {v2,v3}),
(C, {v4}), (BL, {v5}), (B2, {v6}), (D, {v7}), (G, (v8}),
(H, {v10}), (D1, {v9}), (D2, {v11}), (G1, {v12}), (G1,
{v10})}; Acoup = {(A-dec, {(A.in, B.in), (A.in, C.in),
(B.out, A.out), (C.out, A.out)}), (B-dec, {(B.in, D.in},
(D.out, E.in), (E.out, B.out)}), (C-decl, {(C.in, B.in),
(B.out, G.in), (G.out, C.out)}), (C-dec2, {(C.in, H.in),
(H.out, Lin), (I.out, C.out)})}; Ssel = {(B-spec, {(v2=a
— B1), (v2=b — B2)})}; Gsel = {((B-spec, B1), {(D-
spec, D1), (G-spec, G1)}), ((D-spec, D2), {(G-spec,
G2)}}-

3 RASES: RELATIONAL ALGEBRAIC
FORMALIZATION OF SES

This section first briefly reviews the concepts of re-
lational algebra. Then we propose a relational for-
malization of SES, called RASES, and a pruning al-
gorithm on the relationally formalized SES by using
relational algebra.

3.1 Relational Algebra in Brief

The cartesian product of domains Dy, - -, Dy, writ-
ten Dy x --- x Dy, is a set of n-tuples < vy, -+, vp >
such that v, is in Dy, vq is in D, and so on. Re-
lation is any subset of the cartesian product of one
or more domains, and each element of the relation
is called tuple. Relation can be represented as a ta-
ble where each row is tuple and each column has a
distinct name called attribute. Each attribute has
an associated domain. A relation R with a set of
attributes A = {A1,--, An} is denoted by R[A] or
R[A; ---Ay). Let t be a tuple in R[A]. Then the part
of ¢ corresponding to a set of attributes X' C A is
denoted by t[X]. We also use the relation name it-
self, for example t[R)], to indicate all attributes of the

relation.

There is a family of operations usually asso-
ciated with relations. They can be coded by
using algebraic notations, called relational alge-
bra. Fundmental operations in relational algebra
are union(U), dif ference(—), cartesian product(x),
projection(r), and selection(c). In addition to the
five fundmental operations, there are some other
useful operations that can be defined in terms of
the operations above. They are intersection(N),
natural join(X), and theta join(MXg). Details of such
operations can be found in (Codd 1970, Codd 1979).

In addition to the above operations, we defined a
new operation, called replacement(®), which will be
used intensively for a pruning algorithm, as follows.

Replacement (@ﬁf:gf) operation:

Let R[X], S[Y), and R'[X] be relations,
and attributes A;, A2 € X and By, B, €Y.

Then each tuple 7' € R for ' = R @’:f:ng

is obtained as follows.

For each tuple r € R,

if there exists a tuple s € S such that r[A4;] = s[B;]
then r'[X — A2] = r[X — A2] and r'[A2] = s[B>]
else r' =r.

That is, a replacement operation of R ©4?552S
means that each value of attribute A, is replaced with
the value of attribute By if the condition A; = Bj is
satisfied as shown in the following example.

rR: [A[B[ C] s: E] — ROAEPsS:

2 < ey

T < £
W =y
<< *|lQ

afl|x 1
b|2]|y 2
b |3 |y 4

The replacement operation can also be coded by us-
ing other operations as follows. Here, 64,.— p, means
that attribute name B is changed into A,.

RO4E0S = 8p, (75, x-4.(RMa,=B, 5))

3.2 Relational Formalization of SES

Although SES has been visually represented as a tree-
like structure, it can be transformed into other forms
which can coherently convey the information it bears
(Zhang and Zeigler 1989). In this section, we present
a relational formalization of SES, in which the con-
stituents of SES are represented as relations, and the
operations on them are defined by relational alge-
bra. The relational formalization of SES can be eas-
ily represented as relational tables . Each relational
table is defined in terms of relation(table) name, at-
tribute(column) names, and some kinds of constraint
on them. Relational algebraic system entity structure

(RAES) is defined by a 6-tuple.
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RASES = <ASP,SPEC,EVAR,ACOUP,SSEL,GSEL>

1) ASP [ent, asp, subent] : contains the aspect
relation. ent is an entity, asp is an aspect, and subent
is a sub-entity of the entity ent. This means that the
subent is a sub-entity of ent in the aspect asp.

2) SPEC [ent, spec, specent] : contains the spe-
cialization relation. ent is an entity, spec is a spe-
cialization, and specent is a specialized entity of the
entity ent. This means that specent is a specialized
entity of the general entity ent in the specialization
spec.

