Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

SYSTEMS MODELING WITH XPETRI

Robert Geist
Darren Crane

Department of Computer Science
Clemson University
Clemson, South Carolina 29634-1906, USA

ABSTRACT

The design of a new modeling tool, zpetri, is de-
scribed, and its use in solving real computer system
design problems is illustrated. The tool is based on
an extension of stochastic Petri nets, and provides
both a succinct model language specification and a
wide-ranging collection of modeling capabilities in-
cluding detailed stochastic workload representation.
Although solutions of models in the specified zpetr:
language are outside the realm of purely analytic
techniques, favorable solution times are provided via
a multi-threaded simulation compiler. A technique is
suggested for allowing the threads to execute transi-
tion firing outside strictly time-sequential order. An
X-windows (Motif) interface offers fast and reliable
generation of models in the zpetri language.

1 INTRODUCTION

Intrinsic limitations on the representation capabili-
ties of queueing network models, together with strong
demands for improved accuracy in performance pre-
dictions from models, have led to a growing inter-
est in computer systems modeling that is based on
stochastic Petri nets. Recall that a Petri net is a
directed bipartite graph whose two vertex sets are
called places and transitions. Places are traditionally
represented by circles and transitions by rectangles.
Places may contain one or more {okens, represented
by small discs. The semantics attached to such nets
are rules for simulation:

e If every input place to a transition contains one
or more tokens, the transition is enabled.

o Enabled transitions may fire, that is, remove one
token from each input place and add one token
to each output place.

o If firing an enabled transition would disable a
concurrently enabled transition (conflict), the

611

Stephen Daniel
Darrell Suggs

Data General Corporation
62 Alexander Drive
Research Triangle Park, North Carolina 27711, USA

firing transition is chosen at random.

A common extension to the basic Petri nets, inhibitor
arcs, adds Turing completeness: If an arc from a place
to a transition is an inhibitor arc, the transition is
enabled only if the place is empty.

Largely due to the ease with which modelers can
represent common system features such as concur-
rency and resource contention, Petri nets and their
extensions (Dugan et al. 1984, Jensen, 1987, Malloy,
1982, Marsan, Conte, and Balbo, 1984) have been
used by many authors in computer systems perfor-
mance modeling (Balbo, Bruell, and Ghanta, 1988,
Holliday and Vernon, 1987) and reliability modeling
(Shieh, Ghosal, and Tripathi, 1989, Yoneda, Nakade,
Tohma, 1989).

Although many extensions to Petri nets have been
proposed, few have been widely accepted by the com-
munity of industrial computer system designers. We
conjecture that one reason for this reluctance is that
the increased modeling flexibility is often unmoti-
vated by realistic system design examples, and yet
frequently attended by a large increase in specifi-
cation semantic complexity. A notable exception is
the Generalized Stochastic Petri Net (GSPN) (Cia-
rdo, Muppala, and Trivedi, 1989, Marsan, Conte, and
Balbo, 1984) in which transitions may fire instan-
taneously (when enabled) or have exponentially dis-
tributed delay between enabling and firing. Such nets
can be transformed into discrete-state, continuous-
time Markov processes so that analytic solution tech-
niques may be employed to extract both steady-state
and transient information.

Nevertheless, the representation capability of
GSPN’s is limited. In particular, token routing is dif-
ficult to effect, yet important for accurate represen-
tation of real system components such as disk cylin-
der request locations, process-processor bindings, and
cache hit/miss behavior. Further, non-exponential
timing 1s common in real systems, but difficult to
represent. Proponents of GSPN’s might argue that

612 Geist, Crane, Daniel, and Suggs

any distribution with rational Laplace transform can
be represented as a cascade of exponentials (Trivedi,
1983). The exception, of course, is that the poles
of the transform must have negative real part, which
precludes the most common non-exponential timing,
namely, constant (e.g. interval timers, in-line code ex-
ecution, etc.). Analytic solution procedures for Petri
nets with non-exponential timing continue to impose
major restrictions on net structure, e.g. at most
one non-exponential transition may be enabled at
any instant. Substantial effort is now being directed
toward removing such restrictions (Choi, Kulkarni,
and Trivedi, 1993, German and Lindemann, 1993),
but the resulting stochastic processes are highly non-
trivial.

