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AN ORDINAL OPTIMIZATION APPROACH TO A TOKEN PARTITION PROBLEM FOR
STOCHASTIC TIMED EVENT GRAPHS

Xiaolan Xie

ABSTRACT

The paper addresses the optimal partition of tokens in
stochastic timed event graphs. The transition firing
times are random variables with general distribution. The
problem consists in choosing an initial marking among
a large set of candidate initial markings such that a
criterion function (linear or nonlinear) of the initial
marking and the average cycle time is minimized. We
propose a simulation-based ordinal optimization
algorithm for solving this problem. The algorithm
simultaneously simulates a set of event graphs, each has
a candidate initial marking as its initial marking. The
most important feature of this approach is the capability
of identifying with very short simulation run the
candidate initial markings which can hardly be optimal
solutions. Significant computation time saving is
realized by stopping the simulation of the related nets at
appropriate time.

1. INTRODUCTION

Optimization in discrete solution space becomes more
and more important for discrete event dynamic systems.
There are numerous potential applications such as
production capacity and buffer capacity dimensioning in
manufacturing systems. The only general enough tool
for evaluating such systems is the simulation. Due to
the lack of viable optimization approaches, empirical and
sometime blind solution search approaches are used.

The purpose of this paper is to propose an ordinal
optimization approach to a token partition problem for
stochastic timed event graphs. In such a system, the
average cycle time (1/throughput rate) is function of the
token partition. The problem consists in choosing one
among a set of candidate initial markings in order to
minimize a criterion which is a (linear or non-linear)
function of the initial marking and the average cycle
time. A new ordinal optimization approach is proposed.
This approach simultaneously simulates different
candidate initial markings. Distributions of their average
cycle times are estimated along the simulation and are
used to evaluate the probability for a candidate initial
marking to be optimal. The candidate initial markings
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whose probability to be optimal are low are discarded at
appropriate points of the simulation.

This approach is applied to the kanban distribution
determination for a four-machines serial systems.
Optimal solutions are obtained in all test examples
which contain 36 candidate initial markings.

Closely related to this work are works on the
marking optimization problems for deterministic event
graphs (Laftit, Proth, Xie 1992) and stochastic timed
event graphs (Proth, Sauer, Wardi, and Xie 1993). The
marking optimization problem consists in finding an
initial marking such that a given cycle time is obtained
while a linear p-invariant criterion is minimized. This
problem can be considered as a special case of the new
token partition problem.

This paper is organized as follows. Section 2
contains notations about the stochastic timed event
graphs and some preliminary results. Section 3 defines
the new token partition problem and proposes a parallel
simulation algorithm. Based on this algorithm, Section
4 proposes an ordinal optimization approach. Section 5
applies the ordinal optimization approach to the optimal
kanban distribution determination of a four-machines
serial systems. Section 6 is a conclusion.

2. STOCHASTIC TIMED EVENT GRAPHS

Let N = (2, T, F) be the strongly connected event graph
considered. P is the set of places, T is the set of
transitions, and F < (P x T) u (T x P) is the set of
directed arcs connecting places to transitions and
transitions to places. We denote by M the initial
marking of N.

We assume that no transition can be fircd by more
than one token at any time. This implies that there is a
self loop place with one token related to each transition,
ie. (t, 1) € Pand M((t,)) = 1, V te T where (t, s)
indicates the place connecting transition t to transition s.
As a result, the set of places P can be written as P=P U
Pt where Pt denotes the set of self loop places and P the
other places. Furthermore, since M((t,)) =1,V te T,
only the marking of the places belonging to P will be
considered.

Since N is an event graph, each place has exactly one
input transition and one output transition. Without loss



582

of generality, we assume that there exists at most onc
place between any two transitions. The following
notations will be used :

in(t): set of transitions which immediately precede
transition t, i.e. in(t) = *("t)

(t, s): place connecting transition t to s

M: initial marking of the places in P

Xi(k) : time required for the k-th firing of t

S(k): starting time of the k-th firing of t

Dy(k): termination time of the k-th firing of t

By convention, Xy(k) =0, V k <0 and Sg(k) =0, V
k < 0. As shown in Chretienne (1983), Sy(k) can be
determined by the following recursive equations:

S[(k) = Max
Tein(t)

[Drlk-a((z0)} @

with

D[(k)=St(k)+Xt(k), VieT,Vk 20

We assume that {X[(k)}:zl forall t € T are

mutually independent sequences of i.i.d. integrable r.v.s.
It was proven by Baccelli (1992) that:

lim §_[_(£).::
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w—n(M), as. (2

for all transition t where (M) is the average cycle time
of the event graph.

