Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

MODEL DIAGNOSIS USING THE CONDITION SPECIFICATION: FROM
CONCEPTUALIZATION TO IMPLEMENTATION

C. Michael Overstreet

Computer Science Department
Old Dominion University
Norfolk, VA 23529-0162

Ernest H. Page
Richard E. Nance

Systems Research Center
and
Department of Computer Science

Virginia Polytechnic Institute and State University

ABSTRACT

Creating efficient implementations for discrete event
models with complex behaviors is often difficult. The
task of correctly specifying intended behaviors even
without dealing with implementation and run-time
details is challenging. We describe ongoing work
with Condition Specifications intended to support a
modeler in the creation of a model specification. A
Condition Specification includes no low-level imple-
mentation details and is amenable to static analysis
which can 1) identify some types of specification er-
rors, 2) provide feedback to the model specifier which
might allow the modeler to detect specification er-
rors, or 3) assist creation of an efficient implementa-
tion. We review previous work on Condition Spec-
ifications, present some important results related to
what is achievable in analysis of specifications, de-
scribe how analysis can be performed and discuss
some current activities in this area.

1 INTRODUCTION

Advancements in computing technology have influ-
enced the problem-solving disciplines in a unique
fashion. Engineering, operations research, manage-
ment science and areas of computer science, all of
which rely on modeling activities and the existence of
a model to effect a solution, see changes in comput-
ing technology as creating mutually accelerative and
prohibitive pressures. Accelerative pressure stems
from the fact that models unyielding to manual tech-
niques are now amenable to solution via automa-
tion. But the ability to use models of increasing size
and complexity feeds the desire to tackle problems
even more challenging. Problems and models of ever-
increasing complexity have ushered in the realization
that only by harnessing computing technology to as-
sist in model development can the limitations of hu-
man memory and understanding be overcome.

566

Blacksburg, VA 24061-0106

Simulation models provide some of the largest and
most complex examples. Under various labels, e.g.
Simulation Model Development Environment (Balci
and Nance 1987) and Computer Aided Simulation
Modeling (Balmer and Paul 1986), an integrated set
of software utilities, generally following an underlying
methodology, assist model builders in coping with the
complexity of their task. Within this software toolset,
argues Balci, must be a Model Analyzer (1986, p. 63)
— a utility that performs diagnostic analysis on the
model specification produced by the Model Gener-
ator and “effectively assists in model verification.”
Model analysis is also cited as crucial in the Knowl-
edge Based Simulation, where introspective analy-
sis exposes relationships among model components
(Baskaran and Reddy 1984).

In this paper, a specification language created to
support model analysis and diagnosis is described.
The language — the Condition Specification (CS) -
defined over a decade ago, is reviewed in terms of its
evolution and current status. In Section 2, the orig-
inal motivation and development history of the CS
is briefly recounted. Section 3 provides a differentia-
tion of the concepts specification and implementation.
The CS structure and syntax and a small example of
model development using the CS appears in Section 4,
and the provisions for model analysis and execution
are discussed in Section 5. Concluding remarks ap-
pear in Section 6.

2 A BRIEF HISTORY OF THE CS

In an early GAO report (USGAO 1975) on the man-
agement of government funded computer models, an
inability of users to understand how to make minor
model changes and adaptations is identified. In a re-
sponse to this recognition, Nance (1977) identifies the
criteria for a Simulation Model Specification and Doc-
umentation Language (SMSDL) intended to: 1) pro-
vide independence of model specification from model

Model Diagnosis 567

implementation, 2) permit and support hierarchical
model specification, and 3) extract model documenta-
tion as a byproduct of the specification process. From
this context emerged the Conical Methodology as the
first simulation modeling methodology (see (Nance
1981, 1994)).

The Conical Methodology (CM) defines a role for
model specification but does not prescribe its form.
Overstreet (1982) defines a formalism for simulation
model specification congruent with the principles out-
lined by the CM. The primary goal of this formal-
ism, the Condition Specification (CS), is to provide
a world-view-independent model representation that
is expressive enough to represent any model but suf-
ficient to facilitate automated diagnosis of the model
representation. Analysis of the specification can be
used to: 1) identify errors in a specification early in
the development process, 2) assist in the creation of
efficient model implementations, and 3) provide infor-
mation to the modeler which may assist in develop-
ing a deeper understanding of the system being sim-
ulated.

