Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

MULTI-LAYERED ACTIVITY CYCLE DIAGRAMS
AND THEIR CONVERSION INTO ACTIVITY-BASED SIMULATION CODE

Kurt A. Pflughoeft

Department of Information and Decision Sciences
University of Texas at El Paso
El Paso, Texas 79968-0544, U.S.A.

ABSTRACT

Activity cycle diagrams (ACDs) have long been
used for the representation of the flow of entities within
discrete-event systems. They can be used to manually
simulate systems and their description serves as the basis
for automatically generating activity-based simulation
code. Although activity-based approaches are cited as
one of the easiest ways to model systems their
proliferation has been hindered by concerns of efficiency,
support, and flexibility. In this paper, these concerns are
addressed as well as simulation methods that support the
multi-layered ACDs to assist in overcoming these issues.

1 INTRODUCTION

Activity cycle diagrams (ACDs) graphically
show the flow of entities through discrete-event systems.
These diagrams are useful for not only manually
simulating systems but also ACD descriptions can be
used to generate their closely-related activity-based
simulation code. Although activity-based approaches
may be the easiest way to represent systems, they have
not enjoyed the popularity of other approaches (Balci,
1988, Law and Kelton, 1991, Paul 1993).

In the past ACD's advantages, most notably ease
of understanding, were outweighed by its inefficiencies.
For each change of the simulation clock, most activities
must be scanned for feasibility under an activity-based
approach. (Some activities could be skipped since they
may be mutually exclusive with other activities. Other
activities could be eliminated because of other logical
considerations -- see cellular designs in Clementson
(1990).) The need to scan most activities decreases the
model's run-time efficiency which was a major concern
in the early days of computing. With the advent of
today's more powerful cpus and languages, which greatly
diminishes the above bottleneck, the loss in efficiency is
minimal for many discrete-event problems. For example,

595

Kiran Manur

Department of Manufacturing Engineering
University of Texas at El Paso
El Paso, Texas 79968, U.S.A.

an activity-based implementation of a manufacturing
simulator in C has allowed experimental designs that a
few years ago would have been considered impractical
using this approach (Pflughoeft, 1993, Hutchinson and
Pflughoeft, 1994). The simulator was used to conduct
thousands of experiments to evaluate manufacturing
configurations, quantify the benefits of process plan
flexibility, and formulate superior combination scheduling
rules via search and simulation techniques.

Other disadvantages of the ACD approach
include cumbersome diagrams for complex systems and
few simulation packages which support this methodology.
A multi-layered ACD approach is introduced to simplify
the graphical representation for complex systems. The
conversion of ACD descriptions into C/C++ is also
discussed as a viable technique to simulate the flow of
entities as depicted by ACDs.

2 MULTI-LAYERED ACD'S

Activity cycle diagrams have been discussed by
several authors including: Paul (1993), Hutchinson and
Clementson (1991) and Carrie (1988). Briefly, these
diagrams represent each type of entity flow by unique
line patterns. Within the flow each entity should
alternate between two states: waiting and processing.
Wait states are denoted as queues and graphically
represented by circles. Processing states, activities, are
represented by rectangles. For an activity to be feasible
there must be at least one entity in each queue that is
linked to the activity. For example in Figure 1, which
depicts a simple manufacturing process, the GetTool
activity can take place only when there is at least one
entity in each of the following queues: t/Free, wpFree,
and wsFree.

