Proceedings of the 1994 Winter Simulaiion Confererce

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

COMPARISON OF NEVADA SIMULATION TO MONTE CARLO SIMULATION

David J. Bryg

AlliedSignal Engines
PO 32272
Phoenix, AZ 85064-2272

ABSTRACT

A Monte Carlo simulation on a business jet en-
gine thermodynamic performance was repeated us-
ing NEVADA Simulation in order to compare the ac-
curacy and computing requirements of the different
techniques.

NEVADA Simulation is a quadrature technique
for calculating functions of random variables. In NE-
VADA (NumErical integration of Variance And prob-
abilistic Dependence Analyzer) Simulation, variables
are modeled with mixtures of 4-parameter random
variables, called “Continuous Trees”. Functions of
random variables are calculated using gaussian quad-
rature. NEVADA Simulation can take advantage of
the probabilistic independence in a decision problem
while allowing for probabilistic dependence to achieve
close to polynomial computational time complexity.

The results show that NEVADA Simulation was
superior to Monte Carlo Simulation in terms of com-
putational speed and accuracy. To achieve the accu-
racy of the NEVADA Simulation on specific fuel con-
sumption, which took 3.9 seconds of 80486 time for
NEVADA Simulation to solve, 187,000 Monte Carlo
runs would be required. These 187,000 runs would
require about 5.2 days of Cyber mainframe computer
time.

1 INTRODUCTION

A Monte Carlo simulation was conducted on the
TFE731 business jet engine thermodynamic perfor-
mance manufactured by AlliedSignal Engines. We
repeated this analysis using NEVADA Simulation to
evaluate the relative merits of the two techniques.

NEVADA Simulation employs numerical integra-
tion to calculate functions of random variables. This
technique contrasts to Monte Carlo simulation, which
uses sampling to calculate functions of random vari-

ables.

471

NEVADA Simulation models uncertainty using
mixtures of 4-parameter random variables, from the
Johnson family of distributions. 4-parameter distri-
butions can model a wide variety of skews and kur-
toses, and thus can model, not only complex distri-
butions of complex functions of distributions.

To repeat the Monte Carlo, the output of the
Monte Carlo was taken and modeled using regression
analysis. The input distributions were identical to
that used in the original study.

2 GAS TURBINE FUNDAMENTALS

Business jet engines are called gas turbines, the
“gas” term refering to the fact that air is the engine
working fluid. In a gas turbine, air is compressed to
high pressure in a high speed “Compressor”, heated
up to high temperatures in “Combustor”, has work
extracted in a “Turbine” and propels the plane by
flowing through a high pressure “Nozzle”. Impor-
tant operating characteristics of a jet engine are its
“Thrust” and its “Specific Fuel Consumption(sfc)”,
which is the fuel flow rate required to produce one
pound of thrust.

Many variables effect these outputs. Uncertainty
in compressor and turbine efficiencies and flows, un-
certainties in pressure drops, and uncertainties in ar-
eas all effect “Thrust” and “sfc”. Monte Carlo sim-
ulations have routinely been performed in support of
risk analyses and component design.

Since NEVADA Simulation is a new technique,
it is necessary to verify the accuracy and quantify the
time savings, if any, it has to offer.

3 NEVADA SIMULATION

NEVADA Simulation employs the “Continuous
Tree” algorithm developed by Bryg (1992). Figure 1
gives the “road map” of the “Continuous Tree” algo-
rithm used by “Continuous Risk”. Notice that the

472

primary components are “fitting distributions” and
“determining distributions for functions of random
variables”. The discussion that follows will explain
the importance of each section. “Fitting Distribu-
tions” also includes mixtures of discrete and continu-
ous distributions.

The following two sections go into more depth
on each of these subsections. First, we will discuss
how random variables are modeled in the “Contin-
uous Tree” algorithm. Second, we discuss how we
calculate and model functions of these random vari-
ables.

NEVADA Simulation
“Continuous Tree” Algorithm

Fitting
Distributions

Determining Distributions
For Functions of RV’s

Cont || Disc |Mixed Part’n|[Merge(Analyf| Dec
Vars || Vars || Vars Fect’s || Fct’s || Table || Fet’s

Indep Dep
RV’s RV’s

Figure 1: Outline of NEVADA
Simulation - “Continuous Tree” Algorithm

4 FITTING DISTRIBUTIONS

4-parameter translational distributions are used
to model random variables in the “Continuous Tree”
algorithm. Translational distributions form a variety
of skews and kurtoses by taking a simple distribution,
such as a normal or a uniform and adding parameters
to it to model skew and kurtosis. For a translational
distribution, the ease of determining the percentiles
of the distribution is the same as determining the
percentiles of the underlying distribution, Elderton
and Johnson (1969).