An important property of the CS is the precise and
explicit delineation of time and state within a model
representation. Given a CS, all model dynamics are
easily identifiable as time-based, state-based or a mix-
ture of the two. The CS is not generally intended to
function as a language with which the modeler di-
rectly works when constructing a model. Several ef-
forts have addressed techniques for eztraciing a CS
from a modeler via dialog-driven Model Generators
within the context of a Simulation Model Develop-
ment Environment (Barger 1986, Hansen 1984, Page
1990). In these approaches, the Model Generator pro-
vides a buffer between the modeler and the low-level
syntax of the CS. Still, after years of investigation,
several details regarding the nature of the conceptual
framework for the Model Generator in the environ-
ment remain unresolved (Balci et al. 1990).

3 MODELING CONCEPTS

Fundamental to the development of the CS are the
precise characterizations of, and differentiation be-
tween, a simulation model specification and a simu-
lation model implementation.

3.1 Simulation Model Specification

A simulation model specification, or simply model
specification (MS), is a quintuple: (®,Q,T,7,0)
where:

& is the input specification. The input specifica-
tion provides a description of the information the

model receives

Q is the output specification. The output specifica-
tion provides a description of the information
the environment receives from the model.! At-
tributes used in the output specification serve
two functions: 1) If the model is part of a larger
model, they provide information needed to co-
ordinate model components. 2) Reporting of
model behavior a) to support the study model
objective(s), and b) to support model validation.

[is the object definition sel. An object definition is
an ordered pair, (O, A(O)), where O is the object
and A(O) is the object’s attribute sel. During
a simulation run, several instances of the same
object “type” may exist.

A model attribute set, A(M,t) is the union of all
object attribute sets for a model M that exists
at system time ¢t. This set is not time invariant
and is based not only on a particular simulation
run for the model, but for a point in time for
that run.

The state of an object, S(O,t) at system time ¢
for and object O is defined by the values of all
its attributes. Likewise, the state of the model,
S(M,t) is defined by the values of the attributes
in A(M,t). A change in the value of an attribute
constitutes a stale change both in the model and
the object with which the attribute is associated.

A model attribute set cannot be assumed to pro-
vide a basis for a set of state variables, defined
as (Overstreet 1982, p. 52): “A set of variables
for a system form a state set if the set, together
with future system inputs, contain enough in-
formation to completely determine system be-
havior.” In order to establish a set of state
variables, the model attribute set must be aug-
mented with “system variables” such as those re-
quired to implement scheduling statements, list
management, and so on.

7 is the indezing attribute. Commonly this attribute
is referred to as system time. While not manda-
tory, system time is usually one of the model in-
puts and if so, the model does not describe how
it changes value. T provides a partial ordering of
model action during any simulation run.

© is the transilion function. A transition function
contains each of the following: 1) An initial state
for the model. The initial state defines values for

!The input specification and the output specification can
be combined to form a boundary specification.

568 Overstreet, Page, and Nance

all attributes of objects that exist at initiation
(model “start up”) including an initial value for
system time. It must also include the scheduling
of at least one determined event? 2) A termina-
tion condition, and 3) a definilion of the dynamic
behavior of the model, describing the effect each
model component has on other components, the
model response to inputs, and how outputs are
generated.

3.2 Simulation Model Implementation

Let A(M,t) be the model attribute set for a model
specification M at time t. A model specification is a
model implementation if: 1) for any value of system
time ¢, A(M,t) contains a set of state variables, and
2) the transition function describes all value changes
of those attributes. Thus, if “system variables” have
been added to the object specification set so that
A(M,t) must always contain a state set, then the
transition description also contains a complete de-
scription of how these additional attributes change
value.

Since A(M,t) typically does not contain a set of
state variables, a primary function of a simulation
programming language (SPL) is to augment the at-
tributes of the model specification as necessary to
create a state set and to augment the transition func-
tion as necessary to accommodate the additional at-
tributes.

