Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

CONTROL FLOW GRAPHS AS A REPRESENTATION LANGUAGE

Bruce A. Cota
Douglas G. Fritz
Robert G. Sargent

Simulation Research Group
449 Link Hall
Syracuse University
Syracuse, New York 13244

ABSTRACT

A model representation language called Control
Flow Graphs whose purpose is to explicitly provide the
information needed for simulation execution algorithms
for different types of computer architectures is briefly
described. An overview of a hierarchical modeling
language containing two types of hierarchical structures
for use with the Control Flow Graph representation
language is given. Also, the properties of a model
representation language are presented and how Control
Flow Graphs are related to these properties is discussed.

1. INTRODUCTION

Control Flow Graphs were developed by Cota and
Sargent (1989, 1990a, 1990b, 1990c, 1990d) as a model
representation language for discrete event simulation.
The purpose of this representation language is to make
information explicit to enable the development of
simulation execution algorithms for parallel and
distributed computers. This avoids requiring the modeler
to add additional information as is usually required, e.g.,
lookahead information. Simulation execution algorithms
for Control Flow Graphs have been developed for
sequential and parallel/distributed computers.

A hierarchical model language that can automatically
generate a Control Flow Graph representation has been
developed by Fritz and Sargent (1993). While a
representation language can be used for modeling, it is
not designed for that purpose and thus may not be "user
friendly" for modeling. The Control Flow Graph
representation is straight forward to use in the modeling
of simple systems but can become very complex when
modeling complex systems. The hierarchical modeling
language addresses this complexity. Figure 1 shows the
relationships between the hierarchical modeling
language, the Control Flow Graphs representation
language, and the simulation exccution algorithms.

955

The remainder of this paper is organized as follows:
Section 2 describes Control Flow Graphs, Section 3
presents the hierarchical modeling language, Section 4
gives the properties of model representation and discusses
how Control Flow Graphs are related to them, and
Section 5 summarizes the paper.

2. CONTROL FLOW GRAPHS

Control Flow Graphs are based upon a new
theoretical foundation for discrete event simulation called
the "Modified Process-Interaction World View" (Cota
and Sargent 1992). In this new foundation the process-
interaction world view (Zeigler 1976) was modified so
that each model component (or logical pro:ess) has the
modularity property (encapsulation and locality) and
interacts with other components only through a strictly
defined interface. One such interface is message passing
which is the method used by Control Flow Graphs. In
addition, the modified process-interaction world view
uses the active receiver model (Cota and Sargent 1992)
which means that the component (or process) determines
when to react to information (e.g., messages) received
from other components (as contrasted to the passive
receiver model - used, e.g., in object-oriented
programming and simulation - where components react
when information is received). Furthermore, the
modified process-interaction world view favors the active
resource world view over the more widely known active
transaction world view (Henrikson 1981) used in many
simulation languages such as GPSS.

In the Control Flow Graphs representation, the
behavior of each system component (or process) is
specified by a Control Flow Graph and the interactions
between components are specified by message passing
over directed channels interconnecting model
components. Each channel carries only one type of
message which implies that there may be multiple
channels between two components. Messages qucue on

556

Cota, Frtiz, and Sargent

Hierarchical

Hicrarchical Model \

Modeling
Language

\

Model
Representation

Control Flow Graphs l

Language

AN

Sequendal

Conservative

Simulation
Execution
Algorithms

ParalleU/Distributed

Cornbined

Figure 1. Hierarchial Modeling and Simulation System

each channel until the Control Flow Graph describing
the component decides to receive them, i.e., Control
Flow Graphs are active receivers. The time-stamps on
the messages are their sending times. (This is in
contrast to the method generally used in parallel and
distributed simulation in which the timestamps are to the
times the messages are to be received.) The specification
of channels is accomplished via an Interconnection
Graph. An Interconnection Graph is a directed graph
where the nodes represent components (Control Flow
Graphs) and the directed edges represent the channels.
Thus, one Interconnection Graph and a set of Control
Flow Graphs (one for each system component (or
process)) are required to specify a simulation model using
the Control Flow Graphs representation.

A Control Flow Graph is an augmented directed
graph where nodes represent the control states of a
component and edges specify possible component control
state transitions. A control state is a formalization of
the "process reactivation point" (Cota and Sargent 1992
and Zeigler 1976). Each edge has three attributes: an
event, a condition, and a priority. The event specifies
the actions to be taken if that edge is transversed which
includes receiving a message waiting at a channel,
changing values of local (model component) variables,
and sending messages over channels. The condition
specifies under what conditions an edge can be considered
for traversal. There are three types of conditions: (i) a
channel has messages waiting to be received (i.c., is
nonempty), (ii) a Boolean expression on the values of

Control Flow Graphs 557

the local variables, and (iii) a time delay condition which
becomes true after the passage of some specified local
(component) simulation time. Each Control Flow
Graph has its own (local) simulation clock. The edge
selected for traversal from a node (control state) is the
edge that is true with the lowest local simulation time.
In case of time ties, the tied edge that has the highest
priority is selected.