The purpose of this paper is to describe an alter-
native approach to computer systems modeling with
stochastic Petri nets. In particular, we have dis-
tilled from systems of real interest to industrial de-
signers a minimal set of modeling capabilities that
is sufficiently rich in representation to allow strong
confidence in the performance predictions obtained
there from. These capabilities are collected in a
modeling tool (zpetr:) that has a complete descrip-
tion in seven lines and yet provides the desired, ex-
panded representation capability. Although this ex-
panded capability pushes us outside the realm of cur-
rent analytic solution techniques, we achieve favor-
able model solution times by compiling net descrip-
tions into multi-threaded, customized simulation en-
gines wherein transitions need not fire in strictly time-
sequential order.

The paper is organized as follows. In section 2, we
describe the zpetr: model specification language and
the representation capabilities it provides. In section
3 we describe the X-windows interface and in section
4 the multi-threaded compiler. Section 5 contains a
generic procedure for workload modeling, largely due
to Haring (1983), that allows us to exploit some im-
portant capabilities of zpetri. Section 6 contains an
example, an investigation of the benefits of anticipa-
tory seeking to reduce service time on disks. Conclu-
sions follow in section 7.

2 XPETRI LANGUAGE SPECIFICATION

We now discuss the components of the zpetr: lan-
guage, whose complete specification is shown in fig-
ure 1. Most often, an X-windows graphical interface,
described in the next section, is used to generate a
model description in this zpetri language. However,
the model description is readable ASCII text and can
be created or modified with an ordinary text edi-
tor. The model description is then routed as input

to either a standard, discrete event simulation engine,
rpst, or the compiler engine, zpsc. The simulation en-
gine is intended for rapid prototyping and debugging,
and has facilities for tracing all transition firings and
token movement.

Model description lines beginning with ‘%’ are
comments. The graphical interface does not gener-
ate comment lines, but since the model description in
the zpetr: language can be edited directly, comments
can serve as helpful guide posts. A line beginning
with ‘d’ signals that the model specification is com-
plete. The other five line specifications require some
detail.

p A line beginning with character ‘p’ signifies a
place specification. It is followed by a desired
name for the place (a character string), and the
number of initial tokens. If this number is greater
than zero, the tokens must be specified individ-
ually by color. Colors are simply non-negative
integers used to carry information that can con-
trol token routing, transition enabling, and tran-
sition firing time.

a A line beginning with character ‘a’ signifies an
arc specification. Each arc specification requires
the name of a place and the name of a transition.
Arcs connecting places to transitions may be in-
hibitor arcs; in this case the attached transition
is enabled only if the attached place is empty.
Arcs connecting transitions to places may be
probabilistic; in this case a probability must be
supplied. When the attached transition fires, a
token is deposited in the attached place with the
specified probability.

o A line beginning with character ‘o’ calls for an
output report on the named place or transition.
Place output reports give average place utiliza-
tion and average token residence time. Transi-
tion output reports give throughput, 1.e., firing
rate over the simulated time period.

t A line beginning with character ‘t’ signifies a
transition specification. The desired transition
name is followed by specification of a firing time
distribution; this specification is simply an index
into a list of built-in distribution families:

— instantaneous
— constant

— uniform

— exponential

— load-dependent exponential

Systems Modeling with Xpetri 613

p <name> <token count> [token list]
t <name> <dstrbtn> (prmtrs] <group> <corr.>

<colorfet.> [prmtrs] <rstrctn count> [place color ...
a <place> <transition> <inhbtr|no>
a <transition> <place> <prbblstc|no> [branch prob]
o <placeltrans.>
% comment
d

Figure 1: Xpetr: Language Specification
— empirical probability 1 — || we select r; at random from

|

linear color distance

subnet

user-defined

Most of these distribution choices will be illus-
trated in section 6, but the last two deserve com-
ment. The “subnet” choice indicates that the fir-
ing time will be that required for a single (ran-
dom) execution of the subnet named as a first pa-
rameter. This assumes that the indicated subnet
requires finite time to reach an absorbing state.
Subnets may be specified (recursively) to arbi-
trary depth. The “user-defined” choice requires
a first parameter that is a file name containing a
C code function of the same name. The remain-
ing parameters are passed to the C code func-
tion, whose execution returns the firing time. In
general, these distributions have a varying num-
ber of parameters, specified after the distribution
choice index.