4 LANGUAGE DESCRIPTION

A Condition Specification provides a particular syn-
tax and semantics for each component in the tuple
defining a model specification.

e The Interface Specification identifies input and
output attributes by name, data type and com-
munication type (input or output). After the
transition specification (defined below) is com-
plete, the communication interface description
can be generated from the internal dynamics of
the model and the object specification. Any CS
must have at least one output attribute (Over-
street and Nance 1985).

o The Object Specification is a list of all model ob-
Jects and their attributes. The CS enforces typ-
ing for each attribute similar to other strongly-
typed languages.

2An event is an instant in time in which at least one model
attribute changes value. Events are determined if their occur-
rence, once scheduled, depends only on the value of 7. An event
is contingent if its occurrence depends on attributes other than
T.

e The Transition Specificalion is a set of ordered
pairs called condition-action pairs. Each pair in-
cludes a condition and an associated action. A
condilion is a boolean expression composed of
model attributes and the CS sequencing primi-
tives, WHEN ALARM and AFTER ALARM. Model
actions come in five classes: 1) a value change
description, 2) a time sequencing action, 3) ob-
ject generation (or destruction), 4) environment
communication (input or output), or 5) a simula-
tion run termination statement. The transition
specification can be augmented by the definition
of side-effect-free functions to simplify the repre-
sentation of model behavior.

Condition-action pairs (CAPs) with equivalent
conditions are brought together to form action
clusters. Action clusters (ACs) represent all ac-
tions which are to be taken in a model whenever
the associated condition is true.

Besides WHEN ALARM and AFTER ALARM, the
CS provides other primitives: SET ALARM, and
CANCEL manipulate the values of attributes
typed as time-based signals (the example below
illustrates their use), CREATE and DESTROY pro-
vide instance manipulation for “temporary” ob-
Jects, and INPUT and OUTPUT provide commu-
nication with the model environment. Recent
extensions to the CS provide the operations IN-
SERT, REMOVE, EMPTY, MEMBER and FIND to
facilitate the CM provisions for model sets (Page
1994).

Two conditions appear in every CS: initializa-
tion and termination. Initialization is true only
at the start of a model instantiation (before the
first change in value of system time). The ex-
pression for termination is model dependent and
may be time-based, state-based, or mixed (both
time- and state-based).

o The Report Specification. Overstreet separates
the report specification from the transition speci-
fication since typically many “computations” are
required to gather and report statistics that in-
and-of-themselves do not define model behavior
(Overstreet 1982). Page (1994) describes a syn-
tax for the report specification similar to that
provided by extant simulation programming lan-
guages.

4.1 Example

Examples of CS model specifications may be found
in (Barger 1986; Nance and Overstreet 1987a, 1987b;
Overstreet 1982, 1985; Overstreet and Nance 1985;

Model Diagnosis 569

Page 1990, 1994; Puthoff 1991). In most of these
sources, model specification is effected in the context
of model development under the Conical Methodol-
ogy. For medium- to large-scale models, the processes
of model definition and model specification are inti-
mately connected as the model evolves through suc-
cessive elaboration and refinement. While the nature
of this development cannot be adequately demon-
strated within the limited scope of this paper, an
example of the language application is nonetheless
warranted. Figure 1 contains a CS transition specifi-
cation for an M/M/1 queueing model.

The semantics of the constructs used the example
are largely intuitive. Time advance is provided by
the alarm components: SET ALARM is an action and
is used to schedule a particular alarm (all alarms are
named) to go off at a future time; WHEN ALARM is a
condition (hence evaluates to true or false) and may
only be true when the named alarm has been set by
a SET ALARM action, and only at the instant of time
for which the alarm is scheduled. WHEN ALARM is
used to describe actions which can be scheduled to
occur and whose occurrence then only depends on
the value of the simulation clock. AFTER ALARM also
depends on a SET ALARM action, but is used as part of
a compound condition to describe the situation when
some time must pass and after that, other conditions
must be satisfied for the associated actions to occur.
For more detailed examples, refer to the previously
cited sources.

5 MODEL ANALYSIS AND EXECUTION

A key issue for model analysis is the notion of model
specification equivalence. Since we are interested in
the automated creation of alternative implementa-
tions for the same specification, a basis for iden-
tifying equivalence-preserving transformations is re-
quired. Two model specifications are structurally
equivalent with respect to a set of model attributes
if: 1) the condition sets are equivalent with respect
to those attributes, and 2) identical model actions
(if stochastic, variates must be from the same dis-
tribution) affecting the set of model attributes are
specified for corresponding conditions. Two model
specifications are ezternally equivalent with respect
to a set of model attributes if they specify identical
output for those attributes when provided identical
input (Overstreet 1982).

