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ABSTRACT

For some types of stochastic optimization problems
it is possible to directly estimate the location of an
optimum on a response surface using an experimental
technique based on the notion of simulated hindsight.
The idea 1s to retrospectively solve a related deter-
ministic optimization problem with respect to realiza-
tions of the stochastic effects as if the outcomes of all
uncertainties were known in advance. We explore is-
sues involved in designing, conducting and analyzing
simulation experiments using a variant of the tech-
nique that addresses situations where it makes sense
to define the best solution as one that is most likely
to produce a desirable outcome.

1 INTRODUCTION

Generally speaking, the problem of optimizing a
stochastic system is to find the values for a set of
controllable factors such that some characteristic of
a random system response is optimized. Specifically,
let # € © be the vector of decision parameters whose
values are constrained to lie in a set of feasible de-
signs, ©. The random system response, f(f,w), is
some function of § and of the sample path w which
represents the outcome of stochastic effects in the sys-
tem.
The goal is to find #* such that

" = ag%%pt a(f) (1)

where a(6) is the (non-random) real-valued function
of f(6,w) we wish to optimize. The symbol argopt
indicates that the optimization is performed over fea-
sible values of the argument 6 and that the set of
corresponding optimizing values is returned.
Typically, the characteristic of f(6,w) we wish to
optimize is its expectation with respect to a proba-
bility measure P over some measurable space (2, F)
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in which case
alf) = /n £(8,w)dP(w) 2)

If the relationships that govern the operation of
the system are simple enough, it may be possible to
use analytic techniques to determine 8* exactly. In
many situations, a closed form expression for 8 or
even a(f) is unobtainable. In such cases, an empirical
methodology is often employed. In simulation, out-
comes of f(#,w) are computed from artificially gener-
ated realizations the of stochastic effects, w, and the
resultant data are used to estimate the location of the
optimum.

In this paper we discuss how a class of simulation-
based techniques designed to solve the problem as
defined by (1) and (2) can be used when the goal is
instead to find the policy that has the highest prob-
ability of yielding the most desirable result.

2 Retrospective Optimization

Most conventional simulation-based optimization
methods are what might be characterized as prospec-
live approaches in the sense that they involve select-
ing values of  according to some design or algorithm
and then replicating the experiment (usually many
times) at each of the selected values to estimate a(f)
and, indirectly, the location of the optimum. In con-
trast, there is another class of what we call retrospec-
twve techniques (Healy 1992, Schruben 1991) that can
in sorne cases be used to directly estimate the loca-
tion of the optimum. Whereas prospective simulation
experiments are designed to address the question -
“What would happen at a fized value of §2” - retro-
spective experiments are designed to answer the more
pertinent question - What value of § should have been
used?”. Instead of fixing a value of 4, the idea is to
first generate realizations of the stochastic effects and
then optimize with respect to those realizations as if
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the outcomes of all uncertainties had been known in
advance.

More specifically, the realizations are used to con-
struct a functional estimate of a(f) over all values
of # € ©. An estimate of * is obtained by directly
optimizing over this approximating functional. If the
functional approximation to a(f) is good, it seems
reasonable that its corresponding optimizer would be,
in some sense, close to 6*.

The functional approximation is constructed by re-
placing the the driving measure P in (2) with the em-
pirical measure, P,, which assigns a mass of 1/n to
each of n independent realizations of the stochastic
effects {wy,ws,...,wn} so that

n 6 - 0, dPn w
an®) = [ f0,0)dP:()
= 23 f0.w). 3)
i=1
Furthermore, define
o, = ag%%pt an(9) (4)

to be the (random) value of 6 that optimizes the
sample performance function an(6). Once the w;’s
are fixed, the evolution of the system is deterministic
so a realization of 8}, is obtained by simulating the
stochastic effects, w;,ws,...,w,, and retrospectively
solving the corresponding deterministic optimization
problem.

In one sense, this functional estimate can be viewed
as simply an efficient implementation of the method
of common random numbers where the same set of
realizations is employed in the estimation of the re-
sponse for each value of @ € ©. The distinction is that
we want to simultaneously estimate a(f) for all § € ©
without re-simulating. The validity of the approach
depends on the limiting properties of the solution to
the sample path optimization problem. As a prac-
tical matter, one must also be concerned about the
computational effort involved in obtaining a solution
to the sample path problem.

