Proceedings of the 199/ Winter Simulation Conference .
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

H-ACD: HIERARCHICAL ACTIVITY CYCLE DIAGRAMS FOR OBJECT-ORIENTED SIMULATION
MODELLING

Germano Kienbaum
Ray J. Paul

Department of Computer Science
Brunel University
Uxbridge, Middlesex UB8 3PH
United Kingdom

ABSTRACT

This paper describes a graphical representation
formalism, Hierarchical Activity Cycle Diagrams (H-
ACD). H-ACDs are based on more abstract modelling
concepts formulated in Pooley’s extended Activity Cycle
Diagrams. The abstraction mechanism expressed more
loosely in his ideas of configuration diagrams has been
realised to its full extent to create a detailed graphical
representation form to be used for object-oriented
modelling and design of simulation programs. The
diagrams are currently been used as the basis for a
Graphical User Interface to support automatic program
generation of simulation models for manufacturing
systems applications. The diagrams nevertheless can be
used generally as a tool to assist analysis and design of
simulation systems, enabling a hierarchical, modular
and uniform view throughout the whole model
development process of a wide range of discrete event
simulation programs.

1 INTRODUCTION

In the analysis phase of a simulation study, the
graphical representation formalism serves as a very
useful framework with which the modeller can analyse
and conceptualise the problem and as a communication
medium among the people who are involved in the
project. It can also become a communication means to
specify simulation models o the computer. It is
therefore desirable that the graphical representation
formalism be a simple, high-level system abstraction so
that it enhances conceptualisation of simulation
problems and understanding of the implications of

600

different modelling strategies. At the same time, it
should have a sufficient number of powerful conceptual
features to be able to model all possible situations (at
least with respect to a certain class of problems being
studied). That is, on the one hand it should contain all
the conceptual features that are essential to represent all
structural and behavioural aspects of simulation objects
that may exist in a simulation problem class. On the
other hand, the number of graphical building-blocks
representing these concepts should be small and high-
level enough for easy human comprehension and use.

This work proposes some modifications (termed H-
ACD) to a well-known formalism of this type named the
Activity Cycle Diagrams (ACD). It is based on another
different extension of the original ACD diagramming
technique presented by Pooley for specifying process
based discrete event models (Pooley and Hughes, 1991).
Our claim is that this version of the ACD technique has
many advantages in meeting the needs not only of the
analysis, but also of the modelling and design phases of
object-oriented discrete event simulation projects in a
manufacturing system environment.

Pooley’s approach was developed initially based on
the conventions of Activity Cycle Diagrams used to
describe models for the DEMOS package, a primer for
the SIMULA language (Birtwistle, 1979). The
extensions were made to make it applicable for use with
most process based discrete event simulation languages
and to allow a description of a much wider range of
models.

An additional work (Pooley, 1991b) was dedicated to
formulating how a hierarchy could be introduced into
the modelling process through the use of black boxes or
configuration diagrams to further abstract parts of the

H-ACD

model for better understanding and for the specification
of complex models. Although the author mentioned the
possibility of using the formalism to cover other
application areas than computing, as for example
Flexible Manufacturing System, and to use it as a tool to
help perform object oriented modelling of systems, he
preferred to leave it as abstract as possible to keep its
generality.

The objective of this work is to move forward in the
presentation of this diagramming technique, from the
point where it was left by Pooley, and show how it can
be used to create a concrete formalism and a graphical
user interface to support object-oriented discrete event
simulation modelling. A graphical user interface with
these characteristics for the automatic generation of
simulation programs of manufacturing systems is
described in Kienbaum and Paul (1994).

The present work is organised as follows. Section 2,
subsection 2.1, makes a brief presentation of the
standard ACD form to fix the basic ideas behind the use
of the technique. The subsequent two subsections
describe the concepts which led to the creation of the H-
ACD representation formalism. The first step, described
in subsection 2.2, consists of the modifications and
additions to the basic set of symbols presented by Pooley
to make them more appropriate for describing
manufacturing processes. The second step, contained in
section 2.3, consists of the application of a similar
abstraction process as the so called configuration
diagrams (Pooley, 1991) to add hierarchy to the model
description. A significant change at this stage is
introduced with the idea of creating hierarchical nodes
and defining input and output pads attached to the
nodes, inspired by the authors previous experience with
the SIMPLEX-II simulation system (Schmidt, 1991).