{Initialization}
initialization:
INPUT(arrival mean, service.mean, max_served)
CREATE(server)
queuesize := 0
serverstatus := idle
num.served := 0
system_time := 0.0
SET ALARM(arrival, 0)

{Arrival }
WHEN ALARM(arrival):
queuesize := queuesize + 1
SET ALARM(arrival, negexp(arrivalmean))

{Begin Service}
queuesize > 0 and server.status = idle:
queue_size := queuesize - 1
serverstatus := busy
SET ALARM(end_of_service, negexp(servicemean))

{End Service}

WHEN ALARM(end_of service):
serverstatus := idle
num.served := num_erved + 1

{Termination}

num served > max_served:
STOP
PRINT REPORT

Figure 1: M/M/1 Transition Specification.

5.1 Condition Specification Model Decompo-
sition

An obvious way of organizing CAPs is by grouping
them into action clusters as described in the previous
section. Still, an AC-oriented CS may have on the
order of hundreds or thousands of ACs. In addition
to the action cluster aggregation, several transforma-
tions, or decomposilions, have been defined. A CS
may be decomposed into an equivalent specification:
1) based on the model objects, 2) reflecting one of
the traditional world views, or 3) representing a col-
lection of strongly connected components (see (Over-
street 1982; Overstreet and Nance 1985)). Each of
these decompositions is based on the graphical and
matrix representations of the CS described below.

5.2 Graph-Based Model Diagnosis

The following taxonomic description of attributes
within CAPs provides the basis for much of the sub-
sequent discussion (Overstreet 1982, p. 120): control
atiribules provide the information needed to deter-
mine when the action should occur. These are the at-

570 Overstreet, Page, and Nance

arrival

arrival_mean
Initialization
X num_served
Arrival
. queue_size
Begin Service

:erver_.r!am.r
End Service

end_of service
Termination
service_mean

max_served

(a) influence of action clusters on attributes

arrival

arrival_mean

Initialization
num_served

N

Arrival
queue_size

Begin Service
server_status

d Servi
End Service end_of service

Termination .
service_mean

/

max_served

(b) influence of attributes on action clusters

Figure 2: The Action Cluster Attribute Graph for the M/M/1 Model.

tributes that occur in the condition expression. Qut-
pul attributes change value due to the action, and
inpul attribules provide the data to be used to set
new values for output attributes or schedule future
actions.

Most of the analyses provided by the CS uti-
lize graph representations (and the matrix equiva-
lents of the graphs). The most useful graph forms
are described below. For further details see (Nance
and Overstreet 1987a, 1987b; Puthoff 1991; Wallace
1985). A summary of the analyses defined for these
representations is given in Table 1 (adapted from
(Nance and Overstreet 1987h)).

5.2.1 Action cluster attribute graph

The action cluster-attribute graph (ACAG) is defined
as follows. Given a Condition Specification with &
time-based signals, m other attributes, and n action
clusters, then G, a directed graph with k + m + n
vertices is constructed as follows:

G has a directed, labeled arc from i to j if
1) 7 is a control or input attribute for j, an AC,
2) j is an output attribute for ¢, an AC.

The ACAG represents the interactions between ac-
tion clusters and attributes in the CS; specifically, the
potential for actions of one AC to change the value
of an attribute and the influence of an attribute on
the execution of an AC are shown in the ACAG. Fig-
ure 2 is the ACAG for the M/M/1 specification of the
previous section.

