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Abstract

A primary mission for the United States Coast Guard
(USCG) operating in coastal United States waters is
to interdict contraband. The USCG schedules a fleet
of cutters to meet this mission and seeks a way to
determine the operational efficiency of a particular
schedule. This paper develops a methodology based
on generating a sequence of finite horizon dynamic
programs (DPs), where each DP differs only in the
way the smuggling vessels and the cutters interac-
t. The DP takes the point of view of the smuggler
who wishes to develop the smuggling strategy which
maximizes some characteristic (e.g., the mean) of the
profit attained. The DP explicitly accounts for a s-
muggler who must combine his short-run profit goals
with his need to gain future information about the
configuration of the cutters. We devclop a Monte
Carlo sampling procedure to generate estimates of the
random variables used in the DP.

1 INTRODUCTION

The United States Coast Guard (USCG) patrols
coastal waters under the United States’ jurisdiction.
In recent years, this mission has increasingly called
on the USCG to interdict contraband in the form of
illicit drugs and refugecs. Accompanicd by the De-
partment of Defense, the USCG develops plans for
locating cutter patrols in an attempt to interdict s-
muggling. Each time period, cutters may move from
patrol to patrol.

Cutter schedules are typically not adaptive, sched-
ulers plan cutter use more than a quarter-year in ad-
vance, striving to meet steaming and patrolling goal-
s. Through satisfaction of these goals the USCG at-
tempts to prevent, disrupt, and punish acts of smug-
gling. An optimization model guided by a patrolling
goal for cach tuple of (patrol, day, cutter type) in
its objective function can produce a schedule. The
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USCG secks a way to determine the operational effi-
ciency of a particular schedule.

This paper develops a methodology for doing just
this. The method involves generating a sequence of
finite horizon dynamic programs (DPs), where each
DP differs only in the way the smuggling vessels and
the cutters interact. The DP takes the point of view
of the smuggler, and the objective is to develop the
smuggling strategy which maximizes some character-
istic (e.g., the mean) of the profit attained. In the
future, we will use a higher fidelity model of cutter ac-
tions, LESIM (1994), to generate seizure data. Our
goal in the present work is to provide background
and structure for the integration of the DP with a
simple stochastic seizure model, with an eye toward
enhancement in the sequel.

Figure 1 summarizes the approach taken in this
paper. The DP formulation captures system charac-
teristics we call Realities below. A state of the DP is
the relative likelihood that the cutters are configured
in certain patrols. The action available from any state
is the single time period smuggling strategy pursued.
The resulting outcome of a strategy from a state is
the new likelihood of a cutter configuration. This
likelihood is computed using the information about,
scizures, successful smuggling attempts, and a cutter
flect motion model. We use a diverse set of possible
multi-period strategies to populate our DP network,
where both the single time period profit and the new
state depend on the random seizure outcomes.

Upon the successful completion of many iterations
of cach trial strategy for a time horizon (T'), we can
produce empirical distributions for the value of be-
ing in a particular state and taking a particular ac-
tion. We can enforce constraints on the stochastic
propertics of the evolution by removing action/state
pairs which violate constraints. For example, we can
climinate actions which cause half of the total contra-
band shipped to be confiscated with probability 0.3
or more. [inally, we can test any T-period strate-
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Figure 1: Hybrid Simulation Analytic Model Dia-
gram reflecting the Use of Monte Carlo Samples in
a Stochastic Dynamic Program

gy composed of segments of the trial strategies, we
can chain backward to maximize expected summed
profit, or we can search for strategies which produce
desirable quantiles of the value distribution.

Section 2 discusses literature and motivates our de-
velopment. Section 3 describes modeling the smug-
gler’s problem as a DP. Section 4 provides a descrip-
tion of Monte Carlo sampling to build a DP network.
Section 5 contains conclusions and the Appendix has
a summary of notation.