Section 3 presents a simple example developed in a
stepwise manner, evolving gradually from the standard
ACD format to the extended ACD technique proposed
by Pooley and finally coming to the presently proposed
H-ACD format for the object oriented specification of
simulation systems. A detailed discussion of the
modelling difficulties encountered as well as of the
experience gained so far by using the approach are also
presented.

Section 4 makes further remarks on the use of H-
ACD and on the full potentialities of the modelling
technique. This section justifies our claim that the
modifications made are much more than just a change
in format to the previous diagrams. They incorporate a
conceptual change in the way the systems analysis and
modelling is performed, making them a real tool for
object oriented modelling and design of simulation
systems.

601

Finally section 5 recapitulates and points out the
directions for further research using the graphical
formalism.

2 GRAPHICAL REPRESENTATION FOR
OBJECT-ORIENTED PROCESS BASED
SIMULATION MODELLING

2.1 ACD Diagrams In Their Standard Form

The original symbols used in Tocher’s ACD version
(Tocher, 1963) showed only a circle to represent a dead
state (generally associated with a gueue) and a rectangle
to represent a delay (also known as an activity), linked
by arrows representing the flow of entities through their
life cycles.

Figure 1 shows the primary elements of an ACD in
its simplified version.

v

<
<%

ENTITY

ACTIVE STATE

) —

Figure 1: Primary Elements Of ACD

An active state or activity usually involves the co-
operation of different classes of entity. The duration of
an active state can always be determined in advance-
usually by taking a sample from an appropriate
probability distribution if the simulation model is
stochastic.

A dead state involves no co-operation between
different classes of entity and it is often thought of as a
queue. Therefore, the length of time that an entity
spends in a dead state cannot be determined in advance.

The diagram itself is a map which shows the life
history of each class of entity and displays graphically
their interactions. Each class of entity is considered to
have a lifecycle which consists of a series of states. The
entities move from state to state as their life proceeds
(Pidd, 1992). The example of the Pub model described
in Section 3 is shown using a standard ACD in
Appendix A.

602 Kienbaum and Paul

2.2 H-ACD’s Atomic Processes

This first step consisted of some modifications and
additions to Pooley’s extended set of symbols to make
them more appropriate for describing manufacturing
processes. This step comprised also a change in the
graphical appearance of the original symbols proposed
in his version of the diagrams. Although not always
necessary, these changes were made to make them more
readable for use in a graphical hierarchical interface for
interactive model building. Whenever possible the
correspondence between the original and modified form
is emphasised by making use of a similar type of icon.
Using the original version also proves useful as an
intermediary step in the modelling process, due to their
more abstract nature. This allows a stepwise description
of models with an increasing gain of understanding of
the model behaviour until the final representation in the
H-ACD format proposed.

Figure 2 shows the derived symbols in the new
representation form. They are also named atomic nodes,
which represent different types of processes,
synchronisation, queuing and resource blocking
mechanisms.

The process nodes, additionally to activities (or
delays), now include the types source and sink nodes.
They are used to represent the arrival and departure of
transactions through the border of a system’s component
being modelled.

Another type of node is the interruptable hold,
which contains a clause for execution in case an
interrupt signal is received while it is being performed.

The Transform node describes a transformation
process, in which the incoming entity ceases to exist and
another different class of entity is produced at the
output.

The Assemble/Disassemble nodes describe the co-
operation between processes, when the object class
described by onme of them is co-opted as a passive
resource by the other or when it is again released to
resume its active life. In manufacturing termns they
represent operations such as assembling and
disassembling of product parts.

The Request/Release nodes simply describe the
acquiring/releasing of a resource needed by an entity to
perform any subsequent activity in its lifecycle.

The second set of symbols contains simple queues of
various sorts, which the process needs to draw things
from or to put things into, before continuing its life
cycle.

Queues are used to represent proper queues which
build up in the model as a result of a block in the flow of

entities. Queues used only as dummy queues in the
original ACD form and in the X-ACD form are not
represented in the model. This grants the allocation of
entities to the appropriate physical queues existing in
the system and will facilitate the gathering of statistical
data related to the permanence of entities in some
specific systems locations.