Since any stochastic timed event graph is completely
characterized by its net structure, its initial marking and
the firing time sequences, it can be denoted by the triplet
SPN=(N, M, {Xik)}).

Let us consider now the simulation of a stochastic
timed event graph. Thanks to the ergodicity rclation (2),
we can use the evolution equation (1) to simulate a
stochastic timed event graph instead of the classical
discrete event simulation technique. This approach turns
out to be more efficient than the discrete simulation
technique.

ALGORITHM A1 (Simulation of an event graph)
1. Choose a simulation cycle K.
2. Compute a sequence of transitions (61, ..., o))
firable from the initial marking M in which each
transition appears exactly once.
3. Set Sy(k) :=0, forall t e T and for all k <0.
4.Fork=1 toKdo
4.1. Generate the r.v.s X((k) forallte T
4.2. For t = 61 to 6|, compute S;(k) using
equation (1)
5. 1(Mg) = S51(K)/K

Xie

The existence of the sequence (01, ..., o)) was
proved by Commoner, Holt, Even, and Pnueli (1971).
Since (07, ..., oyyy)) is firable from M, the k-th firing of
any transition t = oj is independent of the k-th firings of
the transitions Gj4q, ..., O|T|- This guarantees the
computability of Si(k) at step 4.2.

3. PROBLEM SETTING AND A PARALLEL
SIMULATION APPROACH

The token partition problem consists in choosing an
initial marking among a set of candidate initial markings
in order to minimize a criterion function of the average
cycle time and the initial marking. More precisely,

min {F(M, n(M))}

MeO ©)

where Q = {Mj, M2, ..., M;} is a set of n candidate
initial markings and F(M,(M)) is the criterion function.

Let us consider the motivations of this token
partition problem. When designing a system, a very
popular approach consists in first elaborate a set of
alternative solutions under some technical and
economical considerations, then quantify the performance
of these solutions and finally choose the one with the
best performance.

Our token partition problem applies to the resources
dimensioning of a manufacturing system. In the
stochastic timed event graph model of such a system, a
potential solution can be represented by the initial
marking. The set of the alternative solutions corresponds
to the set Q. The value 1/n(M) can be considered as the
throughput value of the related system or productivity
ratc when manufacturing is concerned. The tokens
appeared in the net usually model the resources
employed. The criterion function F(M,n(M)) quantifies
the balance between the total cost of the resources
employed and the average cycle time obtained. The
optimal token partition allows to achieve a good balance
between two contradictory factors.

For problem (3), the lack of closed-form solutions of
the average cycle time leaves the simulation the only
acceptable tool. A natural approach consists in repeating
algorithm A1 for each element of the candidatc solution
sct Q to obtain an estimate of its average cycle time and
then choosing the one which minimizes the criterion
function.

The major drawback of this approach is clearly the
computation burden as the set of candidate initial
markings is usually large.

To reduce the computational burden, we first propose
a parallel simulation algorithm A2 which takes
advantage of the structure of the event graphs. In this
algorithm, SPN; denotes thc stochastic timed event

graph (N, M;, {X((k)}). Si,l(k) is the starting time of the
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k-th firing of transition t of SPN;. n(M;) is its average
cycle time.

Algorithm A2 (Parallel simulation of n event graphs)
1. Choose a simulation cycle K.
2. For each net SPN;, compute a sequence of transitions
(0,1 ---» Oy |T) firable from the initial marking M; in
which each transition appears exactly once.
3. Set Si,t(k) =0, forallte T, k<0 and 1<i<n.
4.Fork=1 toKdo
4.1. Generate the r.v.s X((k) forallte T
4.2. Fori=11to nand for t = 6 j t0 Gj ||, compute
Si,[(k) using equation (1)
S.Fori=1tondo
5.1. Compute n(M;) = Sj +(K)/K where t* is a
given transition
5.2. Compute F(M;, n(M;))
6. Determine the optimal solution M*.