2 APPROACHES

The pristine smuggler’s problem is famous in the liter-
atures of stochastic analysis, sequential decision mak-
ing and game theory (Owen, 1982). Hecre are some re-
cent treatments of the smuggler-interdictor problem:

2.1 Stationary Shipping

Many models, including the Law Enforcement Simu-
lation (LESIM, 1994) use a simple filtered Poisson
process to model the traffic atternpted along cach
route. This model assumes that the smuggler ignores
the presence of the interdictor or any information
he might gain by succeeding or failing an attempt-
ed shipment. LESIM combines this simple shipping
modec! with a high-fidelity model of the actions taken
by a cutter during patrol, detection, boarding, and
seizure.

2.2 Gaming

Clearly, smuggling is a game of competing strate-
gies. Examining this approach, Wood and Washburn
(1994) explore game theoretic methods to calculate
strategies which give both sides maximum expect-
ed equilibrium benefit. Unfortunately for the Coast
Guard, the opponents are not equally facile in adapt-
ing as the game is played.

2.3 SOAR

The Simulation of Adaptive Response (SOAR) mod-
el (Caulkins et al, 1993) models the dynamic fluctua-
tions of shipping prices over time, where the smuggler
calculates the route with the minimum expected cost
at each time period. The perception of cost is based
on shipping expenses and profits, and on perceived
probability of seizure. The smuggler’s memory of a
captured shipment on a route, 7, time units in the
past fades like e#". The smuggler’s actual shipping
is again a filtered Poisson process, with the splitting
probabilities proportional to the perceived costs on
each route. SOAR uses static interdiction probabili-
ties on each route, and allows the user to manipulate
these to experiment with interdictor schedules.

2.4 The Realities

e The USCG schedules cutters on a quarterly or
yearly basis and does not deviate from this sched-
ule except in times of crisis. Hence the USCG
typically does not react to sudden changes in
traffic by reallocating cutters.

o The Coast Guard schedules cutters to enter and
leave patrol areas by designating an area and du-
ration of stay. This duration is generally between
one and six weeks, and more than one cutter can
be assigned to an area simultancously.

e The smuggler strives to provide a consistent sup-
ply of contraband. For our purposes we assume
that the smuggler attempts to deliver a constant
amount of contraband in each time period.

e The smuggler doesn’t know the location of the
cutters with any certainty, but does get feedback
in the form of confiscated shipments. Hence the
smuggler is doing two things at once:

1. shipping contraband to accumulate imme-
diate profit;

2. collecting information about the location
of the cutters so that future decisions are
made better.
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3 WHAT THE SMUGGLER KNOWS, AND
WHAT HE ESTIMATES

We assume a single smuggler who knows many of the
cutter scheduling constraints. Here we outline what
the smuggler knows, and what information he esti-
mates as operations evolve.

3.1 Smuggler’s Knowledge

We assume that the smuggler has access to the fol-
lowing:

1. the number of ships in the cutter fleet and the
locations of the R patrol routes the cutters may
occupy;

2. the number of shipments attempted (s(t) =
(s1(t),82(t),...,sn(t)) and confiscated (n(t) =
n1(t), na2(t),...,np(t)) at time t;

3. the maximum and minimum number of cutters
allowed to patrol the same route; and

4. the assumed probability that a cutter remains at
its current station for the next time period.

3.2 Information Estimated

At any time, the smuggler estimates the state of the
cutter fleet expressed as one of the possible config-
urations of the cutters on the R routes. Denote the
number of cutters on route r in configuration c as d,,
c=1,2,...,C, where Ef:o d.r equals the cutter flcet
size and d,. is a specific configuration vector. We use
route 0 as the location of cutters which are not on
patrol.

3.2.1 Cutter Fleet Motion Model

From the smuggler’s point of view, the configuration
of the cutters on the routes evolves as a discrete time
Markov chain. Given the perceived probability of a
cutter changing patrol route for the next time peri-
od, we can calculate the probability P, of transition
from configuration d.. to dy. via complex counting
arguments. This matrix estimates the likelihood that
the cutters are in a given sequence of configurations.
This model is tempered by the outcomes of smuggling
operations to produce the likelihood that the cutters
are arranged in a particular configuration in the next
time period.