Bryg

Of the non-uniform translational distributions,
the Johnson S family has had more algorithms de-
veloped for fitting percentile and moment informa-
tion to it than any other translational distribution.
Bukac (1972), and Slifker and Shapiro (1980) give
algorithms to fit Johnson distributions to percentile
inputs.

The Johnson family of distributions is composed
of three distributions: the Sp (logit-normal), the S¢
(lognormal), and the Sy (sinh-normal). The Sp dis-
tributions model relatively flat, platykurtic, distribu-
tions. The Sr model bell-shaped, mesokurtic, dis-
tributions. The Sy distributions model peaked, lep-
tokurtic, distributions.

The density functions for the three distributions
are as follows:

exp(—=0.5(y + § In(+—7+——)))£<x<£+/\ (1)

€+A

)
Veré—-z

St : P(z) =

exp(=05(y + M Im(E=Z)2) A6 <Az (2

exp(—0.5(+ ésinh~ l(§+,\)))
—00<z< 00 (3)

Since the Johnson is a 4-parameter distribution,
it is necessary to model four moments when using it
in the continuous decision tree method.

Sometimes, it is necessary to use a mixture of
distributions to model distributions comprised of dis-
cretely conditioned events. For example, the distri-
bution of fuel drop size at the combustor exit is a
mixture of two distribution: one in which the fuel is
completely evaporated and the other where is it not
evaporated. The event “Combustor Exit Drop Size”
could be modeled with the “Continuous Tree” in Fig-
ure 2 or the cumulative density function in Figure 3.
It would more representative to model “Combustor
Exit Drop Size” with a mixture of random variables
rather than a single probability distribution, since
it communicates the burned and unburned distribu-
tions.

NEVADA

Drop Size|Evaporated
028 e o Br, B3) = (0.0,0.0,0.0,0.0)

Drop Size|Not Evaporated
0.72 (8,0, 1, B2) = (0.07,0.05,0.2,2.1)

Figure 2: “Continuous Tree” of Combustor
Exit Drop Size Distribution

1.0 4

0.8 - ot Evaporated
0.6 —
P(D < X)
0.4 -

0.2
Evaporated

0.0 T T T T)
—-0.05 0.00 0.05 0.10 0.15 0.20

Drop Diam, mm

Figure 3: “Continuous Tree” Cumulative Density
Function of Combustor Exit Drop Distribution

We will now illustrate how we “determine dis-
tributions for functions of random variables” in the
“Continuous Tree” algorithm.

5 NEVADA SIMULATION

NEVADA Simulation is able to model probabilis-
tic dependence using a concept called “Groups of Dt?-
pendence”. The idea of “Groups of Dependence?’ is
to take advantage of the independence that exists in a
decision problem, while allowing for one to model de-
pendent variables. Figure 4 shows the process to cal-
culate the combustor efficiency by combining Ppyet,
A, Dpyer, and 7. In Figure 4, ellipses denote variables,
and circles denote operations. The operation “T” de-
notes an n-dimensional non-analytic, or table, func-
tion. The operation “f” denotes an algebraic func-
tion. Each of the random variables in Figure 4 could
be a constant or a mixture of discrete and continuous

variables.

473

Figure 4: Example of “Groups of Dependence”

We look now at how functions of random vari-
ables are calculated. A “Continuous Tree” ‘branch’
is defined as one of the mixture distributions in an
event. For each of the combinations of branches for
each of the “Groups of Dependence”, the following
algorithm transforms the inputs of the “Group of De-
pendence” to the output continuous tree.

1. For each random variable, fit a continuous dis-
tribution.

2. For each distribution, form a discrete approxi-
mation.

3. Build a fully dependent, n-dimensional proba-
bility tree with a discrete approximation of the
n dependent input random variables. Calculate
the endpoints of the probability tree according
to the operation involved.

4. Calculate the moments of the output distribu-
tion. From these moments, another continuous
distribution could be modeled.

Figure 5 shows how a “Group of Dependence”
tree is formed, operated on, and reduced to a few
central moments. The distributions are ordered by
dependence characteristics and the probability tree is
developed sequentially. Each variable is dependent,
or possibly dependent on all variables to the left of
it.