3) EV AR [ent, variable, value] : contains the
variables attached to the entitles. ent is an entity
to which a variable is attached, and value i1s a value
of the variable variable. This means that variable,
whose value is value, is attached to the entity ent.

4) ACOUP [asp, entl, portl, ent2, port2] : con-
tains the couplings attached to the aspects. asp is an
aspect, entl is an entity, portl is a port of the entity
entl, ent2 is another entity, and port2 is a port of
the entity ent2. This means that portl of the entity
entl is connected with port2 of the entity ent2 for
the aspect asp.

5) SSEL [spec, cond, specent] : contains the se-
lection rules attached to the specializations. spec is
a specialization, cond is a condition, and specent is
a specialized entity. This means that if the condi-
tion cond 1s satisfied then specent is selected for the
specialization spec.

6) GSEL [specl, specentl, spec2, specent2] : con-
tains the global selection constraints. specl and spec2
are specializations, specentl is a specialized entity of
specl, and specent?2 is a specialized entity of spec2.
This means that if specentl is selected for the spe-
cialization specl then specent2 must be selected for
the specialization spec2.

All of the relations are independent of a specific
SES to be represented. Thus, creating a SES for a
family of model structures is a matter of entering
data into predefined relations rather than a matter of
defining new relations. This choice of having all rela-
tions predefined has advantages. Since the database
structure is known prior, an implementation of the
models management framework 1s easier. Further-
more, since all the SESs built in this framework look
alike, they are easier to understand, to combine, and
to interchange. Figure 2 shows the relational tables
for the example SES depicted in Figure 1.

Several operations and functions on SES may be
defined in relational algebra. The relational algebra,

ASP : SPEC : EVAR : ACOUP :
ent| asp subenq |ent | spec  [specend | ent |variabld | asp entl|portl|en12|port2
A | A-dec | B B | B-spec | Bl A | vl A-dec | A |in B |in
A | Adec |C B | B-spec | B2 B |v2 A-dec |A |in C |in
B [B-dec |D D | D-spec | DI B [v3 A-dec [B |out |A |out
B | B-dec |E D | D-spec | D2 C |v4 A-dec [C |out [A Jout
C | C-decl | B G | G-spec | GI Bl|vS B-dec |B |[in D |in
C | C-dec! | G G | G-spec | G2 B2} v6 B-dec |D [out [E [in
C | C-dec2 | H D |v7 B-dec |E Jout | B |out
C | C-dec2 1 G | v8 C-decl |C |in |B [in
SSEL : H [vi0 C-decl [B |out |G [in
spec cond specent DI v9 C-decl |G [out [C | out
D2 | vil C-dec2 [C |in H [in
B-spec |v2=a |BI G| vi2 C-dec2|H [out [I |in
B-spec |v2=b |B2 GseL . L2 vi0 J[Cdec2 |t Jou |C Jout
specl |specentl| spec2 specent2
B-spec | BI D-spec Dl
B-spec | Bl G-spec | Gl
D-spec | D2 G-spec | G2

Figure 2: Relational Tables Representation of Exam-
ple SES

in turn, can be easily coded in a standard query lan-
guage such as the SQL. This helps users to analyze
the characteristics of a SES stored in the SES base.
To clarify the simplicity of relational operations, only
two of them (one for predefined operations and the
other for user coded query) are presented here.

1) spec-of : The operation spec_of(x) returns a part
of specialization relation (SPEC) which has = as the
value of ent column. It is coded as the following re-
lational algebra.

Sp(fC_Of(l’) = O'ent:r(SPEC)

For example,

spec_of(B) = | ent| spec specent
B | B-spec | Bl
B | B-spec | B2

2) user coded SQL query : Although users may re-
trieve much structural information on a SES by using
the predefined operations, they can also use the SQL
for their own purpose without the help of predefined
operations. For example, the list of entities, which
have variable ‘v7’ or ‘v10’ as their attached variables,
can be obtained by the following SQL query.