Transitions are given group names, and all tran-
sitions with the same group name have correlated
firing times. The desired correlation is specified
as a real number K € [-1.0, 1.0] following the
group name. Sampling from the distributions is
adjusted to approximate the specified correlation
as follows: When transition 7 becomes enabled,
it locates all other concurrently enabled transi-
tions in its group. If there are none, a random
number r; € [0, 1] is used to select from the firing
time distribution in the standard fashion, that is,
firing time = F;!(r;), where F; is the distribu-
tion function attached to transition :. However,
if there are other enabled transitions in ’s group,
one of these is selected at random, call it j. The
last value r; € [0, 1] used to select from j's distri-
bution is then used in conjunction with the group
correlation factor, K, to determine the new se-
lection value r; € [0,1]. With probability |K'| we
let r; = r; (let r; = 1-7j, if K <0), and with

[0,1].

The relationship between the selection values 7;
and r; is easily expressed. Consider the case
K > 0. If Rj is a random variable with uni-
form(0,1) distribution, and R; is a random vari-
able whose dependence on R; is as described,
then the conditional density of R; 1s

Ké if Ty =T

fR'lRJ(Tilrj) = { 1-K ifr#7;
where § denotes unit impulse. We then have
E[Ri|Rj=r;] = RKr;+(1-K)/2,
E[R:R;] = K/3+(1-K)/4,
COVI[R;,R;] = K/12, and
plRi,R;] = K
The case K < 0 is by like argument.

The color of the output tokens is determined, like
the firing time distribution, from a list of built-in
function choices:

— black

— constant color

— color from place

— color Markov from file
— color i/o from file

— color stream from file

— user-defined

Again, most of these choices will be illustrated in
section 6. All but the first require parameters.
For example, a common choice is to use the color
found in a specific enabling input place (“color
from place”), in which case the parameter is the
name of the input place.

Finally, an integer number of enabling restric-
tions can be specified. A restriction is a place-
color pair, and the transition will not enable un-
less a token of the specified color appears in the
specified place.

614 Geist, Crane, Daniel, and Suggs

Additional details regarding these features will be
provided in the discussion of the example.

3 THE X-WINDOWS INTERFACE

The zpetri modeling tool uses a Motif-based graphical
interface to allow fast specification of system models.
Nets are drawn using a three button mouse. Buttons
one and two are used to create and move places and
transitions. Button three is used to create arcs, with
optional guide posts for curved (spline) or segmented
arcs, as well as to select objects for attribute edit-
ing. All places, transitions, and arcs are created with
attributes copied from user-defined defaults. An ob-
Ject’s attributes can be edited by selecting the object
and opening the appropriate dialog box. The token
list attached to a place can be edited from the place
dialog box. Transition firing time distributions, color
output functions, group correlations, and enabling re-
strictions can be edited using the transition dialog
box. Inhibitor, probabilistic, and segmented arc at-
tributes can be selected from the arc dialog box.

Place and transition names default to p# and
t#, numbered consecutively. Screen names are lim-
ited to twenty characters to reduce screen clutter.
Long names, used for the solution engine input, and
the short screen names can be edited from the di-
alog boxes. Drawing grid and snap to grid conve-
niences are available. There are no restrictions on net
size. An infinite drawing area is available, with zoom
in/out capabilities. Nets can be output to postscript
files, zpetri graphical files, which can be reloaded by
the interface, and zpetri language files for routing to
the solution engine(s).

It is important to note that this interface is more
than a convenience: the solution engines, zps: and
zpsc, are, of course, unable to detect semantically
correct input nets that contain missing or extra arcs.
For large models such as that recently undertaken at
DG, a complete MC88110 processor, user detection
of these arc problems is extremely difficult and time
consuming. This moving-window, graphical approach
alleviates most such problems.