Atamic process nodes

H-ACD Meaning

Delay, usually associated
with an activity

Interruptable hold

Start of a process for a
transaction (a source)

Termination of process for a
transaction (a sink)

Transform

—»o—| |or Assemble/Disassarble process
nodes

Request /Release resources

Queueing and resource blocking mechanisams

H-ACD symbol Meaning

é Queue

%}—o S Trigger

O Resource
@" Bin - no limit on capacity
ﬂ]]]]]: Message queue

Figure 2: The set of process and queue node types

The Trigger is a hybrid between a queue and a
decision box. A process whose flow of control reaches

H-ACD

this node is blocked until the associated condition is
satisfied, in an equivalent manner to the wait until
constructs of some simulation languages.

The resource and bin has a type and an amount, but
its individual units differ from the queues for entities
because they are anonymous and have no attributes. A
resource is always limited to its initial quantity. On the
other hand, a bin can receive unlimited amounts of new
tokens, which can be created by a process and does not
have to be acquired first (as do resources and entities).
A bin is used to model the most general cases of
producer / consumer relationships.

The message queue can contain messages with a
data attribute structure. Thus it can be used to model
objects which have an individual identity, flowing
among processes. This allows the representation of
aspects of the objects’ behaviour dependent on data or
information flow and the collection of statistics on these
changes.

The set of symbols shown are similar to those
proposed by Pooley and Hughes (1991) to logically
describe flat simulation models in a computing
environment. The main difference is that in this new set
each element describes an actual physical element of the
system been modelled. The diagrams no longer
represent solely a logical description of the model, they
represent more closely the objects of the real system.
Symbols such as the Waitqueue and the start of a
process either through generation or through scheduling
by another process were suppressed. New symbols, such
as Assemble/Disassemble and the Transform processes
were added. The Trigger symbol is introduced in place
of the conditional queue, and it becomes the node in
charge of all the synchronisation mechanism between
the entities. Additionally, for different types of
application, particular symbols may be added to better
reflect the type of environment the modeller is
addressing. In a Graphical Interface any new symbol
can be treated exactly in the same manner as the
existing ones, by performing an operation on input
tokens and showing the result as output tokens. This
operation may be described in any sort of algorithmic
description, including a separate piece of code written in
a high level language. The queues in the model act also
as automatic statistics collection mechanisms, and are
therefore a necessary element, which was not shown in
the previous form of X-ACD diagrams.

2.3 Hierarchical modelling with H-ACD.
To provide for hierarchical object oriented model

construction the basic set of atomic nodes have further
to be abstracted and seen as sub-classes of a basic type

603

process node. A second class of process nodes, the
hierarchical nodes, which share many characteristics in
common with the atomic nodes through their parent
class, is defined.

Then a whole set of symbols (pads), which describe
the interaction and synchronisation between the nodes,
is defined and are represented as input and output
controllers for the node to which they are attached. Four
basic types of pads are allowed: Signal/lnterrupt,
Send/Receive, Release/Acquire and Routing. Figure 3
shows the symbols used for the hierarchical nodes and
the pads, together with their meaning in the model
representation.

Hierarchical nde amd rauting/commicetion mecheniame

[Hierarchical rode showirg pads
attaded to it

|—°d
|
4 F

- —

Different types of pxe

‘]—‘s‘ignl/lrtem;t q

Sad a signal to axdition qee ar an
internpt to an intemytable old

Ser/Recet Rgresent the exdhane of messages between
anpaeEnts

fram a resoxce ar hin mode

ive q
Aaqiire ar release an \rattrihited resonrce
(used in Request /Release rodes)

P.
”

4
K

Figure 3: The hierarchical node and the
synchronisation/communication pads

aswociated with the

rauting of tdeEns

The atomic process nodes may also show pads
attached to them, which are linked by arrows indicating
the flow of information or material between them.

The flows of rokens and their routing mechanism
through the use of pads are concepts neatly stated in the

604 Kienbaum and Paul

new type of notation H-ACD as opposed to the X-ACD
format.