Since the ACAG is a bipartite graph, it may
be represented using two Boolean matrices: the
attribute-action cluster matriz (AACM) and the ac-
tion cluster-atiribute matriz (ACAM). For a CS with

m action clusters (ac, acy, ..., acp), and n attributes
(a1,as,...,a,) The AACM is an n by m Boolean ma-
trix in which:

b(i. i) = 1 if edge(a;, ac;j) exists in the ACAG
(i.9) = 0 otherwise

And the ACAM is an m by n Boolean matrix where:

1 if edge(ac;, a;) exists in the ACAG

b(i,5) = 0 otherwise

Two other matrices may be formed from these ma-
trices, the atiribute interaction matriz (AIM), defined
as AACM x ACAM, and the action cluster interac-
tion matriz (ACIM), defined as ACAM x AACM

5.2.2 Action cluster incidence graph

An action cluster incidence graph (ACIG) is a di-
rected graph in which each node corresponds to an
AC in the CS. If, for an implementation based on
the CS, the actions in one action cluster, AC;, can
cause the condition for another action cluster, AC;,
to become true (at either the same simulation time at
which AC; is executed or at some future time by set-
ting an alarm) then a directed arc leads from AC; to
AC;. By convention this arc is depicted as a dotted
line if AC; sets an alarm that is used in the condition
for ACj, otherwise the arc is depicted as a solid line.
If the condition on AC; is a WHEN ALARM then AC;
is referred to as a time-based successor of AC;. If the
condition on ACj is an AFTER ALARM then AC; is
referred to as a mized successor of AC;. Otherwise
ACj is referred to as a state-based successor of AC;.
The ACIG for the M/M/1 model is given in Figure 3.

One may construct an ACIG for a CS consisting of
ACs acy,acy, ..., ac, using to the algorithm of Fig-
ure 4. Note that an ACIG completely depicts the

Model Diagnosis 571

Table 1: Summary of Diagnostic Assistance in the Condition Specification.

Category of Diagnostic
Assistance

Properties, Measures, or Techniques
Applied to the Condition Specification

Basis for
Diagnosis

Analytical: Determination
of the existence of a
property of a model
representation.

Comparative: Measures
of differences among
multiple model
representations.

criteria.

Informative: Characteristics
extracted or derived
from model representations

Attribute Utilization: No attribute is defined that does | ACAG
not effect the value of another unless it serves a
statistical (reporting) function.

Attribute Initialization: All requirements for initial ACAG
value assignment to attributes are met.

Action Cluster Completeness: Required state changes ACAG
within an action cluster are possible.

Attribute Consistency: Attribute typing during model ACAG
definition is consistent with attribute usage in model

specification.

Connectedness: No action cluster is isolated. ACIG

Accessibility: Only the initialization action cluster is ACIG
unaffected by other action clusters.

Out-complete: Only the termination action cluster ACIG
exerts no influence on other action clusters.

Revision Consistency: Refinements of a model spec- ACIG

ification are consistent with the previous version.

Attribute Cohesion: The degree to which attribute AIM
values are mutually influenced.

Action Cluster Cohesion: The degree to which action ACIM
clusters are mutually influenced.

Complezity: A relative measure for the comparison of a | ACIG
CS to reveal differences in specification (clarity,
maintainability, etc.) or implementation (run-time)

Attribute Classification: ldentification of the function ACAG
of each attribute (e.g. input, output, control, etc.)
Precedence Structure: Recognition of sequential ACIG
relationships among action clusters.
Decomposition: Depiction of coordinate or subordinate | ACIG
relationships among components of a CS.

potential sphere of influence of each AC in the spec-
ification, that is when an output attribute of an ac-
tion cluster is a (state-based or time-based) control
attribute of another (not necessarily distinct) action
cluster. However, many of these “interactions” may
never occur. For instance if AC; has an output at-
tribute that is involved in the Boolean expression on
the condition, denoted p, for AC}, then there is a solid
arc in the ACIG from AC; to AC;. However, if the
postcondition for AC; (the values of model attributes
following the “execution” of AC;) implies —p, then
the execution of AC; can never cause the execution
of AC; and the arc can safely be removed from the
graph. Overstreet (1982) shows that no algorithm
can exist which removes all such edges. However,
Puthoff (1991) describes an expert system approach

to this type of precondition/postcondition analysis
for ACIG simplification, noting near-optimal results
for the model specifications considered.

5.2.3 Limits of model analysis

The theme of this research is to understand how we
can utilize analyses of specifications to support the
modeling process. For example, analysis of a model
might assist in choosing a more efficient implementa-
tion among several alternative approaches. We also
desire analysis tools which identify problems with a
specification. However, several questions we might
like answered about a particular model specification
are undecidable; that is, no algorithm can be written
which can determine if an arbitrary CS has a partic-

572 Overstreet, Page, and Nance

Initialization

R Y]
/ Arrival

D

'

' ’

. /
~e-

Begin Service
]

v
End Service

Termination

Figure 3: The Action Cluster Incidence Graph for the
M/M/1 Model.

ular property.