4 THE SIMULATOR COMPILER

Extensive use of Petri net models to guide large scale
systems architecture and design quickly put pressure
on our ability to simulate large nets for long periods of
time. We have elected to address this problem in two
ways. First, we have constructed a compiler for Petri
nets. This compiler, zpsc, reads model descriptions in
the zpetr:language. Its output is a C program which
can be compiled into a simulator for the described

net. The compiler generates one C function for each
transition. The function is tailored to handle the spe-
cific enabling function, firing time distribution, and
output color selection.

The second optimization is to use posix threads,
one per transition. While this adds some overhead,
it allows us to reduce elapsed time when running on
a multi-processor system. Each transition has an as-
sociated lock. A transition always holds its own lock
except when waiting for an event. The algorithm used
by each transition is then:

1. Wait until change in state of input places.
Check if enabled. If not, go to 1.

Sample the firing distribution.

-

Wait until time to fire, or change in state of input
places.

5. Check if enabled. If not, go to 1.
6. Check if time to fire. If not, go to 4.

7. Release lock of self. Get locks on self and all
neighbors. A neighboring transition is one that
shares an input or an output place. Deadlocks
are avoided by always obtaining locks in a fixed
order.

8. Check if enabled. If not, unlock neighbors and
go to 1. (This check is required because of the
window in the previous step when lock on self is
not held.)

9. Fire.

10. Release locks; signal neighbors to check for
change of state; go to 2.

A count is maintained of runnable threads. When
the last thread is about to go to sleep, it calls a routine
that advances time to the next scheduled firing time.
All transitions that are scheduled to fire at that time
are then signaled, and the thread that called for all
this activity goes to sleep unless it has just signaled
itself.

Preliminary experiments with compiled zpetri nets
have shown a significant speed advantage over inter-
preted nets. When simulating a large net (200 tran-
sitions, 206 places) the compiled version ran 15 times
faster than the interpreted version on the same single
processor machine.

The major flaw in this algorithm is that it reduces
the number of active threads to 1 at each time step.
This limits parallelism and prevents effective use of
systems with very large processor counts. To avoid

Systems Modeling with Xpetri 615

this, we are experimenting with different ways of re-
laxing the constraint that all parts of the simulated
net be time synchronized.

The simplest way to relax time constraints uses the
concept of a guaranteed fire transition (gft). If each
input place to a transition has only one exit arc, and
none is an inhibitor arc, then this transition is a guar-
anteed fire transition. When a gft is enabled, we know
with certainty that it will fire, and we know exactly
when it will fire. Since we record the arrival time of
each token to each place (for output measure compu-
tation), we can allow gft firing to proceed ahead of
the rest of the network. Subsequent enabling checks
compare token arrival times to the clock.

5 WORKLOAD MODELING

A detailed and accurate workload characterization is
crucial in obtaining accurate performance predictions
from models. Our previous disk modeling studies
have shown that a priori benign assumptions regard-
ing workload can have drastic effects on performance
predictions. In (Geist, Reynolds, and Pittard, 1987)
we found that a disk simulation model with measured
cylinder access frequencies, measured service times,
measured mean arrival rate, and an assumed Poisson
arrival process yielded 500% error in mean waiting
time predictions. A change of the arrival process (but
not its mean) from Poisson to that induced by service
completions reduced the error to 1%.

Dependencies in service request streams, such as
successive disk or main memory addresses, can also
strongly affect performance. The output token color
choice, “color Markov from file”, was provided to fa-
cilitate direct representation of such dependencies.

We now describe a procedure for effective use of
this modeling feature. A first-order Markov chain is
a state-based model in which next state probabilities
depend only upon the current state. If next state
probabilities depend upon the last 2, 3, or, more gen-
erally, n states visited, then the Markov chain is said
to be of order 2, 3, or n. In this same terminology,
an independent access model is an order 0 Markov
chain.