Unfortunately, systems may contain many
activities and queues which can result in ACDs which are
large, cumbersome, and cluttered. For example, Figure
1 represents a simplistic manufacturing process and as

596 Pflughoeft and Manur

Get Tool

e‘

\‘f :
brk time > Clocl

S

Machine wpDone

wsBreak

Repair

—@— Technician
—— Tool

—— Workpiece
—&— Workstation

)

Figure 1: ACD for Workpiece Processing

the diagram is updated to model an actual system, the
resulting ACD may contain hundreds of queues and
activities. The standard approach in simplifying complex
diagrams is to draw ACDs which show the flow of only
one entity type. Thus, for Figure 1 we could have four
separate diagrams for each entity type and their flows:
workstation (wsFree, GetTool, wsWait, Machine, wsFree
| (wsBreak, Repair, wsFree)), workpiece (wpFree,
GetTool, wpWait, Machine, wpDone), technician (tcFree,
Repair, tcFree), and tool (t/Free, GetTool, tIFree). When
these individual diagrams are superimposed they would
create the final ACD. The problem with this approach is
that the individual diagrams do not show the
interrelationship between entities and the final diagram
requires the user to be versed with all the details of the
system to be modeled.

In some situations the complex1ty of the final
diagram can also be reduced by representing the flow of
entities in other forms of logic such as conditional
statements. However, the use of this approach must be
limited if one wishes to maintain ease of understanding
and not drift away from the ACD approach. Instead, a
multi-layered ACD approach which decomposes the
diagram by activities, instead of entity flows, is
discussed. The multi-layered ACD approach is
conceptually similar to explosion/implosion representation
of processes within data flow diagrams (DFDs) (Gane

and Sarson, 1979). DFDs allow each process to be
represented at various levels of granularity as does multi-
layered ACDs for activities. With a multi-layered
approach the users, whether managers or engineers, are
not forced to understand the system at the same level of
detail. Allowing several levels of system representation
simplifies understanding, expedites model
verification/validation, and permits sensitivity analysis.

Figures 2 through 4 are an example of a multi-
layered representation of Figure 1. Figure 2 shows the
simplest interaction of entities required to process a
workpiece, i.e., one workpiece and one workstation.
Figure 3 is an explosion of the Process activity which
reveals that this activity is subject to breakdowns. Figure
4 explodes the Work activity to show that the processing
of a workpiece requires the selection of the appropriate
tool and followed by the machining of the workpiece.

The development of ACD:s is an integral part for
increasing one's understanding of a system and
simplifying the process of creating the required
simulation code. The multi-layered variation of ACDs
retains these characteristics as well as supporting various
levels of understanding about a system.

Multi-layered ACDs, as with ACDs, do have
some disadvantages. Both approaches are not
comprehensive in the sense that they sometimes lack the
capability of providing sufficient information to represent

Multi-Layered Activity Cycle Diagrams

Process

—&— Workstation

—— Workpiece

Figure 2: Abstract ACD of Workpiece Processing

PROCESS o
from . o wsFree}
wsFree — _ — — -
——————— *
i Work
to

from brk time > . wpDone
wpFree ! Clock 2 \
—@— Technican Repair |—
——— Workpiece -

i tcFree

Work
. to
' wsFree
tFree @
from !
|wsFree : i
2 —— . to
GetTool Machine [wpbone
from .
- @
__— — — — — — to
wsBreak
—&— Tool ——— Workpiece —@— Workstation

Figure 4: Explosion of the Work Activity

a system, e.g. different queuing principles such as LIFO
and FIFO. This type of information and other logic
which can't be easily portrayed via an ACD is best
handled by other methods used together with ACDs.
Multi-layered ACDs, which may be more suited to a
prototype development approach than ACDs, also assume
that other higher level activities are not changed by

597

exploding a particular activity. For example, if one
decides to explode the breakdown activity to allow it to
occur after either the selection of a tool or machining,
this could not be handled by simply exploding the repair
activity. Instead, Figures 3 and 4 would have to be
changed to reflect this situation.

3 GENERATING SIMULATION CODE FROM
ACDS

As stated before the description of ACDs
provides enough information to automatically generate
simulation code. Activities can easily be represented as
functions, queues as linked lists, and entity types as a
hierarchical data structures. The only other requirement
to generate the code is to have a simulation library which
supports a clock. Below is a brief description showing
a subset of the resulting C code generated from the
multi-layered ACDs. The purpose is to give the reader
an overview of this process as there are few packages
which support this methodology.