Each Control Flow Graph has its own "thread of
control” - i.e., it operates "independently" of other
Control Flow Graphs (except for message passing
interaction). A "Point of Control" in each Control Flow
Graph moves from control state to control state. At each
control state, the point of control may wait for a period
of (local) simulation time, or move immediately if a
Boolean condition on local variables is true or if it is to
receive a waiting message. The decision as to which
edge to traverse may have to be delayed in some cases to
see if messages arrive from other Control Flow Graphs
(components).

Cota and Sargent (1989, 1990a, 1990b, 1990c,
1990d) have developed different simulation execution
algorithms for the Control Flow Graphs representation.
Two simulation execution algorithms are available for
sequential computers (Cota and Sargent 1990b and Fritz
and Sargent 1993): synchronous and asynchronous. The
synchronous algorithm uses the standard approach of
computing the events across all control flow graphs in
their time order sequence. The asynchronous algorithm
allows events to be executed out of time sequence when
this does not effect the simulation results in order to
reduce the simulation execution time by eliminating
some event list operations. For parallel and distributed
computers there are two conservative algorithms (one
using null message passing and the other using deadlock
detection and resolution), an optimistic algorithm which
is more efficient than the usual optimistic algorithm
because rollback is based upon the control states of a
Control Flow Graph instead of rolling back if a "late
message” is received to a Control Flow Graph, and an
optimistic Only When Necessary (OWN) algorithm
which is a combined optimistic and conservative
algorithm. All of these algorithms obtain the
information they need directly from Control Flow
Graphs and thus a modeler need not add any additional
information such as the "lookahead" information required
for most parallel and distributed simulation execution
algorithms. This is because lookahead is "automatically"”
obtained by the algorithms from the Control Flow

Graphs representation.

3. HIERARCHICAL MODELING
LANGUAGE

Fritz and Sargent (1993) have developed a
hierarchical modeling language for Control Flow Graphs
that uses the same world view as the Control Flow
Graphs representation. This modeling language provides
for two independent types of hierarchical structures that
can be used concurrently. One type of hierarchical
structure is the “coupling of components” (Ziegler
1984). The model components are either atomic or
coupled components. Coupled components consist of
other coupled components and/or atomic components.
Atomic components are components whose behavior are
specified by Control Flow Graphs (or Hierarchical
Control Graphs). In the use of this type of hierarchical
structure, one specifies the interconnection (channels) of
Control Flow Graphs by a Hierarchical Interconnection
Graph instead of an Interconnection Graph. If only
atomic components are used, then the Hierarchical
Interconnection Graph is an Interconnection Graph.

The other type of hierarchical structure is the use of
“Macro Control States” in addition to control states.
Macro control states are modular structures that consist
of other macro control states and/or control states. This
leads to using Hierarchical Control Flow Graphs instead
of Control Flow Graphs to specify the behaviors of
model components (or processes). (If only control
states are used in a Hierarchical Control Flow Graphs,
then one has a Control Flow Graph.) The concept of
macro control states is very powerful because it provides
for partial behavior specifications, recursive
decomposition of behavior specifications, higher level
model specification constructs o be used, and reuse.

Thus, to specify a simulation model using this
hierarchical modeling language, one specifies a
Hierarchical Interconnection Graph and a set of
Hierarchical Control Flow Graphs (one for each model
component). Flattening algorithms have been developed
(Fritz and Sargent 1993) to automatically convert a
Hierarchical Interconnection Graph into an
Interconnection Graph and Hierarchical Control Flow
Graphs into Control Flow Graphs. There are several
advantages to using these two types of hierarchical
structures including reuse (model and software) of
components and macro control states, aid to modeling,
and aid in model validation. (See Fritz and Sargent
(1993) for further details.)

4. PROPERTIES OF A MODEL
REPRESENTATION LANGUAGE

In developing a model representation language for
discrete event simulation their properties need to be
considered. These properties include the purpose of the
representation, the requirements that are necessary and
desirable, and the level of the representation. The purpose

558 Cota, Frtiz, and Sargent

of our Control Flow Graph representation is to make
information explicit in the representation in order to
"automatically” obtain the "lookahead" information
needed for simulation execution algorithms for parallel
and distributed computers. Our requirements were
modularity (which aids in modeling, model and software
reuse, hierarchical modeling, and parallel and distributed
simulation), to be able to have efficient simulation
execution algorithms, and to be able to either develop a
modeling language with ease or use the representation
language as a modeling language.

The level of representation (abstraction) must be
such that at least the minimal information required is
available. One can use a lower level of representation but
this requires more information in the model specification
of the representation then is required. For Control Flow
Graphs, we specify behavior using control states. As
discussed in Fritz and Sargent (1993) higher levels of
specification remove capabilities of the Control Flow
Graph representation. For example, specifying the state
space by "internal” and "external" state sets (a higher
level of abstraction) instead of control states removes the
ability of simulation execution algorithms to
"automatically” obtain "lookahead" but continues to
allow the components to be active receivers (see Fritz
and Sargent (1993) for definitions and discussion).