We assume that a measured sequence of service re-
quests in our workload represents a Markov chain
of some order, perhaps order 0. Following Har-
ing (1983), we can test for this order. Let c(f) €
{0,1,2,..., N—1} denote the resource accessed on the
tth request, where the total number of requests is T'.
Let

1 ife(t)=j
Ni(t) = {0 otherwise

_ 1 if e(t)=j and ¢(t — 1)=1

Nis(t) = { 0 otherwise

We let 7; denote the steady-state probability that a
request 1s for resource ¢ (invariant measure), and let
pi; denote the conditional probability that the next
resource requested is j, given that the last requested
was ¢ (transition matrix). Maximum likelihood esti-
mators of 7; and p;; are

T
=> N;/T (1)
t=1

N

pw—ZN,,u > Ni(t=1) (2)

t=2

We can then test the hypothesis

Ho:pij =m; Vi, j (Markov chain is order 0)
versus the alternative
Hy:pij #7; Vi, j (Markov chain has order > 1).

From Haring (1983),

N N T
:ZZZNzt‘l) [pij = 751°] 7

i=1j=11t=2

has \? limiting distribution with N(N —1) degrees of
freedom. For such large degrees of freedom, we can
regard /2\3 — /2N(N — 1) — 1 as a sample from
a standard normal (Trivedi, 1983). Similar tests are
available for Hg: order 1 versus H;: order > 2 and
for higher orders.

If these tests indicate that an order 1 Markov chain
1s appropriate, as is often the case, the measured tran-
sition matrix (2) is installed in a file, whose name
is the first parameter for the output color function,
“color Markov from file”. The second parameter is
an input place. The color of the enabling token from
the named input place is then used to select the row
in the measured transition matrix. A random sample
from the distribution represented by this row is the
output color.

6 EXAMPLE

King (1990) advocates anticipatory seek as a tech-
nique for improving disk subsystem performance.
During an otherwise idle period, the disk arm is
moved to a position that is likely to be closer to the
next request. It is easy to extend the uniform request
distribution (or uniform plus hot-spot) treatment in

616 Geist, Crane, Daniel, and Suggs

(King, 1990) to the general Markov case. Let .\; de-
note the random variable with distribution specified
by row i of the Markov transition matrix for cylin-
ders, i.e., P(.\; = j) = p;;. Given a last request to
cylinder i, we would like to find the cylinder ¢ that
minimizes

é(c) Ef|Ni =]

N
D 1= clpi
7=1

c—1
ElN;] —c+2 Z P(X; <))

j=1

Necessary requirements on this minimizing ¢ are then:

b(c+1)—68(c) = —142P(X;<¢)>0
6(c—1) —é(c) 1-2P(X;<c¢—1)>0

from which we can conclude that ¢ is the median of
the distribution. Thus during an idle period, if the
last request was to cylinder ¢, we should seek to the
cylinder that represents the median of the distribu-
tion given by row i of the matrix (p; ;).

We can quickly explore the potential benefits of this
policy. In figure 2 we show an zpetri net model for a
disk with this anticipatory seek facility.

The transition cpu has exponential firing time with
load-dependent rate: A nominal rate is multiplied by
the number of tokens in place cpu_queue (three are
shown, ten are used in the simulation) to yield the
effective firing rate. The transition Markov uses the
“color Markov from file” selection for color output.
The color of the token in place last_request is used to
select a row from the stored transition matrix, p; ;.
This transition matrix was obtained from measure-
ments of real disk cylinder requests for 10 indepen-
dent processes on a DG AViiON system, as described
in (Geist, Suggs, and Reynolds, 1993). On firing, we
record the cylinder (color) requested in the enabling
place lasi_request, and thus this transition provides
the “next-cylinder” selection.

The transitions service and A_service have menu-
selected “linear color distance” firing times. Specifi-
cally, the colors (cylinders), ¢; and ¢, of the tokens
in the two input places are used in:

firing time = { at+btdxe —c ?fcl 7 2

a if c; =co

where a, b, and d are function parameters. Here we
use a = 8 ms to represent rotation, b = 4 ms to rep-
resent startup, and d = 0.025 ms to represent seek
time per cylinder.