3.2.2 Scizures

Given the cutter configuration is d.. at time ¢t and
an assumption that the cutters detect smugglers in-
dependently, the (random) number of seizures N,.(t)
on route 7 is distributed as binomial random variable

Pn.(t)|der] = P[N:(t) = nr(t)|de,r] =

s-(t) o \er (s (D=1 (1 _ (1 — . Yder)ne(8).
(v )a-m == o

where p, is the probability of detection of one smug-
gling vesscl by one cutter on route r.

3.2.3 Likclihood Updates

In the smuggler’s view, the configuration of cutters on
the routes at time ¢ is a random variable D(t). Let
¢c(t) be the smuggler’s perceived likelihood that the
cutter fleet is in configuration c at time ¢. Based on
the realized scizures n(t) = (ni(t),n2(t),...,nn(t)),
the prior density ¢(t) = (¢1(t), ¢a(t), ..., b (1)), and
the cutter motion model P, ., the smuggler can calcu-
late the likelihood that dy,. is the next configuration
he faces:

Lldy, In(t)]

be(t+1) = PDE+1) =do] = = CREON

C
Lldo |n(t)) Y Plde, |de, 1P [n(t)]de, ] Pld:, )(3)

c  n
= Y Po[[] Plne(t)lde N1e(t); (4)

where £ is the likelihood function.

The smuggler’s goal is to control the flow of con-
traband through the system to meet delivery goals by
exploiting his estimate ¢ and by manipulating s(t).

3.3 Dynamic Programming

The above updating process lends itself directly to se-
quential optimization for a finite time horizon with T
as the planning horizon for smuggling operations. Let
C be the immediate cost of an interdicted shipment,
including lost equipment, legal fees, and the shipment
itself. Let Cy be the immediate profit realized from
a completed delivery. The (random) value of occu-
pying state ¢(t) at time ¢ and using future strategy
s(t),s(t+1),...,s(T) can be stated as

n 3
V(@()ls,t) = =D CiN,(8) + Y Ca(s(t) = Ni(2))
r=1

r=1
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+ V($(t+1)|s,t+1) (5)

where s,t is shorthand for {s(t),t < ¢ < T} and
#(t +1) is the state resulting from the likelihood up-
date described above in (2). Expected value max-
imization of profit can be accomplished directly by
choosing s to maximize V(¢(t)|s,t) at each stage:

E[V(¢(t)]o,t)] =

n n
maz, — > CLE[N,()] + Y Ca(s: () — E[N (1))

r=1 r=1
+ E[V((t + 1)]o,t + 1)] (6)

where the o signifies the optimal strategy. Using

1. discretized set of possible likelihood configura-
tions ¢!, ¢?%, ..., ¢" which form a mesh with uni-
form spacing A on [0,1]%

2. interpolation between the ¢';
3. E[N.(t)] = 8,(t) — 5,(t)(1 = p,)% for each t;
4. E[V(¢'|o,T))=0forl=1,2,...,L;

We can solve (6) using backward recursion to pro-
duce an optimal strategy, (s(1),s(2),...,s(T)), with
maximum expected profit. In what follows, we ex-
plore the use of Monte Carlo methods for exploring
the behavior of (5) when the goal is other than max-
imizing summed expccted profit.

4 MONTE CARLO METHODS

In order to get a stochastic characterization of the
possible smuggler operations, we generate a sequence
of random outcomes of seizures under diflerent smug-
gling strategies. We use these outcomes to populate
the arc lengths on a network connecting DP states to
one another. We then exploit methods for examining
the behavior of networks with stochastic arc lengths
to characterize the capabilities and tendencies of the
smuggler.

4.1 Building the Dynamic Programming
Network

Let s!,s2,...,s7 be a set of strategies for trial, s.(t)
being the number of shipments on route r at time
period t for strategy i. We will sclect these strate-
gies so that they reflect methods that will likely be
successful, and so that they represent a diverse set
of choices. Let (¢']s(t),t + 1)x be the k™ sample of
the cutter configuration likelihood ¢(t + 1) produced

FOR strategy s, i=1,2,...,1
FOR time period t, t=1,2,...,T

Configure cutters as d,.