Using a model representation requires a modeler to
specify the necessary information about a model in some
way. This can be directly in the representation or in
some modeling language that can be converted into the
representation. In our case a modeler may specify a
model directly in the Control Flow Graph representation
or by using the hierarchical modeling language. The
hierarchical modeling language provides the information
needed through the Hierarchical Interconnection Graph
and the Hierarchical Control Flow Graphs. One
interesting aspect about Macro Control States in
Hierarchical Control Flow Graphs is that higher level
modeling constructs can be developed for Macro Control
States that contain the information needed for the
representation. Thus if modelers only uses these
constructs, they do not need to specify at the level of the
representation. This can provide a powerful way of
modeling; especially if the modeling language will allow
both the use of the higher level modeling constructs
(e.g., macro control states) and specification at the level
of represcntation (e.g., control states).

5. SUMMARY

We have briefly described the Control Flow Graphs
representation language and a hierarchical modeling
language that converts simulation models into this
representation. A Hierarchical Modeling and Simulation

System (HI-MASS) is under development that uses this
representation language, modeling language, and
simulation execution algorithms based on the
representation. This system eliminates the requirement
that a modeler add additional information or model in a
specific way depending on the computer architecture on
which the simulation is to be executed. This system will
allow the same simulation model to run on different
computer architectures. Furthermore, two types of
hierarchical modeling is allowed by the hierarchical
modeling language. This system (HI-MASS) satisfies
the requirements of a new model paradigm specified in
Sargent (1992).

ACKNOWLEDGMENT

This work was supported in part by the CASE Center
of Syracuse University, by the Air Force Office of
Scientific Research, Bolling AFB, Washington, D.C.,
and by Rome Laboratory, Griffiss AFB, N.Y.

REFERENCES

Cota, B.A. and R.G. Sargent. 1989. Automatic
lookahead computation for conservative distributed
simulation. CASE Center Technical Report 8916,
CASE Center, Syracuse University, December 1989.

Cota, B.A. and R.G. Sargent. 1990a. A framework for
automatic lookahead computation in conservative
Distributed Simulation, in Distributed Simulation, D.
Nicol, editor, The Society for Computer Simulation,
1990, pp. 56-59.

Cota, B.A. and R.G. Sargent. 1990b. Simulation
algorithms for control flow graphs. CASE Center
Technical Report 9023, CASE Center, Syracuse
University, November 1990.

Cota, B.A. and R.G. Sargent. 1990c. Control Flow
Graphs: A method of model representation for parallel
discrete event simulation. CASE Center Technical
Report 9026, CASE Center, Syracuse University,
December 1990.

Cota, B.A. and R.G. Sargent. 1990d. Simultancous
Events and Distributed Simulation, in Proceedings of
1990 Winter Simulation Conference, New Orleans,
LA, December 1990, pp. 436-440.

Cota, B.A. and R.G. Sargent. 1992. A modification of
the process interaction world view, ACM Transactions
on Modeling and Computer Simulation, Volume 2,
Number 2, April 1992, pp. 109-129.

Fritz, D.G. and R.G. Sargent. 1993. Hicrarchical
Control Flow Graph Models. CASE Center Technical
Report 9323, CASE Center, Syracuse University,
December 1993,

Sargent, R.G. 1992. “Requirements of a Modeling

Control Flow Graphs

Paradigm” (part of panel session on “Discrete Event
Simulation Modelling: Directions for the ‘90’s™), in
Proceedings of the 1992 Winter Simulation
Conference, Arlington, VA, December 1992, pp. 780-
782.

Zeigler, B.P. 1976. Theory of Modelling and
Simulation, John Wiley & Sons.

Zeigler, B.P. 1984. Multifaceted Modelling and
Discrete Event Simulation, Academic Press.

AUTHOR BIOGRAPHIES

BRUCE A. COTA has a B.S. in Mathematics from
Buffalo State College and a M.S. in Mathematics from
Syracuse University, and is working towards a Ph.D. in
Computer and Information Science at Syracuse
University. He has been an instructor of Mathematics
and Computer Science at Centre College in Danville,
Kentucky.

DOUGLAS G. FRITZ is a graduate student at
Syracuse University working towards a Ph.D. in
computer engineering. His research area is hierarchical
modeling for discrete event simulation. He has received
M.S. degrees in Electrical Engineering and Computer
Science from Syracuse University, He was formerly a
development engineer at IBM.

ROBERT G. SARGENT is a Professor at Syracuse
University. He received his education at the University
of Michigan and has published widely. Dr. Sargent has
served his profession in numerous ways and has been
awarded the TIMS College on Simulation Distinguished
Service Award for long-standing exceptional service to
the Simulation Community. His research interests
include the methodology areas of modeling and discrete
event simulation, model validation, and performance
evaluation. Professor Sargent is listed in Who's Who
in America.

559