As it can be remarked, the different SPNs share the
same random variable generation in the parallel
simulation approach while each SPN needs its own
random variable generation in the traditional approach.
Clearly, this advantage disappears if each SPN uses the
same pre-generated firing times in traditional approach.
However, we show in the next section that the
computational burden can be significantly reduced by
combining this parallel simulation algorithm and an
ordinal optimization approach.

4. AN OPTIMIZATION
APPROACH

ORDINAL

4.1. Introduction to Ordinal Optimization

Let us come back to the algorithm A2. The major
drawback of algorithm A2 is an implicit self-imposed
requirement of accurate enough estimation of the
criterion value for all candidate initial markings. As a
result, long simulation run (i.e. large K) is necessary for
the convergence of criterion value estimates. The ordinal
optimization approaches, first proposed by Ho
Sreenivas, and Vakili (1992), reduce the computation
burden by appropriately relaxing this requirement.

The primary concern of the ordinal optimization is
the rankings of the candidate solutions instead of their
exact criterion values. Numerous simulations conducted
by different authors for a wide range of problems have
shown that the candidate solution rankings stabilize
before the convergence of the criterion value estimates.

Ordinal optimization approaches generally simulate
simultaneously different candidate solutions using
common random variable generation. It has been shown
by Deng, Ho, and Hu (1992) that the resulted
correlations between the criterion value estimation errors
can only help and increase the chance of identifying good
solutions very early in the simulation.

To significantly reduce the simulation time, ordinal
optimization approaches typically relax the goal of
simulation to the isolation of a set of good candidate
solutions. The observations of numerous simulation
experiments indicate that it is possible to determine
whether a candidate solution is good or bad very early in
the simulation with high probability. Typical relaxing
goal of existing ordinal optimization approaches is to
identify a small subset of candidate solutions containing
at least one top-r solution with high probability.
Estimates of this probability has been proposed by Chen
(1993) for a class of discrete event systems.

Another principle of ordinal optimization approaches
is the use of different simulation length for different
candidate solutions. The idea is to discard solutions
which can hardly be optimal ones whenever we are
confident enough. Figure 1 is a typical simulation time
distribution when using an ordinal optimization
approach.

ordinal

‘ simulation
approaches .
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Figure 1: Simulation Length Profile (from
Ho and Cassandras (1993))

The main question regarding the ordinal approaches is
how to determine that a subset of candidate solutions can
hardly be optimal ones with high probability at a given
point of the simulation. This confidence probability
problem has been addressed by Chen (1993) for a class of
discrete event systems. This approach does not apply to
our case as it cannot handle criteria which are non-linear
functions of performance measures.

4.2. Proposed Ordinal Optimization Approach
4.2.1. Average Cycle Time Estimation

The starting point of our ordinal optimization approach
is the estimation of the average cycle time at different
point of the simulation. The approach of Chen (1993) is
used and is summarized in the following.

We first define the following quantities :
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Yi() = (Sj1*G.L) - Sj +(G-1).L)/L @
and assume that Y;(j) for j > 1 are independent samples
from a common random variables Yj. This is a well-

known "batched means" technique in simulation to
obtain roughly independent observations (sece Mitrani
1982).

At any point k = J.L of the simulation, the
following sample estimate can be derived:
I t*(J L)
}EYI - )
=1

From the ergodicity property (2), it converges to the
exact average cycle time with probability 1, i.e.

]
E[Y;]= lim Yi(j)=

o J
Jo o

(Mi),a.s. 6)

However, at any point of the simulation, the sample
estimate is only an approximation of the exact average
cycle time. The Bayesian approach is used to characterize
the exact average cycle time n(M;). This approach treats
as a random variable n(M;) and derives its posterior
distribution based the sample path {Y;(1), ..., Y;(J)}.

Let 7i(J) be a random variable whose distribution is
the posterior distribution of m(M;) conditioned on the
samples {Y;(1), ..., Y;()}.