FOR replication k, k=1,2,..., K
FOR route r, r=1,2,...,R
Sample n,(t) from si(t)

FOR likelihood ¢!, 1=1,2,...,L
Calculate 6(¢',t|s(t))x and
q§(¢lyt + lls(t))k

Figure 2: The Monte Carlo Sampling Procedure to
Generate Samples of ¢ and 6, Resulting Likelihoods
and Immediate Costs, Respectively.

when we attempt smuggling strategy s(t) from likeli-
hood ‘t;b‘ at time period t. What varies between sam-
ples ¢(¢'|s(t),t + 1)x and (¢'|s(t),t + 1)x41 results
from differences in the number of seizures made.

Let 6(¢'|s(t), )« be the k** sample of the immediate
value of the strategy s(t) used against likelihood ¢'
at time ¢:

8(¢'1s(t), t)k =
n n
=3 Ome () + 3 o) = e (0 (7)
r=1 r=1

n.(t) is the observation of seizures from the k™ repli-
cation. N

We develop the set of ¢ and 6 for each time period ¢,
likelihood ¢!, and cach candidate strategy s* as shown
in the algorithm in Figure 2.

4.2 Mecasuring Performance and Construct-
ing Stratecgics

Thus, we can now produce an empirical distribution
of the value of pursuing any strategy which is a com-
bination of segments of the s!,s2,...,s!.

4.2.1 Optimizing Summed Profit

To collect samples of the optimal summed profit for
the T time units, we sclect the strategy s(t); at each
stage which optimizes Vi(¢'|o,t) for each ¢'. The
optimal strategy is found by chaining backward from
Vi(¢']o, T):

‘/k(d’llsa t) =

O(@']s(2), Ok + Vi (@'[s(t), t + ils ().t +1) (8)

Where Vk(qg’(qﬂs(t),t + 1)i|s(t),t + 1) is calculated
via interpolation as follows. Let $(¢) be the adjacent
likelihoods to ¢:

$(@)={¢:|¢h -4 < Ar=12.. R} (9)
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&(¢) usually has 2" elements. For each member ¢ €
&(p), define ay = ' = @2y @ = 2 gep(p) %o

Vi(¢H (85 t + 1)e]s(t), t + 1) =

a
> vl (0
$eB(P(#1s(1).0)

As can be shown with computational examples, the
value of Vi(¢(0)|o,0) will be much greater than the
value E[V(#(0)|o,t)] as calculated in equation (6).
This is because the maximization is taken after the
randomness has been realized, rather than before.
This result mimics many which show how network
optimization routines used with expccted arc lengths
stray from the results produced when the network
optimization is done after each arc has realized it
length. The obvious similarity stems from the link
between dynamic programming and network short-
est (or longest) paths, see Bailey (1994) for several
examples.

In the smuggler problem, the distinction between
optimization before or after realization rclates the
distance between the formulation of the smuggling
policy and the feedback the smuggler receives dur-
ing operations. Before realization, using (6), corre-
sponds to the smuggler planning all of his operations
strategically — setting his plan before the T' time u-
nits begin. Optimization post-realization corresponds
to the smuggler having a crystal ball, and knowing
what seizures he will realize if he follows a particular
strategy. As reality lics between these two extremes,
the post-realization answer gives the smuggler an up-
per bound on his performance, while providing the
USCG with a lower bound on the performance of a
cutter schedule.

4.2.2 Maximizing a Quantile

Using a particular strategy s built from segments of
s1,s%,...,8!, the smuggler can produce the empirical
distribution of the value from the data Vi(4(0)|s,0)
directly — Vi(#(0)|s,0) is calculated with no expec-
tations taken. From this, the smuggler can compare
policies on the basis of the a'* quantile of these empir-
ical distributions for different values of s. Techniques
to sharpen these estimates could be employed, sce
Heidleberger and Lewis (1984).