The tokens represent signal, message or entity flows.
Tokens may also represent new types of entities created
at a node (material flow) or data structure (information
flow) inside the model. The entities they represent may
be added to other tokens in a Assemble node, losing
their individuality in a similar way to the Transform
process for one single entity.

The pads model an input or output controller for the
node to which it is attached. When a node needs to route
a token, it passes the token to one of its pads and asks
the pad to route the token.

This separation of the processing behaviour (which
belongs to the node) and the routing behaviour (which
belongs to the pad), allows the inclusion and change of
routing strategies without any further changes to the
nodes.

3 THE PUB EXAMPLE
3.1 Problem Description

Customers arrive in the Pub with an exponentially
distributed inter-arrival time with a mean of 10 minutes.
Each customer is then assigned the number ot drinks
he/she wishes to consume before leaving. This number
is distributed uniformly between 1 and 3 drinks. The
customer then waits for a clean glass as well as the
barmaid to be idle. If these conditions are met, the
barmaid pours the drink into the glass and the customer
starts to drink. Drinking is uniformly distributed
between S and 8 minutes. Once the customer has finish
his/her drink, the glass is put to the pile of dirty glasses
waiting to be washed. If he/she has consumed the
allocated number of drinks, the customer leaves the pub,
otherwise another drink is ordered by waiting for both
an empty glass as well as the barmaid to be available.
The task of serving a customer takes precedence. The
dirty glasses are taken back to the barmaid by a waiter
who enters the bar every 30 minutes, collects all the
empties, and places them on the bar top for the barmaid.
He then retires to perform his other duties. The time
taken to collect the glasses is proportional to the number
of glasses using a constant of 0.2. The glasses in the
dirty pool are washed if the barmaid is idle. Washing
takes S minutes, after which the glass is put on the pile
of clean glasses.

3.2 Model Analysis And Experience Gained Using
The Approach

In this presentation we make use of all three type of

diagrams, the standard ACD, the extended set of
symbols proposed by Pooley (termed X-ACD), as well
as the further modified version H-ACD in a step-by-step
modelling process. Once the interface has been built
there will be no provision for the user to do this
stepwise modelling interactively. But he can do it as a
separate modelling exercise, which proves very helpful
to obtain a gradual improvement in the understanding
of the system being modelled, as is demonstrated here.

Appendix A shows the Pub problem modelled using
the original ACD graphical representation form. This
type of diagram is the most conceptual of them all,
showing the logical pattern of interaction of the entities
and the conditions for the start of each activity. Being
less ‘cluttered’ it allows many conceptual
misunderstandings to be found more easily. It tends also
to have one ‘unique’ solution for each model and it may
be developed in sectors, although its biggest
disadvantage soon become clear, with the size of the
diagrams reached.

The second step is shown in Appendix B using
Pooley’s original notation. Some interesting aspects are
highlighted during this transtormation. First it should
be noticed how we have taken the arbitrary decision to
make all model elements entities (customer, barmaid,
waiter, and glasses). A perfectly valid solution would be
to have glass, customer and waiter as entities, and
barmaid as a resource. In this second case we would still
have to decide to which of these entities we would give
the responsibility for activities pour and drink. This
affects directly the relation ‘who is coopted by whom’
or, in other words, ‘who is the master and who is the
slave’ in the cycles of the entities, as seen in the
example for barmaid and customer. In this case the
responsibility for activity pour was given to the barmaid
and, as a result, customer is the one coopted by the
barmaid, which led to the detinition of Barg as a Waitq.

Two other important remarks need still to be made.
The first is that it is not necessary for an entity to
possess activities of its own, which is shown by glasses
in the example. The other one is that resources are
thought as non attrributable elements, what means that
we could not model glasses as resources, because in this
case we would have to distinguish between dirty and
clean glasses through an attribute.

The definition of idleq as a conditional queue is
made necessary because activity pour can only start after
a complex set of conditions is met, and conditional
queue is the modelling element used to describe this sort
of situation. Entity glasses have their cycle consisting
only of the three queues cleany, dirtyg and emptyq. The
queues gready and ¢full need not be represented because
they are dummy queues and the entities proceed to their

H-ACD

following activities without any delay after finishing
activity pour. In the following we examine in detail the
description of each entity's life cycle in turn.