Assume that the distribution of 7 (0) is N(0, v2) for
some very large v which implies that there is no prior
knowledge about the average cycle time. Furthermore,
we assume that the distribution of Y; is N(n(M;), ciz).

It can be easily shown that the distribution of 7 (J)
is also a normal distribution with:

] 2

1 .
?ZYI , Var[ﬂ:l ——l

=1

B[#i(1)] = )

The last obstacle is that the variance 6;2 is
unknown. We replace it by its sample estimate:

©)
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4.2.2 Proposed Ordinal Optimization

Approach

Let us first consider a trivial cxample of 7 candidate
solutions. Assume that their criterion value estimates
follow normal distributions at any point of the
simulation. Table 1 contains the mean and the standard
deviations obtained at a given point of the simulation.

Table 1. A Trivial Example

No.l 112 [ 3145 [6 7
EtRgl 1 | 2 210223 | 4 |5
o lo1]o2 [o02]o2[2 |2 [1

The top-3 solutions are candidates 1, 2 and 3.
However, the probability that candidate 2 or 3 provides
better criterion value candidate 1, i.e. Fp <Fj or F3 <
F1, is very small while the probability that F5 < Fy or
Fg < F1, is not insignificant. As a result, we can discard
candidates 2, 3, and 7 at this point and further simulate
candidates 1, 5 and 6.

This is what differs our approach and the existing
ordinal optimization approaches which always keep all
the top-r candidates. Instead, the central idea of our
approach is to determine a subset of candidate solutions
which outperforms all other candidate solutions with
high enough probability.

The ordinal optimization algorithm for the token
partition problem can be summarized as follows.

Algorithm A3 (Ordinal optimization)
1. Choose a simulation cycle K.
2. For each net SPN;, compute (Gj 1, ..., Gj |T)-

3. Set Si,[(k) =0, forallte T, k £0and I<i<n.
4.5etQ={My, ..., My}, p*=1
4. Fork=1 toK do

4.1. Generate the r.v.s X((k) forallte T

4.2. For Mj € Q and for t = Gj 1 t0 Oj ||, compute
Si,[(k) using equation (1)

43.If k =J . L, update the posterior distribution of
;(3) for all M e Q by using (7) and (8)

44. 1f1QI>randJ =1J .Lj and J > J, select a

subset of candidate initial markings G such that p(G)
> P where p(G) is the probability that an optimal

solution in G is also optimal in Q.
4.5.1f G % Q, set Q = G and set p* = p* . p(G)
5. For all M e Qdo

5.1. Compute n(M;) = Si’l*(K)/K where t* is a
given transition
5.2. Compute F(M;, n(Mj))

6. Determine the optimal solution M*.
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In this algorithm, at step 4.3, the posterior
distribution of the average cycle time is updated
according to the method presented in section 4.2.1. L is
the batch size of the raw data to be grouped together. At
some regular intervals (i.e. L1 * L), we determine a
subset of candidate initial markings G such that initial
markings in G outperform initial markings in Q - G
with probability greater than Py, i.e. p(G) = Py.
Candidate initial markings in Q - G which correspond to
not good enough solutions are discarded at step 4.4. The
integer r is the number of candidate initial markings that
can be simulated until K. J( is the number of samples
necessary for the variance estimates (8) to be accurate
enough. p* is the confidence probability for the candidate
initial marking M* to be the real optimal.

The main question regarding this algorithm is the
determination of the subset G and p(G). A Monte Carlo
method is used to solve this problem. For this purpose,
a sequence of m samples {Z; | for 1<I<m} of the random
variable is generated for each candidate M; € Q. We then
determine p(Mj), the number of times that M; is optimal
over all candidates in Q, ie. F(M;, Zj)) =
Min{F(Mj,Z,)) for all M, € Q}. We then add the
candidate initial markings M; to G in decreasing order of

p(My) until p(G) = (1/m) 2, . - p(M)) > Po.