474

w(X1) w(X21X)) w(XalXy,oo, Xnoa)
o(X1) o(X2|X1) a(XnIXh-",Xn-l)
Br(X1) Bri(X2|X1) Bi(XalXi,-- Xn-l)
ﬂz(xl) ﬁ'z (X2|Xy) ﬂz(x 1 X1, 1 Xn=1)

/\/\/\

s(f(X1, -+, Xn))
o(f(X1, -+, Xn))
ﬂl(f(Xl,' "v’Y"))
Ba(f(X1,--+, Xn))

=

Figure 5: Combining “Groups of Dependence”,
General n-Dimensional Case

At this point we can illustrate how we use the
“Groups of Dependence” concept to perform a sim-
ple, algebraic calculation. Figure 6 shows how we cal-
culate the distribution of fuel spray diameter, D% ,,,
from the distribution of fuel spray diameter, Dpy..
To accomplish this, it is necessary to approximate the
distribution of Dp,.; with a discrete probability dis-
tribution, calculate the square of each of the discrete
approximation legs, then calculate the first four cen-
tral moments of the function Dp.;. With these four
moments, one can fit another 4-parameter continuous
probability distribution to it.

The first column of numbers in Figure 6 shows
the probability weights of the 9-point Gauss-Hermite
approximation. The second column shows the 9-point
Gauss-Hermite fractile of the drop diameter distribu-
tion. The third column is the square of the second
column. The fourth column shows the first four cen-
tral moments of the distribution of square roots of
the value function.

Bryg

P(D) D D? D?
0.000022 0.119

0.0125
0.002789 0.116 ¢ 9134
0.049916 0.132 4 o175

0.244097 0.183 0338 K= 0.0461
0.406349 0.292 (ogsa 0.0578
0.244097 0.407 ;464 Br= o0.27
0.049916 0.468 (5104 B2= 218
0.002789 0.488

0.2384
0.000022 0.493 (9434

Figure 6: Performing a Unary Analytic
Function on a Distribution

6 “CONTINUOUS RISK”

“Continuous Risk” is a 4GL probabilistic inter-
preted programming language that employs “Contin-
uous Tree’s” and “NEVADA Simulation” to model
uncertainty and calculate functions of random vari-
ables. “Continuous Risk” is written in “C” for DOS

Each variable in “Continuous Risk” can be a
mixture of random variables. Arrays and Structures
can be modeled. “Continuous Risk” can model prob-
abilistically dependent and independent random vari-
ables and supports programming language features
such as Functions, For and While loops, and If
statements. It can fit distributions by moments, data,
percentiles, mixtures of distributions, or from named
distributions. It has a wide range of analytical func-
tions, including a Bayesian analyzer of arbitrary con-
tinuous distributions, an n-dimensional table interpo-
lator of mixtures of continuous variables, a non-linear
optimization, a non-linear solver, the ability to model
of Markov processes with non-stationary transition
matrices, and linear and logistic regression. It has
flexible I/O options using “C”-like I/O commands,

and a customized windowed text user interface gen-
erator.

7 ANALYSIS

Table 1 summarizes the input distributions. The
original model used mixtures of two semi-normal dis-
tributions, one for the negative side of the mean, and
one for the positive side. Since the output distribu-
tions are the sum of many distributions, it was reason-
able to merge this mixture distribution into a single
4-parameter distribution. Table 1 gives the first four
standardized moments of the input distributions.

NEVADA

Table 1: Moments of Input Distributions

Var u o o) B2
1 0.8455 0.0014 0 3
2 1.0000 0.0068 0 3
3 -0.0665 0.2550 -0.58 3.45
4 1.0918 0.0036 0 3
5 0.0000 0.6667 0 3
6 1.0000 0.0000 0 3
7 -0.1330 0.3481 -1.15 3.92
8 0.9865 0.0038 -2.69 5.41
9 0.1936 0.2155 -1.76 4.45
10 -0.0997 0.2215 -1.52 4.24
11 1.0199 0.0602 0.9 3.71
12 1.0000 0.0017 0 3

The NEVADA Simulation was run assuming the
Monte Carlo was the gold standard. In reality, the
Monte Carlo results will be distributed around some
true value. To achieve a particular tolerance on the
mean of a simulated variable, the number of runs re-
quired can be calculated by the following equation
from Pfeifer, Bodily, and Frey (1991):

22

n= Fm_-ﬂ—)z- (4)
(-4
where z is the normal z parameter relating to the
probability of being within the tolerance(z = 0.674
for 50% chance of achieving tolerance) and o is the
standard deviation of the output parameter.
The simplest model we could use was a linear ad-
ditive model. In this, each of the output parameters
was calculated with the following equation:

n
oz;
.=) (g — 5
= Do) + o (5 = i) (5)
If a quadratic model were required, it would re-
quire and additional term:

n 617' 621'.. 2
yi =3 (zjo) + 3;(3"' ~ Yi,) + -5!-/-'%(% = ¥io)" (6)

i=1

For this particular study, the results of the linear
model obviated the need for a quadratic model. Table
2 shows how accurate the NEVADA Simulation re-
sults were to the Monte Carlo. In all cases except the
SURGELPC, the NEVADA Simulation results were
within 0.01% (0.0001 fraction) of the Monte Carlo an-
swer. The differences in the standard deviation were
on the order of 1%.