For example, during the execution of a CS, the con-
ditions of several ACs might be simultaneously true (a
common occurrence), so that they all could execute.
If the execution of AC; followed by AC: leaves the
system in a different state than execution of AC; fol-
lowed by AC; (perhaps because they both the modify
the same attribute), then ACy and AC; are order de-
pendent. This is not necessarily a problem (perhaps
their conditions can never be simultaneously true so
their consecutive execution can never occur), but may
indicate a problem with the specification. Determina-

tion of order dependency is undecidable (Overstreet
1982).

5.2.4 Support for model execution

Page (1994) describes algorithms for the direct execu-
tion of action cluster (DEAC) simulation. The algo-
rithms utilize the ACIG as a model of computation,
thereby minimizing the number of conditions which
must be tested at any instant during model execution.
Algorithms suitable for parallel execution are also
presented, and a method for estimating the inherent
parallelism in a CS based on the critical path through
the ACIG is defined. Data flow analysis techniques
similar to Weiser’s program slicing (Weiser 1986) can
automatically identify causality and sequential rela-
tionships among model components or can identify
model components which can execute in parallel.

6 CONCLUSIONS

Our primary goal for Condition Specifications has
been to support analysis of model specifications so

For each 1 < i < n, let node 1 represent ac;

For each ac:, partition the attributes into 3 sets:
T, = {time-based signals (control attributes)}
C, = {all other control attributes}

0, = {output attributes}
Foreach 1 <t < n,
For each 1 <y < n,
Construct a solid edge from node 4 to node
JifOiNC, #40
Construct a dashed edge from node 7 to node
jifo.nT, #0

Figure 4: Algorithm for Constructing an Action Clus-
ter Incidence Graph.

that: 1) decisions about many implementation de-
tails are not included in the model specification and
implementation choices can be based on analysis, and
2) detection of several types of problems in specifica-
tions can be effected earlier than is usually possible.
This approach requires use of a specification language
with carefully defined semantics. We have shown that
some properties of specifications which are of interest
are in general not decidable. We have also identified
several graphs, directly derivable from a Condition
Specification, which can be used to determine several
important properties of a specification.

Our experience with Conditions Specifications
shows that the separation of specifications from im-
plementations is feasible and supports significant er-
ror detection and implementation guidance. Future
efforts will focus on analyses which can assist in au-
tomating or guiding the creation of efficient imple-
mentations for both serial and parallel executions.

REFERENCES

Balci (1986). “Requirements for Model Development
Environments,” Computers and Operations Research,
13(1), pp. 55-67.

Balci, O. and Nance, R.E. (1987). “Simulation Model
Development Environments: A Research Prototype,”
Journal of the Operational Research Society, 38, pp.
753-763.

Balci, O., Nance, R.E., Derrick, E.J., Page, E.H. and
Bishop, J.L. (1990). “Model Generation Issues in a
Simulation Support Environment,” In: Proceedings of
the 1990 Winter Simulation Conference, pp. 257-263,
New Orleans, LA, December 9-12.

Balmer, D.W. and Paul, R.J. (1986). “CASM - The

Model Diagnosis 573

Right Environment for Simulation,” Journal of the Op-
erational Research Society, 37(5) pp. 443-452.

Barger, L.F. (1986). “The Model Generator: A Tool for
Simulation Model Definition, Specification, and Doc-
umentation,” M.S. Thesis, Department of Computer
Science, Virginia Tech, Blacksburg, VA, August.

Baskaran, V. and Reddy, Y.V. (1984). “An Interactive
Environment Environment for Knowledge-Based Sim-
ulation,” Proceedings of the 198} Winter Simulation
Conference, pp. 645-651, Dallas, TX, November 28-30.

Hansen, R.H. (1984). “The Model Generator: A Cru-
cial Element of the Model Development Environment,”
Technical Report CS84008-R, Department of Com-
puter Science, Virginia Tech, Blacksburg, VA, August.