The entity customer starts its activity by scheduling
another arrival after a time interval sampled from an
exponential distribution. The desired number of drinks
is also sampled and the customer enters a loop to
perform activities pour and drink for as many times as
the desired number of drinks. But activity pour is not
executed by entity customer directly, thus it is placed
into a pool to wait to be coopted by entity barmaid
before it can go on. After the customer is picked up by
entity barmaid and finished pour ‘on board’ of it, it will
continue its life cycle by entering drink (this is assured
by the schedule mechanism in the barmaid class
description). The customers recover their active life
cycle to be subsequently held for the duration time of
activity drink. They are released at the end of this time,
but they are kept in a loop repeating its life cycle as
many times as the number of desired drinks assessed at
the beginning.

The barmaids are set initially sleeping in idleg until
a certain conditon is met and then they start their
activities pour and wash, whereby pour was given
priority by means of a branching test. To perform
activity pour they coopt a customer and take a unit of
resource glass from queue cleanqg. If the main initial
condition is met, but there is either no client waiting to
be served or no glass in the queue cleanqg then it's
because a dirty glass is waiting to be washed in queue
dirtyq and that activity is performed. As a result a clean
glass is liberated to the resource pool cleang and the
barmaid restarts its cycle again.

The lifecycle of entity waiter starts by collecting the
empty glasses from queue emptyq. The duration of this
activity will be made proportional to the number of
glasses by a constant of 0.2 time units for each empty
glass collected (these details are hidden from the
diagram). The waiter then proceeds immediately to its
next activity stayaway, but before this he puts the
collected glasses in queue dirftyg and signals the
barmaid entity that it has work to do. Notice that this
reactivation or warning signal triggers a check of the
conditional expression in ldleg, acting thus differently
to the reawakening mechanism seen before for the
customer class (co-option by another class).

Entity glasses have a curious life cycle, since they
are always coopted by the other types of entities to
perform their common activities. Nevertheless their
individuality is preserved by the fact that they are proper
entities. They start in the cleang, are coopted by
customer to perform activity Pour, then they are
released by customer after Drink and proceed to be

605

collected by the waiter. He places them in queue dirtyq,
from where they are again coopted by the barmaid to
perform activity Wash, whenever the proper condition in
the trigger becomes true.

The third step is shown in Appendix C. This step
adds some fine details and the important concept of
hierarchy. It terms of notation the diagrams do not
change much. They change much more in terms of
conceptualisation. Each of the atomic or hierarchical
nodes may now be interpreted as an object to be
implemented as such in an Object Oriented
Programming Language (OOPL). It serves therefore to
realise the practical consequences of some modelling
decisions in the actual design of the object oriented code
of the final simulation program.

As a general rule, the complexities derived from the
begin or end of an activity are now shown together in
the variety and sequencing of the input and output pads
surrounding each icon.

One aspect not clearly enough stated in the model is
the question of set handling in the case of the
manipulation of entities which follow complex priority
rules. This will be dealt with within the modelling
elements definition, and added to all those elements
which can be used to represent physical queues of the
real system.

4 FURTHER REMARKS ON THE USE OF H-
ACD FOR THE OBJECT ORIENTED
MODELLING OF MANUFACTURING SYSTEMS

The general idea is to separate the purely structural
aspects from those related to the behaviour for each
object being modelled. It was mentioned before how the
internal operation of a subcomponent can be associated
with any sort of algorithmic description, even by writing
a separate piece of program code to represent it. For
each real object being modelled there is an entity object,
which represents its static structure, and a
machine/operation object, which represents its dynamic
behaviour. The customer for example is the resultant of
an attributed token and a dynamic description. This
dynamic description is nevertheless not only
algorithmic, as in most types of diagrams (including the
previous X-ACD version). This is because they can be
broken down into finer components, which can in its
turn be seen as machines/operations acting on tokens.
Each of these machines can thus be further detailed,
cither using the same type of atomic nodes or other
types of similar machine/operation descriptions.

If a service order for a part in a manufacturing
system is represented by a token and the part’s
production plan is known by the token, the nodes will

606 Kienbaum and Paul

decide the correct routing for the part at any point in
time based on its production plan, the actual position of
the token and the model’s state.