The computation burden for the generation of {Z;
for 1<1<m} can be reduced by generating at the
initialization phase a sequence of samples {z;} for
1<I<m} of a r.v. with distribution N(0, 1). The sequence
{Z; for 1<I<m} can then be obtained as follows:

Z;1 =E[7;(3)] + z;1.4 Var[#; (J)] ©

5. OPTIMAL KANBAN DISTRIBUTION

This section applies the proposed ordinal optimization
approach to the optimal kanban distribution
determination for a four-machines serial system. Its Petri
net model (see Xie (1993) for more detail) is given in
Figure 2.

uh R gkt B 5Pt Bo iy Artg Mol

Fig. 2: A 4-machine Serial System

The work in process is controlled by kanbans. The
manufacturing process is decomposed into stages and we

assume that each stage corresponds to one operation (or
one machine). Each stage is assigned a given number of
kanbans. A kanban is attached to each part within a stage
and the kanban is detached from the part when it leaves
the stage. Let Kj > 0 be the number of kanbans assigned
to the stage j. We assume that the transportation times
between stages are small enough and can be neglected.

To illustrate the functioning, let us consider the
second stage modeled by the elementary circuit (pp, t3,
P7, 4. P8, t5, p2). Place py contains as many tokens as
free kanbans, the place p7 contains as many tokens as
kanbans attached to parts waiting to be serviced
(including the one being serviced) in stage j. Place pg
contains as many tokens as completed parts waiting to
be moved to the next stage. Transition t4 represents the
operation performed in stage 2. It is a timed and recycled
transition which means that at most one firing can be
initiated at any time. The completed parts will be
transfered to the next stage 3 if free kanbans are available
in stage 3, i.e. place p3 contains tokens. The transfer of
these parts are represented by transition t5. Firings of
transition t5 remove tokens in places pg and add them to
place pp which detaches the kanbans attached to the
completed parts. The kanbans detached from the
completed parts become free kanbans. If there are
completed parts waiting in stage 1, transition t3 fires
which attaches one free kanban to each of these parts and
moves them to stage 2.

The total numbers of tokens in the four elementary
circuits are invariant under the transition firings and are
equal to K, Ky, K3 and K, respectively.

The criterion to be minimized is as follows:

12
F(M, n(M)) = M(p;)+ a.(C - n(M))*  (10)

i=1

Let us consider the set of candidate initial markings
to be taken into account. For this serial kanban system,
Property 4 of Xie (1993) implics that the average cycle
time depends on the number of kanbans associated to
each elementary circuit, i.e. K;, K9, K3 and K4 but it
does not depend on the exact token distribution. Since
2iM(p;) = K;+K,+K3+K,, we only need to consider
the set of initial markings M satisfying M(p;) = 0, for 5
<ig12.

Furthermore, it has been proved by Tayur (1992) that
for a 4-stage serial system with a given number of
kanbans, the average cycle time is minimized when K; =
K4 = 1. As a result, we can further limit ourselves to the
set of candidate initial markings M satisfying M(p;) =
M(pg) = 1 and M(p;) = 0, for 5 < i < 12. In the
following, we consider the following 36 initial markings
which contain at most 11 tokens:
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:111100000000,
:112100000000,
122100000000,
141100000000,
123100000000,
151100000000,
133100000000,
115100000000,
152100000000,
134100000000,
116100000000,
162100000000,
144100000000,
126100000000,
181100000000,
163100000000,
145100000000,
127100000000,

Mo1:
Mo3:
Mos :
Mo7:
Mo9 :
Mii:
Mi3:
Mis:

121100000000,
131100000000,
113100000000,
132100000000,
114100000000,
142100000000,
124100000000,
161100000000,
M17:143100000000,
M19:125100000000,
M21:171100000000,
M23:153100000000,
M25:135100000000,
M27:117100000000,
M29:172100000000,
M31:154100000000,
M33:136100000000,
M35:118100000000.

Moo
Mo2
Mog4 :
Moe :
Mpopsg :
Mjo:
Mig:
Mia:
Mis:
Misg:
Mao:
Moo :
Mp4:
Mo :
Mjg:
M3g:
M3):
M3y :

The control parameters needed in the algorithm A3
are as follows : K =20000,L =100,r=5,J9g=9,L1 =
5 and Py = 0.98.