Using a low quantile corresponds to the smuggler
being risk averse. The smuggler might want to max-
imize his worst-case profit, where worst case is inter-
preted as a profit he is (1 — a)% sure of receiving. On
the other hand, he may wish to look for policies which
have high large quantiles, giving himself the chance
to make a possible windfall with great risk.

The search among the possible strategies for those
which produce a high a'* quantile is clearly problem-
atic. One heuristic would be to maximize the quan-
tile at each stage. Such an approach has the added
benefit of minimizing the USCG’s ability to disrupt
short-term supply.

4.2.3 Avoiding Disruption of Short-Term
Supply

In most real supplier-consumer relationships, the sup-
pliecr must satisfy target delivery levels and meet
short-run cash flow constraints during the evolution.
Also, he secks to maximize his total profit. Suppose
that we thinned the table of feasible strategies by
removing the single time period strategies s(t) from
likelihood configuration @' at time t such that the
o't quantile of 6(¢', t|s(t))« lies below a prespecified
value. From the remaining dynamic programming
network, we could then maximize long-run expect-
ed profit or some quantile of the long-run profit for
each replication, producing s(t); for t = 1,2,...,T
and k=1,2,...,K.

4.2.4 Smuggler Tendencies and Reactions

Using the table of outcomes and the K x T optimal
single time period strategies, we can calculate the fol-
lowing quantities directly:

e the frequency that a single time period strategy
is optimal;

e the distribution of the distance (measured in
some way) between the likelihood configuration
and the true cutter configuration;

e the smuggler’s cost of reducing T, the planning
horizon;

e the distribution of the number of time period-
s the smuggler takes to realize that the cutter
configuration does not cover a particular route;
and

the distribution of the number of time period-
s the smuggler takes to react to drastically in-
creased coverage of a route.

5 CONCLUSION

Some previous attempts at modeling the interaction
of the smugglers and the USCG patrol schedule give
too much flexibility to the cutter schedule to be real-
istic. Other approaches don’t model the cutter sched-
ule appropriately, so the smuggler’s strategies are too



Simulation-Based Dynamic Optimization 397

simplistic. In this work, we have formulated a dynam-
ic program where the smuggler is forced to combine
his short-run profit goals with his need to gain future
information about the configuration of the cutters.

Using Monte Carlo methods, we have developed a
scheme to estimate stochastic propertics of the smug-
gler's performance using a particular schedule, and
shown how constraints on the smuggler’s short-run
performance can be enforced.
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APPENDIX: NOTATION

o Indices:
r patrol or smuggler route (r =0,1,..., R),
c,c cutter configurations (¢ =1,2,...,C),

t,t time periods (¢t =1,2,...,7T),
) strategy (i =1,2,...,1),
k replication (k =1,2,...,K),
likelihood (I = 1,2,..., L).

e Data:

s(2) shipment attempts at time t (s(t) =
(s1(t), 82(8), ..., sp(t)),

n(t) confiscated shipments in time t (n(t) =
(n1(8),n2(t),...,np(t)),

d.r number of cutters on patrol route r in con-
figuration c,

P, probability of transition from configuration

ctod,

Pr probability of detecting a smuggling vessel
by a cutter on route 7,

C, smuggler’s cost of interdicted shipment,

Cy smuggler’s profit for a completed delivery.

e Random Variables:

N.(t) number of scizures using route r at time ¢,
D(t) configuration of cutters at time t.
V(é(t)|s,t) value of pursuing strategy s from time ¢ on-

ward.

o Other Notation:

é(t) likelihood configuration at time period t,
&i(t) i** component of ¢(t),

C likelihood operator,

0 immediate profit minus immediate costs,
é(1) estimate of ¢(t) generated using likelihood
updates,
¢ ™" discrete choice of ¢,
A mesh size,
oy weight given to ¢' for interpolation,

d(9) those ¢* which are adjacent to ¢.
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