475

The NEVADA Simulation results were achieved
in 4 seconds of 80486 PC time. The 300 run Monte
Carlo required 15 minutes.

Table 2: Comparison of NEVADA
Simulation Results to Monte Carlo

PCT ERROR
MEAN STD DEV

SFC -0.001 -0.8
FANSPEED 0.001 1.3
NMETER 0.001 1.4
HPSHAFT -0.001 2.3
T45 0.007 -1.5

T41 0.004 -1.6

T30 0.004 1.9
SURGELPC -0.139 -14

Parameter

We can use Equation 4 to calculate how many
Monte Carlo runs would be required to give Monte
Carlo a 50% of being more accurate than the NEVA-
DA Simulation. The Cyber run times were assuming
that the 300 run Monte Carlo took 15 minutes to run.
Since this model was linear, the more nonlinear a pa-
rameter was, the better Monte Carlo simulation was.
However, even the best parameter for Monte Carlo,
SURGELPC, would require 1.5 hours of Cyber time
to achieve equal accuracy to NEVADA Simulation.

Table 3: Monte Carlo
vs NEVADA Simulation Time

Number of Required

Monte Carlo Cyber

Simulations Run Time

to Equal to Equal

Output NEVADA NEVADA
Parameter Accuracy Accuracy
SFC 187,736 156.4 hr
FANSPEED 2,280 1.9 hr
NMETER 2,051 1.7 hr
HPSHAFT 500,338 416.9 hr
T45 12,063 10.1 hr
T41 10,602 8.8 hr
T30 3,950 3.3 hr
SURGELPC 1,807 1.5 hr

NEVADA Simulation Time = 3.9 seconds

We can also show how well the NEVADA Simu-
lation models the distribution of output values. Fig-
ure 7 shows the Monte Carlo output of specific fuel
consumption, standardized by its mean and standard
deviation. The dashed line is the NEVADA Simula-
tion Johnson distribution calculated and normalized

476

by the Monte Carlo results. Notice the two cumula-
tive density functions are almost identical.

Monte Carlo Simulatj

— — - NEVADA Simulati

P(x<X)

sfc, Normalized by u, o

Figure 7: Comparison of sfc Distribution,
Monte Carlo vs NEVADA Simulation

8 SUMMARY

For this simulation, NEVADA Simulation was
superior in conducting engine thermodynamic risk
analyses in terms of speed and accuracy. For this
NEVADA Simulation, a linear additive model was
sufficient to achieve a high accuracy. It is not known
how great the input uncertainties would have to be to
warrant a quadratic model. Also, one could make the
claim that one could just perform a root-sum-square
analysis and achieve the same accuracy with less com-
putational effort. While a RSS analysis would give
the same expected value, one could not necessarily
assume the output distributions were gaussian. An
assumption of gaussian output distributions would
lead to large errors in other analyses, including cal-
culations of engine reject rate.

Overall, it appears that NEVADA Simulation is
very competitive compared to Monte Carlo simula-
tion in terms of accuracy and speed.

Bryg

REFERENCES

Bryg, D. J. 1992. Continuous Trees: A Quadra-
ture Technique for Modeling Sequential Decision
Problems with Dependent, Continuous Variables.
Ph.D. Thesis. Decision and Information Systems
Department. Arizona State University. Tempe,
Arizona.

Pfeifer, P. E., S. E. Bodily, and S. C. Frey. 1991.
Pearson-Tukey Three-Point Approximations Ver-
sus Monte Carlo Simulation, Decision Sciences
22: 74-90.

AUTHOR BIOGRAPHIES

DAVID J. BRYG is a Senior Engineer in the Per-
formance and Operability Department at AlliedSig-
nal Engines and a Clinical Assistant Professor of In-
ternal Medicine at the University of Nevada, Reno.
He is also President of NEVADA Simulations. His re-
search interests lie in the development of decision aids
involving combinations of empirical data and expert
Judgement in engineering, business, and medicine. He
is a member of ASME, ORSA, TIMS, and SMDM.