In the remainder of this section, we reported
numerical results for four different cases.

Case 1. The firing time distributions are as follows.
X2 = 10, X4 is exponentially distributed with mean
equal to 10, X;¢ is uniformly distributed on [5, 15] and
X1g8 is a two stage Erlang distributed r.v. with mean
equal to 8. C = 10.5 and a = 20.

The exact criterion values are obtained by algorithm
A2 by simulating all candidate solutions until K =
20000. The criterion values of these candidate initial
markings are given in the following in non-increasing
order of the criterion value:

(30 20.82) (31 21.76) (23 22.59) (29 23.23)
(22 24.22) (24 2491) (32 25.09) (17 25.80)
(16 26.07) (11 29.32) (18 30.44) (25 30.73)
(12 31.26) (33 31.45) (7 34.90) (28 38.98)
(21 39.21) (1540.01) (10 41.57) (13 41.60)
(19 42.13) (8 42.21) (26 42.97) (34 43.92)
(6 44.66) (4 46.08) (3 50.88) (1 63.48)
(5 71.09) (9 71.34) (14 72.14) (20 73.11)
(2 713.97) (27 74.11) (35 75.11) (0 95.16)

where the first number in any couple indicates the
candidate marking and the second one indicates the
criterion value.

Let us report the result of the ordinal optimization
algorithm A3. At iteration k = 600 and 1=5, the
following criterion values are obtained:

(30 15.96)* (31 16.39)* (23 17.56)* (29 19.28)*
(32 19.51) (24 1951)* (22 19.98) (17 20.64)*
(16 21.21)* (18 24.27) (25 24.52) (11 24.83)
(12 25.23)* (33 2530)* (7 29.66)* (13 34.78)
(19 35.32) (8 35.78) (26 36.27) (34 37.27)

Xie

(4 4051) (28 40.84) (21 4091) (15 41.05)
(10 41.64) (6 44.76) (3 49.60)* (1 60.51)*
(5 6599 (9 66.77)* (14 67.77)* (2 68.51)
(20 68.77) (27 69.77)* (35 T0.77T)* (0 93.71)x.

Surprisingly, a large number of candidate markings
(see marked candidate markings) are ranked correctly
although the criterion values are far from stable. The
same observation is made for other cases. This confirms
observations made by other authors.

The criterion values obtained at iteration k = 1100
and I=11 are as follows:

(30 17.98) (31 18.99) (23 20.05) (29 21.52)
(32 22.22) (24 22.33) (22 22.53) (17 23.46)
(16 24.28) (25 27.31) (18 27.48) (11 27.77)
(33 27.83) (12 28.44) (7 32.61) (13 37.49)
(19 37.84) (26 38.45) (8 38.56) (34 39.45)
(28 41.52) (21 41.59) (15 42.13) (10 42.97)
(4 43.05) (6 45.85) (3 50.89) (162.01)
(5 66.23) (9 66.73) (14 67.54) (20 68.54)
(27 69.54) (2 69.65) (35 70.54) (0 94.00).

The probabilities for candidate markings to be
optimal are as follows : (30, 0.382), (31, 0.231), (23,
0.145), (29, 0.062), (32, 0.058), (24, 0.036), (22,
0.047), (17, 0.023), (16, 0.015), (11, 0.001), and O for
the other candidate markings. At this point of the
simulation, the candidate markings (16 11 0 1 2 3 4
56 7 8910121314 15181920 2125262728
33 34 35) are rejected. The confidence probability p* =
0.984.

At iteration k = 1600 and 1=16, the criterion values
become:

(30 18.59)
(24 22.15)

(31 19.01)
(29 22.20)

(23 20.32)
(22 23.10)

(32 22.08)
(17 23.49).

The probabilities for candidate markings to be
optimal are as follows : (30, 0.392), (31, 0.296), (23,
0.145), (32, 0.053), (24, 0.036), (29, 0.040), (22,
0.020), (17, 0.018). At this point of the simulation, the
candidate marking 17 is rejected. The confidence
probability p* = 0.966288.