SELECT ent

FROM EVAR

WHERE variable = ‘v7° OR
variable = ‘v10’;

3.3 Relational Algebraic Pruning of SES

A SES specifies a family of model structures, in
which every entity is organized by aspects and spe-
cializations. The pruning process is to extract a
pruned entity structure, also called pure entity struc-
ture, from an original SES. Pruned entity structure
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Algorithm: prune(SES)

/* input : SES (ASP, SPEC, EVAR, ACOUP)

output : PES (ASPpruned, EVARpruned, ACOUPpruned) */

stepl: prune_select(SES) ;

step2: ASPpruned — (ASPsel ©ubent& recent gppge]) @EniE Pecent Gpp (el -

subent=ent

ent=ent

step3: ACOUPsel — mscoup(ACOUP Masp=asp ASPsel) ;

ACOUPpruned — (ACOUPsel @S 1 Epecent

entl=ent

SPECsel) ©¢12E pecent Gpp(Cgel |

ent2=ent

step4: EVARsel — mpv AR(EVAR Meni=cntvent=subent ASPsel)
U mevar(EVAR Ment=entvent=specent SPECsel) ;
EVARpruned — EVARsel @752t SPECsel ;

ent=ent

Figure 3: Relational Algebraic Pruning Algorithm

(PES) is a SES in which every entity has either a sin-
gle aspect or no aspect. In a PES, leaf entities have no
aspect, and every non-leaf entity has only one aspect
which represents the unique decomposition of that
entity. Pruning process is mainly composed of two
parts. First, one aspect and/or one specialized entity
are selected from the alternatives hanging from each
entity. The selection may be guided by the modeling
objectives (Zeigler 1984). Next, each selected spe-
cialized entity inherits all (sub-structures, variables,
couplings) of its general entity.

We propose a relational algebraic pruning algo-
rithm as shown in the Figure 3. Stepl selects only
one aspect and/or one specialized entity from its al-
ternatives hang from each nonleaf entity (details are
in prune_select()). Note that an entity may have
several aspects and/or specialized entities. In step2,
each specialized entity, which is selected in stepl, re-
places its general entity from the aspect table. In this
way, the specialized entity inherits the sub-structure
of its general entity. In step3, coupling specifications
of each aspect is appropriately modified by replacing
general entities in the couplings with its specialized
entities. In step4, each general entity attached with
variables is also replaced with its specialized entity.
In this way, the specialized entity inherits the vari-
ables of its general entity.

In the algorithm, the replace operation (©) in
step2-4 is used to inherit all information of each gen-
eral entity into its respective specialized entity. As an
example, the variables inheritance operation in step4,
EV ARpruned — EV ARsel Qini=PecM SPECsel,
on the example SES is presented in Figure 4(a). Its
operational effect is same as, but its complexity is
lower than, the inheritance operation on the tree of

Figure 4(b).

EVARsel : SPECsel : ot ot EVARpruned :
- EVARsel O 7" SPECsel -
ent |variable| | ent| spec  |specent rul=en ent | variable
A vl B | B-spec | Bl A vl
B | v2 D | D-spec | DI Bl| v2
B | v3 G | G-spec | Gl Bl| v3
Bl| v§ Bl| vS
C | vd C |v4
D | v7 DI| v7
DI v9 Dif v9
G| v8 Gl| v8
Gl| vi2 (a) Inheritance on the Tables Glj vi2
A (-v1) A (~v1)
! I
A-dec A-dec
B (~-v2.v3} C (-v4) I
| . Bll {-v2.v3.v5) C (-v4)
|
B-spec B-dec C-decl B-dec C-decl
I f_l_l |_L| [_l_‘
Bl Di-v1) E B G {-v8)

s v DI E Bl Gl

; I (=v1.v) {-v&v12)

D-spec G-spec
] 1
Dit-v9) Gl (~vi2}

(b) Inheritance on the Tree

Figure 4: Inheritance of Variables

The algorithm in Figure 5 is to select one item from
alternatives. Stepl selects one aspect hanging from
an entity. Step2 is to select one specialized entity
hanging from this entity. If there is only one item
to be selected then it is selected automatically. In
step3, the selection process proceeds into next entity
in a breadth-first traverse. The selection rules and
global selection constraints can also be incorporated
into this selection process with some additional work.

Figure 6(a) depicts one possible PES pruned from
the example SES in Figure 1. Figure 6(b) shows re-
lational tables representation of the PES.
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Algorithm: prune_select(SES)
/* input : SES (ASP, SPEC)
output : Selection (ASPsel, SPECsel) */

NEXT « {root(SES)} ;
do until NEXT = 0
N — next(NEXT) ;
stepl:  As — Tayp(0ent=n(ASP)) ;
A «— select(As) ;
ASPa Uem:N/\a,p=A(ASP) )
ASPsel — ASPsel U ASPa ;
step2:  Ss — Topeent(Tent=N(SPEC)) ;
S « select(Ss) ;
SPECs — Uent:NAspecent:S(SPEC) )
SPECsel «+— SPECsel U SPECs ;
stepd: NEXT « NEXT U m,yusent(ASPa)
U Typecent(SPECs) — <N>