Although the diagram now proposed has started
from rather generic descriptions of the component
machines (objects), one could easily imagine how
specific machine types could be implemented and saved
for reuse. Reusability is brought into the modelling in a
quite natural way, by the effective realisation of the
hierarchy concept. This is so well perceived from the
diagrams that one might wonder if this is not generally
applicable to other types of software system’s design.

The set of extensions suggested has the eftect of
making the diagrams more easily applicable for
describing large models using a stepwise uniform
modelling technique throughout the whole model life
cycle. A model’s comprehensiveness and visibility is no
more a matter of a trade-off. With a powerful computer
graphical interface it is easy to leave entire submodels
as abstract components to be defined later. And if these
modules are available from other applications the
modelling process can be sped up enormously.

H-ACD and object orientedness seem to be the
ultimate generalisation of the process world view. We
no more need to talk of individual processes of
particular entities, but of hierarchical processes of
hierarchically decomposable components.

H-ACD might well be a small improvement in the
notation of a diagramming technique, but it is also
certainly a major achievement in the understanding of
the simulation modelling process.

5 CONCLUSIONS

Many unexpected benefits in an understanding of the
modelling process, design and implementation of
simulation systems can be derived by the use of this
notation. For example, the gradual modelling technique
presented demonstrates the equivalence of models
represented in the three types of notations. But, since
this last notation can be implemented using a typical
queuing network notation, of nodes, arcs and tokens,
another subproduct of the modelling technique using H-
ACD is to demonstrate the equivalence of queuing
network systems representation with the ACD system
representation. Maybe equivalencies with other types of
simulation diagramming techniques, such as SLAM or
Petri Nets could also be established, in a similar way as
has been done for Petri Nets and SLAM diagrams (Tagi
etal., 1992).

Another benefit is that many other types of
misunderstandings concerning the use of object oriented
programming to write simulation systems can be easily

dismissed by the diagram notation. For instance, it has
been stated that model specification does not benefit at
all from the property of inheritance, that it forbids the
use of encapsulation and that the communication only
by means of messages would not allow for a proper
model specification (Schmidt, 1990). A quick look at
the H-ACD diagram shows how the model specification
benefits from inheritance, since the basic class nodes
can define many of the characteristics to be inherited by
the subtypes hierarchical and atomic nodes. The
complexity of each atomic process is handled through
further decomposition and not by making them unique
complex units of code.

The use of encapsulation and messages enhances the
modelling process rather than places any sort of
limitation on it. The encapsulation and message passing
mechanism (by message one could understand any type
of token tlowing between the submodels or atomic
nodes) is taken to its ultimate boundaries to allow a
neat, well defined and unlimited (at least conceptually)
decomposition of models. Furthermore, the mechanism
of communication is done in an elaborated way using
the input and output controllers for each node, which
separates strategic routing decisions from the actual
component behaviour. This is generally a highly
desirable characteristic when creating models of
manufacturing systems, which need to be submitted to a
variety of configuration and strategic changes to assess
the best machine composition or sequencing of
operations for a production plan.

H-ACD graphical representation is introduced here
as a tool for specifying manufacturing systems models to
be implemented using an object oriented approach. The
authors’ view is nevertheless that they would be
benefitial also for modelling of other types of discrete
event systems to be implemented using other types of
simulation environments SIMPLEX-II for instance).

To realise all the potentialities of the model building
technique suggested by the diagrams it is nevertheless
necessary that all further steps of implementation using
a simulation system follow the modular approach
reflected by its interface. So, if the individual models
can be compiled and run separately, a further gain
would be the immediate execution of the simulation
runs and their animation in cases when pre-compiled
components are assembled and defined using
parametrisation.

ACKNOWLEDGEMENTS

This research is supported by CNPq, under reference no.
201082/90 - 0, and INPE, Instituto de Pesquisas
Espaciais, Brazil.

H-ACD

APPENDIX A: PUB’S ACD DIAGRAM

Figure A.1 shows the standard Activity Cycle Diagram
representation of the Pub.