Candidate marking 22 is rejected at iteration k =
2100, candidate marking 29 is rejected at iteration 2600.
The 5 remainder candidate markings are simulated until k
=20000. The correct optimal candidate initial marking
M3 is obtained with confidence probability p* =
0.946091.

Case 2. The firing times distributions are the same as in
the first case. C = 11.5 and o = 50.

For this case, the exact criterion values are as
follows:

(16 9.00) (17 9.00) (22 10.00) (23 10.00)
(24 10.00) (29 11.00) (30 11.00) (31 11.00)
(32 11.00) (11 11.30) (25 11.84) (33 12.12)
(18 12.61) (12 16.14) (7 26.75) (28 30.96)
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(21 33.02) (15 36.52) (19 41.82) (10 41.92)
(13 42.01) (26 42.42) (34 43.30) (8 45.02)
(6 51.14) (4 56.19) (3 68.21) (1 101.21)
(9 117.85) (14 11834) (5 118.73) (20 119.27)
(27 120.26) (35 121.26) (2 127.42) (0 181.90).

Let us report the result of the ordinal optimization
algorithm A3. The criterion values obtained at iteration
k = 1100 and 1=11 are as follows:

(11 8.00) (16 9.00) (17 9.00) (18 9.00)
(12 9.11) (22 10.00) (23 10.00) (24 10.00)
(25 10.00) (29 11.00) (30 11.00) (31 11.00)
(32 11.00) (33 11.00) (7 21.03) (19 31.10)
(26 31.13) (13 31.72) (34 32.13) (8 35.90)
(28 37.30) (21 38.97) (15 41.83) (10 45.42)
(4 48.64) (6 54.12) (3 68.22) (1 97.53)
(9 106.33) (5 106.57) (14 106.86) (20 107.86)
(27 108.86) (35 109.86) (2 116.62) (0 178.99).

The probabilities for candidate markings to be
optimal are as follows : (11, 0.464), (16, 0.201), (17,
0.014), (18, 0.002), (12, 0.245), (7, 0.073), and O for
the other candidate markings. At this point of the
simulation, the candidate markings (171813 0 1 2 3
4 56 8 91014 151920212223 24 25 26 27 28
29 30 31 32 33 34 35) are rejected. The confidence
probability p* = 0.983.

Let us notice that the candidate markings 17 and 18
ranked No. 3 and No. 4 are rejected as they can hardly
outperform the set of retained candidate markings while
the candidate marking 7 ranked No. 15 is kept.

The 4 remainder candidate markings (11, 12, 16, 7)
are simulated until k =20000. The correct optimal
candidate initial marking M;jg is obtained with
confidence probability p* = 0.983.

Case 3. The firing time distributions are as follows.
X2 = 10, X4 is a three-stages Erlang distributed r.v.
with mean equal to 9, X is uniformly distributed on
[5, 15] and X,g is a two stage Erlang distributed r.v.
with mean equal to 8. C = 10.5 and & = 20.

For this case, the exact criterion values are the
following ones:

(12 8.00) (17 9.00) (18 9.00) (23 10.00)
(24 10.00) (25 10.00) (19 10.40) (16 10.54)
(13 10.57) (11 10.66) (26 10.76) (22 10.91)
(30 11.00) (31 11.00) (32 11.00) (33 11.00)
(34 11.48) (29 11.58) (8 11.83) (7 11.90)
(4 16.32) (9 30.31) (6 30.46) (5 30.56)
(14 30.86) (3 30.99) (10 30.99) (20 31.74)
(15 31.85) (27 32.74) (21 32.84) (35 33.74)
(28 33.83) (2 34.31) (1 35.19) (0 57.01).

Algorithm A3 proceeds as follows. The criterion
values obtained at iteration at k = 1100 and 1 = 11 are as
follows:

(12 8.00) (13 8.56) (17 9.00) (18 9.00)

(19 9.00) (11 9.78) (23 10.00) (24 10.00)
(25 10.00) (26 10.00) (8 10.17) (16 10.38)
(7 10.62) (30 11.00) (31 11.00) (32 11.00)
(33 11.00) (34 11.00) (22 11.04) (29 11.86)
(4 14.85) (9 26.68) (14 26.84) (5 27.59)
(20 27.66) (27 28.65) (35 29.65) (6 31.58)
(3 31.93) (10 32.34) (2 32.66) (15 33.08)
(21 33.87) (28 34.69) (1 35.83) (0 56.36).