Figure 5: Selection Algorithm

4 RASES FRAMEWORK FOR MODELS
MANAGEMENT '

We are implementing a RASES framework shown in
Figure 7, on a commercially available general purpose
RDBMS, the INFORMIX. The RDBMS provides rich
facilities that can be used to implement applications
including the RASES framework. The implementa-
tion relies on the ESQL/C, in which the query lan-
guage SQL is embedded into the host programming
language C. The ESQL/C provides all the function-
alities of the SQL and C. It allows one to perform
computations, by using C language, on the results of
SQL queries. The framework may provide a support-
ing tool to systematically organize a family of model
structures of a system in the form of SES, following
the principles of RASES. It also provides a guiding
tool to extract model structures from the SES by the
pruning process. Accordingly, the modelers, who has
partial knowledge of the system, can synthesize com-
plete simulation models which meet their modeling
objectives. The synthesized models may be simula-
tion codes for a specific simulation environment. For
example, the current RASES framework constructs
DEVSim-+- codes for the DEVSim++ simulation en-
vironment. The DEVSim++ (Kim and Park 1992) is
a realization of the DEVS formalism (Zeigler 1984)
for modeling and simulation in C++4-.

There are three databases. SES Base and PES

A {~v1}
{(A.in, BLin)
(A.in, C.in)
A-dec (g} qui, A.out)
| (C.out, A.out)}
[ |
B1 {~v2,~v3,~v5} C(-v4)
| {®Lin DLin) | (Cin, Bl
B-dec (Dl.out, E.in) C-decl (Bl.out, Gl.in)
(E.out, Bl.out)) | (Gl.out, C.out)}
D1 E B1 Gl
{~v7,~v9) {~v8,~v12}

(a) tree representation

ASPpruned : ACOUPpruned : EVARpruned :

ent | asp subent| | 4sP entl | portl| ent2| port2| |ent | variable

A | A-dec |BI A-dec |A |in Bl |in A | v

A |Adec |C A-dec |A lin |C |in Bl | v2

Bl | B-dec | D1 A-dec | Bl [out |A |out Bl | v3

Bl |B-dec |E A-dec [C |out {A |out Bl | v5

C | C-dec1 | B1 B-dec | Bl |in D1 |in C vd

C | C-decl | G1 B-dec |DI |out |E |in D1 | v7
B-dec {E |out |BI |out D1 | v9
C-decl |C |in Bl |in Gl | v8
C-decl [ Bl |out |Gl |in Gl | v12
C-decl [G1 |out |C | out

(b) relational tables representation

Figure 6: PES Pruned from Example SES

Base contains system entity structures and pruned
entity structures, respectively. Model Base contains
behavioral definitions of components, each of which
may be atomic or coupled DEVSim++ simulation
model. Users can access the databases through the
user-interface provided by the framework. They can
also manipulate the databases and exploit the power
of RDBMS for their own purpose by using SQL
queries. SES Manager module provides several facil-

SES Model  §  _ /DEVSimes
Model
8ES PES models
Structural
/ Analyses,

Figure 7: RASES Framework for Models Manage-
ment
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ities such as construction and modification of SESs.
Pruner module is an implementation of the algebraic
pruning algorithms. Model Synthesizer module is to
synthesize a complete simulation model by combin-
ing a PES with behavioral definitions in the model
base. Leaf entities of the PES are replaced with DE-
VSim++ atomic models, and higher level entities are
mapped to coupled DEVSim++ models by coupling
the lower-level models.

5 AN EXAMPLE : BUFFER-PROCESSOR
MODELS

A simple example shows the applicability of the
RASES framework to the models management. It
assumes that there exist atomic models of special-
ized buffers FIFO, LIFO, and a processor PROC, in
the model base as shown in Figure 8(a). From these
models, configuration experts can construct a SES
which configures possible model structures. For ex-
ample, the SQL code of Figure 8(b) creates a SES,
called PEL. The RASES framework, but, provides
rich facilities which support users to create this SQL
code. Figure 8(c) and Figure 8(d) shows the tables
representation and tree representation of the SES,
respectively. As shown in the SES, the root entity
PEL has only one aspect, called pel-dec, which de-
composes the PEL into a buffer(BUF) and a cas-
caded processor(PROC). The couplings of the pel-
dec are composed of the parent entity(PEL) and the
sub-entities(BUF, PROC) with their input, output
ports. The general buffer(BUF) has two specialized
types(FIFO, LIFO) under the specialization buf-type.