As early as 1976, the CAPS component
(Computer-Aided Programming System) of the ECSL
(Extended Control Simulation Language) package
provided the ability to automatically generate simulation
code from ACD descriptions (Clementson, 1990). CAPS
demonstrated that the above process is straightforward
requiring little user training. However, CAPS is designed
to work with single-layered ACDs and this package is
relatively little known.

KBSL (Knowledge-Based Simulation Language)
is a package that can translate ACD descriptions into
either high-level compatible ECSL code or directly into
C code. Using the multi-layered diagrams shown in
Figures 2 - 4, the KBSL code for those diagrams is
presented in Appendix 1. The code retains its
modularity and allows the model to be run at several
levels of representation. If efficiency is still a major
consideration the if tokens, denoted by the explosion
comment, can be replaced with corresponding ifdef
precompiler statements. The cost of the latter technique
requires recompilation for a change of the constant.

The multi-layered activity-based approach also
works well for the generation of C++ code and is
currently under development. The entity descriptions are
converted from struct into class descriptions. However,
for a single entity there will most likely be a base class
followed by one or more derived classes. The class
descriptions are determined by the hierarchical
relationships that may be present between entities and the
required entity attributes for each activity. For example,
hierarchical relationships may include deriving
workpieces from their respective orders. The
determination of required entity attributes for activities

598 Pflughoeft and Manur

is also used in building class descriptions to restrict
which entity attributes can be accessed in an activity.
These attributes and the activity itself become members
of one of the classes.

4 CONCLUSION

Activity-based approaches for code and graphical
representations of systems are a viable technique in the
1990's. Multi-layered techniques work well for complex
systems and the ability to convert their description into
C/C++ expands the scope of this tool. Models can be
supported at various levels of granularity that expedites
understanding and testing besides supporting a form of
sensitivity analysis.

ACKNOWLEDGEMENTS

The authors would like to acknowledge George
K. Hutchinson for his insightful ideas and comments
regarding activity cycle diagrams.

APPENDIX: KBSL-GENERATED C CODE*
/* Entity & Queue descriptions */

extern struct TECH_tag {
id_type id;
} *TECH;

extern QUEUE *tcFree;

extern struct WP _tag {
id_type id;
} *WP;

extern QUEUE * wpDone, *wpFree, *wpWait;

extern struct WS tag {
id_type id;
clock_type break_time;
clock_type repair_time;
clock_type time;
seed_type time_seed;
} *WS;

extern QUEUE *wsBreak, *wsFree, *wsWait;
extern struct TOOL _tag {

id_type id;

} *TOOL,;

extern QUEUE *tlFree;

/* Activity Descriptions */
int process(void) {

GetTool();

Machine();

if(REPAIR_DEFINED) /* Explosion */
Repair();

}

int GetTool(void) {

clock_type duration; id_type tool_sub,wp_sub,ws_sub;
cnt_type GetTool_cnt=0;

GetTool_label:

if(find_first(&wp_sub,wpFree) == FALSE)
return(1);
if(find_first(&ws_sub,wsFree) == FALSE)
return(2); '
remove_elem(wp_sub,wpFree);
remove_elem(ws_sub,wsFree);
duration=0;
if(TOOL_DEFINED) { /* Explosion */
if(find_first(&tool_sub,tIFree) == FALSE)
return(3);
else {
remove_elem(tool_sub,tlFree);
duration=Tool_time;
add_elem(tool_sub,tIFree,duration);
}
}
add_elem(wp_sub,wpWait,duration);
add_elem(ws_sub,wsWait,duration);
if(++GetTool_cnt <= MAX_REPEAT)
goto GetTool_label;
else
error("GetTool - too many repeats");

}

int Machine(void) {

clock_type duration; id_type
cnt_type Machine_cnt=0;

wp_sub,ws_sub;