CPU
QUEUE

A_SELECT

IN

OA_SERVICE

_SERVICE

DISK HEAD
LOCATION

Figure 2: Anticipatory Seek Model

Systems Modeling with Xpetri 617

The LR_entry/LR_copy cycle simply records the
last non-anticipatory seek made, and keeps it avail-
able in place LR_copy. Both transitions are in-
stantaneous and select output color from the place
LR_entry. When the disk queue is empty and
LR_copy is not, the A_select transition starts the an-
ticipatory seek; its output color is specified by the
choice “color i/o from file” where the named file con-
tains the medians of the rows of the matrix (pij)

In table 1 we show the results of executing this net
for three nominal firing rates of the cpu transition. In
table 2 we show the results from the same net with the
anticipatory seek disabled. We see that at the lowest
rate the anticipatory seek was indeed beneficial to
response time, and at the highest rate there is little
overall effect, as might be expected, since anticipatory
seeking rarely occurs. However, an interesting case
i1s the middle rate, where we see that anticipatory
seeking actually produces a detrimental effect on the
predicted response time. Here, apparently, arriving
requests often find themselves awaiting completion of
an anticipatory seek, and the extra startup penalty is
more costly than any savings in seek distance.

Table 1: Anticipatory Seek On

rate(req./ms) 0.001 0.02 (.40
service(ms) 19.29 20.02 20.12
wait(ms) 0.85 11.76 37.69
response(ms) 20.14 31.78 57.79

Table 2: Anticipatory Seek Off
rate(req./ms) 0.001 0.02 040
service(ms) 20.39 20.23 20.21
wait(ms) 0.69 9.01 37.83
response(ms) 21.08 29.24 58.04

7 CONCLUSIONS

We have described a new modeling tool (zpetr:) that
is based on an extension of stochastic Petri nets, and
we have illustrated its use in solving computer system
design problems. The tool provides both a succinct
model language specification and a carefully designed,
wide-ranging collection of modeling capabilities. In
particular, accurate representation of workload de-
pendencies is straightforward. In our experience, such
representations are crucial to accurate performance
predictions.

Solutions of models specified in the zpetri language
are outside the realm of current analytic techniques,
but a multi-threaded simulation compiler allows fast

solution of large models. The X-windows interface
offers speed in model specification, and, more impor-
tant, improved design reliability.

In addition to the anticipatory seek results, we have
used zpetri in sizing an on-board write cache for disk
arrays, exploring alternative parity schemes for disk
arrays, and predicting the performance of a copy-back
cache for the MC88110.

Xpetri source code is available to the reader (via
ftp) at no cost. Contact rmg@cs.clemson.edu.

REFERENCES

G. Balbo, S. Bruell, and S. Ghanta. 1988. Combin-
ing queueing networks and generalized stochastic
petri nets for the solution of complex models of
system behavior. IFEE Transactions on Comput-
ers 37:1251-1268.

H. Choi, V. Kulkarni, and K. Trivedi. 1993. Markov
regenerative stochastic petri nets. In Proceedings
of the 16th International Symposium on Computer
Performance Modeling, Measurement, and Evalua-
tion (PERFORMANCE '93), ed. G. Iazeolla and
S. Lavenberg, 339-356. International Federation
for Information Processing, Rome, Italy.

G. Ciardo, J. Muppala, and K. Trivedi. 1989. SPNP:
Stochastic Petri net package. In Proceedings of the
International Conference on Peiri Nets and Per-
formance Models, 142-150. Institute of Electrical
and Electronics Engineers, Kyoto, Japan.

J.B. Dugan, K.S. Trivedi, R.M. Geist, and V.F.
Nicola. 1984. Extended stochastic petri nets:
Applications and analysis. In Proceedings of the
10th International Symposium on Computer Per-
formance Modeling, Measurement, and Evaluation
(PERFORMANCE '84), ed. E. Gelenbe, 507-520.
International Federation for Information Process-
ing, Paris, France.

R. Geist, R. Reynolds, and E. Pittard. 1987. Disk
scheduling in System V. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, 59-68. Associa-
tion for Computing Machinery, Banff, Alberta.

R. Geist, D. Suggs, and R. Reynolds. 1993. Min-
imizing mean seek distance in mirrored disk sys-
tems by cylinder remapping. In Proceedings of the
16th International Symposium on Computer Per-
formance Modeling, Measurement, and Evaluation
(PERFORMANCE '93), ed. G. lazeolla and S.
Lavenberg, 91-108. International Federation for
Information Processing, Rome, Italy.