607

ARRIVAL SINK

32

negexp (10)

CUSZTOMER N

Normal (6,1)

empty

gqleave Waiter gcome

stayaway

30 - 0.2N

uniform(5,

2)

Figure A.1: Pub In Standard ACD Graphical
Representation

608 Kienbaum and Paul

APPENDIX B: PUB’S X-ACD DIAGRAM

Figure B.1 shows the eXtended Activity Cycle Diagram
representation of the Pub problem.

Customer

Schedule
next Arrival 312070

FThisrt.sample

Co-opt
Barqg

N

Barmaid

Barq.LENGTH>0
Cleanq.AVAIL>0

Drink
Thisrt =
Thisrt -1

Waiter
N
End

Custome

I

Collect

e

.

Figure B.1: Steelworks In X-ACD Representation Form

H-ACD 609

APPENDIX C: PUB’S H-ACD DIAGRAM

Figure C.1 shows the Hierarchical Activity Cycle
Diagram representation of the Pub problem.

Figure C.1: Pub in H-ACD Representation Form

610 Kienbaum and Paul

REFERENCES

Birtwistde, G. M. 1981. DEMOS Reference Manual.
Department of Computer Science, University of
Calgary, Calgary, Alberta, Canada T2N 1N4.

Kienbaum, G. S., and R. J. Paul 1994, H-ACDNET: An
Object-Oriented Graphical User Interface for
Simulation Modelling of Manufacturing Systems.
Department of Computer Science, Brunel University
(Working paper).

Pidd, M. 1992. Computer Simulation in Management
Science. 3d ed. Chichester: John Wiley & Sons.

Pooley, R. J. 1991. Towards a standard for hierarchical
process oriented discrete event simulation diagrams.
PART III: aggregation and hierarchical modelling.
Transactions of the Society for Computer Simulation,
8(1):33-41.

Pooley, R. J.; and P. H. Hughes. 1991. Towards a
standard for hierarchical process oriented discrete
event simulation diagrams. PART II: the suggested
approach for flat models. Transactions of the Society
Jor Computer Simulation, 8(1):21-31.

Schmidt, B. 1990. Simulation und Objektorientierte
Programmierung. Universitit Passau, Lehrstuhl fir
Operations Research.

Schmidt, B. 1991. Simulationsysteme der 5. Generation.
Universitit Passau, Lehrstuhl fiir Operations
Research.

Taqi, A. A. Q; A. J. Al-Sammak, A. A. Khan, and N.
Ahmed. 1992, A comparative study between Petri
Nets and SLAM. Simulation, 59(5):339-344.

Tocher, K. D. 1963. The art of simulation. Princeton:
Van Norstrand.

AUTHOR BIOGRAPHIES

GERMANO S KIENBAUM is undertaking PhD
research in the Department of Computer Science at
Brunel University. He received his B.Sc. in
Aeronautical Enginecring from Instituto Tecnologico de
Aeronautica (ITA), Brazil, and his M.Sc. in Operations
Research from Instituto de Pesquisas Espaciais (INPE),
Brazil. He is a researcher at the Associated Laboratory
for Mathematics and Applied Computing at INPE,
currendy on leave of absence at the Department of
Computer Science, Brunel University. His research
interests are in the automatisation of the simulation
modelling process and in the use of simulation to the
manufacturing systems application area.

RAY J. PAUL holds the first U.K. Chair in Simulation
Modelling at Brunel University after teaching
Information System and Operational Research for 21
years at the London School of Economics. He received a
B. Sc. in Mathematics, and a M. Sc. and Ph. D. in
Operational Research from the Hull University. He has
published widely in book and paper form (two books,
over 70 papers in journals, books and conference
proceedings), mainly in the area of simulation
modelling process and in Software environments for
simulation modelling. He acts as a consultant for a
variety of UK. government departments, software
companies, and commercial companies in the tobacco
and oil industries. His research interests are in methods
of automating the process of discrete event simulation
modelling, and the general aplicability of such methods
and their extensions to the wide arena of information
systems. Recent research results have been in automatic
code generation, color graphics modelling interfaces,
dynamically driven icon representations of simulation
models, machine leamming applied to model specification
and to output analysis, object oriented approaches, and
information systems paradigms. He is Head of the
Computer Science Department at Brunel University. He
has recently instituted the first M.Sc. in Simulation
Modelling, a one year course starting in October each
year at Brunel University.