Machine_label:

if(find_first(&wp_sub,wpWait) == FALSE)
return(1);

if(find_first(&ws_sub,wsWait) == FALSE)
return(2);

remove_elem(wp_sub,wpWait);

remove_elem(ws_sub,wsWait);

Multi-Layered Activity Cycle Diagrams 599

duration=neg_exp(WS[ws_sub].time,WS[ws_sub].time
seed);
if(REPAIR_DEFINED) { /* Explosion */
if(WS[ws_sub].brk_time > Clock)
add_elem(ws_sub,wsBreak,duration);
else
add_elem(ws_sub,wsFree,duration);

}

else
add_elem(ws_sub,wsFree,duration);
add_elem(wp_sub,wpDone,duration);
if(++Machine_cnt <= MAX_ REPEAT)
goto Machine label;
else
error("Machine - too many repeats");

}
int Repair(void) {

clock_type duration; id_type tech_sub,ws_sub;
cnt_type Repair_cnt=0;

Repair_label:

if(find_first(&tech_sub,tcFree) == FALSE)
return(1);
if(find_first(&ws_sub,wsBreak) == FALSE)
return(2);
remove_elem(tech_sub,tcFree);
remove_elem(ws_sub,wsBreak);
duration=WS[ws_sub].repair_time;
add_elem(tech_sub,tcFree,duration);
add_elem(ws_sub,wsFree,duration);
if(++Repair_cnt <= MAX_REPEAT)
goto Repair_label;
else
error("Repair - too many repeats");

}

* Represents only a subset of the generated code needed
for model execution.

REFERENCES

Balci, O. 1988. The Implementation of Four Conceptual
Frameworks for Simulation Modeling in High-
Level Languages. In Proceedings of the 1988
Winter Simulation Conference, ed. M. Abrams,
P. Haigh, and J. Comfort, 287-295.

Carrie, A. 1988. Simulation of Manufacturing Systems.
Chichester: John Wiley & Sons Ltd.
Clementson, A.T. 1990. Extended Control and

Simulation Programmer's Manual. University of

Birmingham.

Gane, C., and T. Sarson. 1979. Structured System
Analysis and Design Tools and Techniques.
Englewood Cliffs, N.J.: Prentice Hall.

Hutchinson, G.K. and A.T Clementson. 1991. Static
Analysis of Systems - A Methodology Based on
Timed Petri Nets. /International Journal of
Production Planning and Control 2, 1: 110-
115.

Hutchinson, G.K. and K.A Pflughoeft. 1994. Flexible
Process Plans: their Value in Flexible
Automation Systems. International Journal of
Production Research 32, 3: 707-719.

Law, M.L. and W.D. Kelton. 1991. Simulation Modeling
and Analysis, New York: McGraw-Hill.

Paul, R.J. 1993. Activity Cycle Diagrams and the Three
Phase Method. In Proceedings of the 1993
Winter Simulation Conference, ed. G.W. Evans,
M. Mollaghasemi, E.C. Russell and W E. Biles,
123-131.

Pflughoeft, K.A., 1993. A Knowledge-Based Approach
to Automate and Support Dynamic Decision
Making for the Control of Complex Discrete
Systems. Ph.D. Dissertation. University of
Wisconsin, Milwaukee, Wisconsin.

AUTHOR BIOGRAPHIES

KURT A. PFLUGHOEFT is an Assistant Professor in
the Information and Decision Sciences Department at the
University of Texas at El Paso. He received his M.S.
and Ph.D. degrees from the University of Wisconsin-
Milwaukee in 1986 and 1993. He has worked as a
systems analyst and computer consultant for numerous
companies. His research interests include FMS design
and scheduling, simulation, knowledge-based systems,
information metrics, and object-oriented design
principles.

KIRAN MANUR is a graduate student in the
Department of Manufacturing Engineering. He received
his B.S. from Bangalore University in 1990. His thesis
addresses the conversion of ACDs into an object-oriented
representations. His other research interests include
database and interface design.