R. German and C. Lindemann. 1993. Analysis of
stochastic petri nets by the method of supplemen-
tary variables. In Proceedings of the 16th Interna-

618 Geist, Crane, Daniel, and Suggs

tional Symposium on Computer Performance Mod-
eling, Measurement, and FEvaluation (PERFOR-
MANCE °93), ed. G. lazeolla and S. Lavenberg,
320-338. International Federation for Information
Processing, Rome, Italy.

G. Haring. 1983. On stochastic models of interactive
workloads. In Proceedings of the 9th International
Symposium on Computer Performance Modeling,
Measurement, and Evaluation (PERFORMANCE
'83),ed. A. Agrawalaand S. Tripathi, 133-152. In-
ternational Federation for Information Processing,
College Park, Maryland.

M. A. Holliday and M. K. Vernon. 1987. A general-
ized timed Petri net model for performance anal-
ysis. I[EEE Transaclions on Software Enginecring
SE-13:1297-1310.

K. Jensen. 1987. Colored Petri nets. Lecture Notes in
Computer Science 254:248-299. Berlin: Springer-
Verlag.

Richard King. 1990. Disk arm movement in antic-
ipation of future requests. ACM Transactions on
Computer Systems 8(3):214-229.

M.K. Malloy. 1982. Performance analysis using
stochastic petri nets. [EEE Transactions on Com-
puters C-31:913-917.

M. Marsan, G. Conte, and G. Balbo. 1984. A class
of generalized stochastic petri nets for the perfor-
mance evaluation of multiprocessor systems. ACM
Transactions on Computer Systems 2:93-122.

Y-B. Shieh, D. Ghosal, and S. Tripathi. 1989. Model-
ing of fault-tolerant techniques in hierarchical sys-
tems. In Proceedings of the 19'* International Sym-
positum on Fault-tolerant Computing (FTCS-19),
167-174. Institute of Electrical and Electronics En-
gineers, Chicago, Illinois.

K.S. Trivedi. 1983. Probability and Statistics with
Reliability, Queueing, and Compuler Science Ap-
plications. Englewood Cliffs, NJ: Prentice-Hall.

T. Yoneda, K. Nakade, and Y. Tohma. 1989. A fast
timing verification method based on the indepen-
dence of units. In Proceedings of the 19" Inter-
national Symposium on Fault-lolerant Computing
(FTCS-19), 134-141. Institute of Electrical and
Electronics Engineers, Chicago, Illinois.

AUTHOR BIOGRAPHIES

ROBERT GEIST is a Professor in the Department
of Computer Science at Clemson University. He re-
ceived a B.A. degree in mathematics and an M.A.
degree in computer science from Duke University in
1970 and 1980 respectively, and he received M.S. and
Ph.D. degrees in mathematics from the University
of Notre Dame in 1973 and 1974 respectively. His

research interests are in performance and reliability
modeling of computer and communication systems
and stochastic modeling in computer graphics.

DARREN CRANE is virtual reality system ad-
ministrator for Clemson University. He received B.S.
and M.S. degrees in computer science from Clem-
son University in 1991 and 1994 respectively. His
research interests are in performance modeling, com-
puter graphics, and stereo lithography.

STEPHEN W. DANIEL is a Staff Specialist in the
Database Engineering department of Data General’s
Research Triangle Park North Carolina laboratory.
He received a B.S. degree in physics from Williams
College in 1979 and an M.S. degree in computer sci-
ence from Duke University in 1981. His research in-
terest is in the use of performance modeling of large
scale systems to improve database performance.

DARRELL SUGGS is a Senior Software Engineer
for Data General Corp., RTP, NC. He received a B.S.
degree in computer science from Appalachian State
University in 1988, and he received M.S. and Ph.D.
degrees in computer science from Clemson University
in 1990 and 1993 respectively. His research interests
are focused on multiprocessor workload characteri-
zatlon, systems modeling for advanced architectures,
and stochastic modeling.