The probabilities for candidate markings to be
optimal are as follows : (12, 0.882), (13, 0.030), (17,
0.000), (18, 0.001), (11, 0.010), (8, 0.054), (7, 0.023),
and O for the others. At this point of the simulation, the
candidate markings (1118 0 1 2 3 4 5 6 91014
1516 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35) are rejected. The confidence probability p* =
0.989.

The 4 remainder candidate markings (12, 13, 8, 7) are
simulated until k =20000. The correct optimal candidate
initial marking Mj2 is obtained with confidence
probability p* = 0.989.

Case 4. The firing time distributions are as follows.
X2 is uniformly distributed on [0, 18], X4 is a three-
stages Erlang distributed r.v. with mean equal to 9, Xi¢
is uniformly distributed on [5, 15] and X;g is a two
stage Erlang distributed r.v. with mean equal to 8. C =
10.5 and o = 20.

In this case, the exact criterion values are:

(17 9.00) (18 9.00) (12 937) (23 10.00)
(24 10.00) (25 10.00) (30 11.00) (31 11.00)
(32 11.00) (33 11.00) (22 11.29) (16 11.29)
(29 11.85) (11 12.22) (26 12.54) (19 12.61)
(34 12.91) (13 13.41) (7 1477) (8 15.57)
(4 2120) (6 32.12) (10 32.15) (15 32.82)
(21 33.73) (3 33.85) (28 34.70) (9 37.87)
(14 38.17) (5 38.75) (20 38.94) (27 39.86)
(1 40.64) (35 40.84) (2 43.81) (0 67.05).

Let us report the result of the ordinal optimization
algorithm A3. The results obtaincd at iteration k = 1100
and I=11 are given in the following:

(17 9.00) (18 9.00) (23 10.00) (24 10.00)
(25 10.00) (12 10.36) (26 10.41) (30 11.00)
(31 11.00) (32 11.00) (33 11.00) (34 11.00)
(19 11.05) (13 12.54) (16 13.49) (22 13.80)
(11 14.07) (29 14.56) (8 15.57) (7 16.25)
(4 21.80) (6 35.81) (10 36.16) (14 36.24)
(9 36.60) (20 36.66) (15 37.00) (27 37.23)
(3 3759) (21 37.75) (35 38.22) (5 38.28)
(28 38.58)  (144.00) (2 44.79) (0 69.59).

The probabilities for a candidate marking to be
optimal is as follows: (17, 0.418), (18, 0.270), (23,
0.006), (24, 0.002), (25, 0.001), (12, 0.240), (19,
0.020), (13, 0.030), (11, 0.010), ( 8, 0.003), and O for
the others. At this point of the simulation, the candidate
markings (23 82425 0123456 79101415
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16 20 21 22 26 27 28 29 30 31 32 33 34 35) are
rejected. The confidence probability p* = 0.988.

The candidate markings 13 and 19 are rejected at
iteration k = 1600. The 4 remainder candidate markings
(17, 18, 12, 11) are simulated until k =20000. The
correct optimal marking Mj7 is obtained with
confidence probability p* = 0.988.

6. CONCLUSION

In this paper, we have proposed an ordinal optimization
approach to a token partition problem for stochastic
timed event graphs. This approach simultaneously
simulates all candidate initial markings. The
distributions of the average cycle times are characterized
along with the simulation. The distributions are used to
calculate the probability for a candidate initial marking
to be optimal. Candidate initial markings whose
probabilities to be optimal are low are rejected along the
simulation. Numerical results show the power of this
approach in identifying good solutions.

We believe that this approach is general enough and
can be extended to general discrete event systems such as
general Petri nets. Several problems remain open. First,
the definition of the candidate solutions is crucial due to
the combinatorial feature of such problems. Theoretical
results such as ergodicity, monotonicity and deadlock
freeness are needed to restrict the number of candidate
solutions. Another open problem is the confidence
interval of the cycle time distribution estimates.
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