Once the SES of PEL is built, modelers can prune
it into a PES according to their modeling objectives.
There are two possible PESs, one of which is a PES
with FIFO, and another is a PES with LIFO. Figure
9(a) (Figure 9(b)) shows an example of PES, where
the FIFO has been selected as the specialized type
of buffer. As shown in the PES, the FIFO replaces
all occurrences of its general entity BUF. Next step
is to synthesize the PES into a DEVSim++ simula-
tion model. Figure 9(c) and (d) depicts the block
diagram and the DEVSim++ code of the coupled
model PEL, respectively. It is synthesized by com-
bining the PES with the atomic models FIFO and
PROC in the model base. The modelers can conduct
appropriate experiments on the model PEL by using
the DEVSim++ simulator. The coupled model PEL
may itself be saved into the model base as shown in
Figure 9(e), and in turn could be used as a component
to construct other higher level models.

——MODEL BASE

(a) Model Base

CREATE TABLE peliasp (ent CHAR(20),

asp CHAR(20),

subent CHAR(20));
CREATE TABLE pel:spec (ent CHAR(20),

spec  CHAR(20),

specent CHAR(20) ):
CREATE TABLE pel:acoup ( asp CHAR(20),

entl CHAR(20), portl CHAR(20),

ent2 CHAR(20), port2 CHAR(20));
INSERT INTO pel:asp VALUES ("PEL", "pel-dec”, "BUF");
INSERT INTO pel:asp VALUES ("PEL", "pel-dec”, "PROC"):
INSERT INTO pel:spec VALUES ("BUF", "buf-type”, "FIFO");
INSERT INTO pel:spec VALUES ("BUF", "buf-type”, "LIFO"):
INSERT INTO pel:coup VALUES ("pel-dec”, "PEL", "in", "BUF", "in");
INSERT INTO pel:coup VALUES ("pel-dec”, "BUF", "out”, "PROC", "in");
INSERT INTO pel:coup VALUES ("pel-dec”, "PROC", "done”, "BUF", "ready");
INSERT INTO pel:coup VALUES ("pel-dec”, "PROC", “out”, "PEL", "out");

(b) SQL Code

ASP : SPEC :
ent | asp subent ent | spec specent]
PEL| pel-dec | BUF BUF| buf-type | FIFO
PEL{ pel-dec | PROC] | BUF| buf-type | LIFO
ACOUP :
asp ent] portl| ent2 | port2
pel-dec| PEL [0 | BUF |[in

pel-dec | BUF | 0out | PROC| in

pel-dec | PROC| done | BUF | ready
pel-dec | PROC| out | PEL | out

(c) SES : Tables Representation

PEL {(PEL.in, BUF.in)

(BUF.out, PROC.in)
pel-dec (PROC done, BUF ready)
(PROC.out, PEL.out) }

Bl.;F PROC
|
buf-rype

FIFO  LIFO

(d) SES : Tree Representation

Figure 8: Construction of SES

6 CONCLUSIONS

This paper proposed a relational algebraic frame-
work, called the RASES, to manage the complexity
of the models management problem. By adapting
system entity structure (SES) and relational algebra
(RA) as a conceptual basis, we have laid a ground-
work for an integrated approach to the problem. The
framework is intended to support the work of manag-
ing large amounts of models and model structures, by
providing flexible and rapid access to the database.
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ASPpruned :

ent | asp subent
PEL| pel-dec | FIFO
PEL| pel-dec | PROC
ACOUPpruned :

asp ent] portl| ent2 | port2

pel-dec | PEL |in FIFO | in
pel-dec | FIFO | out | PROC] in
pel-dec | PROC| done | FIFO | ready
pel-dec | PROC| out | PEL | out

(a) PES : Tables Representation

PEL
| {(PEL.in. FIFOQ.in)
(FIFO.out. PROC.in)
pel-dec (pRoC done. FIFO.ready)
(PROC.out, PEL.out))

FIFO PROC

(b) PES : Tree Representation

PEL

n in out out

ready | FIFO 2% " PROC [jone

(c) Block Diagram of Model PEL

void make_PEL()

{
PEL.add_inports ("in");
PEL.add_outports ("out");
PEL.add_children (FIFO, PROC);
PEL.add_coupling (PEL, “in", FIFO, "in");
PEL.add_coupling (FIFO, “out”, PROC, "in");
PEL.add_coupling (PROC. "done". FIFO, "ready");
PEL.add_coupling (PROC. "out", PEL, "out");
PEL.add_priority (FIFO, PROC):

(d) DEVSIM++ Code for Coupled Model PEL

——MODEL BASE—

n L
ready | FIFO [

in f
read LIFO ¥

. out

s PROC [dune

n PEL out

(e) New Model Base

Figure 9: Pruning and Model Synthesis

Although this paper focused more on the models
management. the framework, with further research,
can be applied to other domains if the domain knowl-
edge can be represented in the form of SES.
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