Nance, R.E. (1977). “The Feasibility of and Methodology
for Developing Federal Documentation Standards for
Simulation Models,” Final Report to the National Bu-
reau of Standards, Department of Computer Science,
Virginia Tech, Blacksburg, VA, June.

Nance, R.E. (1981). “Model Representation in Discrete
Event Simulation: The Conical Methodology,” Techni-
cal Report CS81003-R, Department of Computer Sci-
ence, Virginia Tech, Blacksburg, VA, March.

Nance, R.E. (1994). “The Conical Methodology and the
Evolution of Simulation Model Development,” Annals
of Operations Research, Special Volume on Simulation
and Modeling, O. Balci, (Ed.), To appear.

Nance, R.E. and Overstreet C.M. (1987a). “Diagnostic
Assistance Using Digraph Representations of Discrete
Event Simulation Model Specifications,” Transactions
of the Society for Computer Simulation, 4(1), pp. 33-
57, January.

Nance, R.E. and Overstreet, C.M. (1987b). “Exploring
the Forms of Model Diagnosis in a Simulation Support
Environment,” Proceedings of the 1987 Winter Simu-
lation Conference, Atlanta, GA, December 14-16, 590-
596.

Overstreet, C.M. (1982). “Model Specification and Anal-
ysis for Discrete Event Simulation,” PhD Disserta-
tion, Department of Computer Science, Virginia Tech,
Blacksburg, VA, December.

Overstreet, C.M. and Nance, R.E. (1985). “A Specifica-
tion Language to Assist in Analysis of Discrete Event
Simulation Models,” Communications of the ACM,
28(2), pp. 190-201, February.

Page, E.H. (1990). “Model Generators: Prototyping Sim-
ulation Model Definition, Specification, and Documen-
tation Under the Conical Methodology,” M.S. The-
sis, Department of Computer Science, Virginia Tech,
Blacksburg, VA, August.

Page, E.H. (1994). “Simulation Modeling Methodology:
Principles and Etiology of Decision Support,” PhD Dis-
sertation, Department of Computer Science, Virginia
Tech, Blacksburg, VA, expected.

Puthoff, F.A. (1991). “The Model Analyzer: Prototyp-
ing the Diagnosis of Discrete-Event Simulation Model
Specification,” M.S. Thesis, Department of Computer
Science, Virginia Tech, Blacksburg, VA, September.

U. S. General Accounting Office (1975). “Ways to Im-

prove Management of Federally Funded Computerized
Models,” LCD-75-111, Washington, DC.

Wallace, J.C. (1985). “The Control and Transformation
Metric: A Basis for Measuring Model Complexity,”
M.S. Thesis, Department of Computer Science, Vir-
ginia Tech, Blacksburg, VA, March.

Weiser, Mark (1984) “Program Slicing,” /EEE Transac-
tions on Software Engineering, SE-10(4), pp. 352-357,
July.

AUTHOR BIOGRAPHIES

C. MICHAEL OVERSTREET is an Associate
Professor of Computer Science and Graduate Pro-
gram Director for Computer Science at Old Domin-
ion University. He is currently chair of the Special
Interest Group in Simulation (SIGSIM) of ACM. He
received his B.S. from the University of Tennessee in
1966, an M.S. from Idaho State University in 1968,
and an M.S. and Ph.D. from Virginia Polytechnic In-
stitute and State University in 1975 and 1982. He
has been a visiting research faculty member at the
Kyushu Institute of Technology in Japan. His current
research interests are in model specification and anal-
ysis, high performance networking, and static code
analysis in support of software maintenance tasks. He
is currently a principal investigator in tasks funded
by ICASE at NASA Langley, the National Science
Foundation, and the U.S. Navy. Dr. Overstreet is a
member of ACM, and IEEE CS.

ERNEST H. PAGE is a Research Associate with
the Systems Research Center and a Ph.D. candi-
date in the Department of Computer Science at
Virginia Polytechnic Institute and State University
(VPI&SU). He received B.S. and M.S. degrees in
Computer Science from VPI&SU in 1988 and 1990.
His research interests include discrete event simula-
tion, parallel and distributed systems, and software
engineering. He is a member of ACM, ACM SIGSIM,
IEEE CS, SCS, and Upsilon Pi Epsilon.

RICHARD E. NANCE ’s biography appears
elsewhere in these proceedings.