The notion of optimizing over sample paths arises
in many different contexts. Statistical parameter es-
timation techniques like least squares regression and
the method of maximum likelihood are just two ex-
amples. The approach presented here has been em-
ployed in obtaining numerical solutions to more gen-
eral stochastic programming problems where the feasi-
ble region O is defined by constraints that, like the ob-
jective function, take the form of (2) (see for instance,
Wets 1989, Kall 1987, or Birge and Wets 1986.)
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The technique requires that there can be no depen-
dence on @ in the representation of the sample path,
w, or its driving distribution, P. Otherwise, gener-
ating outcomes of w would require that we fix values
of the parameters before conducting the experiment.
The dependence can be always be eliminated, at least
in theory, by redefining the sample space  and, ac-
cordingly, the driving distribution P. For instance, it
is common in simulation to view the basic random el-
ement w as a sequence of independent U(0, 1) variates
in which case all # dependence resides in the sample
performance, f(6,w).

In most situations though it is difficult, if not im-
possible, to derive a computationally useful closed-
form expression for f(6,w) for all # € © and w € Q.
Indeed, this is usually the primary reason for resort-
ing to simulation where the transformation f(8,w) is
expressed in algorithmic form. Even in cases where
this can be done, the formulation and solution of the
sample path problem must be performed on a case-
by-case basis being heavily dependent on the charac-
teristics of the system, the nature of the performance
measure, and parameters of interest. Nevertheless,
there are many meaningful situations where this can
be accomplished (see for instance, Healy and Xu 1994,
Fu and Healy 1992, Healy 1992, and Plambeck, et al.
1994).

A dependence on 6 in the driving distribution can
also be eliminated without re-defining the underly-
ing sample space by instead employing a change-
of-measure. This approach, based on the idea of
importance sampling (Goyal, Heidelberger and Sha-
habaddin 1987), is the distinguishing characteristic
of the so-called likelihood ratio (Glynn 1987, Reiman
and Weiss 1989) and score function (Rubinstein and
Shapiro 1993, Rubinstein 1991, Rubinstein 1989, Ru-
binstein 1986) methods which we also classify as ret-
rospective techniques. The result in all cases is a
representation of a(f) as in (2) where the driving dis-
tribution is independent of 6; however, there exist
fundamental differences among the properties of the
resulting re-structured sample performance measures
(L’Ecuyer 1990).

In any case, it seems plausible that an estimate of
6* can be obtained by optimizing over a single real-
ization of f(6,w)

0 = argopt f(6,w) (5)

While f(6,w) is unbiased for a(#), this property is not
generally invariant to functional transformations like
maximization and minimization. To see this, assume
the problem involves the minimization of a(6). Since
min{-} is a concave transformation, it follows from
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Jensen’s inequality (Billingsley 1968) that

min{ B[f(6,0)] ) 2 Elmin{ (6,) )]
a(8*) > E[f(6],w)]

with equality holding only in degenerate or trivial
instances. The same argument can be be used to show
that E[f(6},w)] is an upper bound on o(8*) when the
problem involves maximization. This does not imply
that 07, the optimizer over a single realization of w,
1s necessarily biased for 6*. Examples where 6} is
unbiased for 8* are not difficult to contrive, but they
represent the exception rather than the norm.

The problem, of course, is that a reasonable ap-
proximation to the driving distribution P cannot be
constructed from a single realization, w. If the esti-
mate of a(f) is instead based on n independent real-
izations of w, we still have

min{ E[an(9)] }
a(8*)

2 E[min{ ay(0) }]

> Efaa(67)]

where oy, (0) and 6}, are defined by (3) and (4), respec-
tively. However, under certain conditions (see for in-
stance, Healy and Xu 1994, Robinson 1994, King and
Wets 1991, or Dupacova and Wets 1988)

an(0;,) — o) wp. 1l

Without making claims regarding actual policy
convergence, the result asserts that solutions ob-
tained from the procedure are good in the sense that
the sequence of optimal sample path performance val-
ues is strongly consistent. From a practical stand-
point, this might be all that matters.

3 An Alternate Optimality Criterion
It is interesting to note that while

* = a;gé%pt E(f(6,w))

(where the characteristic of f(6,w) to optimize is its
expectation) might be regarded as “the” problem, 47,
the solution to the single-realization problem defined
by (5) has some virtues beyond the fact that it is
sometimes easier to solve. An expectation might be
appropriate for evaluating the performance of a policy
that is implemented on a recurrent basis but for those
that aren’t, it might involve significant risk.

For example, consider the choice between two
strategies both of which have the same expected pay-
off. The first strategy results in a large payoff with
small probability and no payoff with high probability.

Conversely, the second strategy produces a small pay-
off with high probability and no payoff with low prob-
ability. Although the expected payoff is the same, the
two strategies entail different elements of risk. In this
situation, it might make sense to define the best pol-
icy to be the one that is most likely to produce a good
outcome in which case 8* can be interpreted as the so-
lution with the maximum likelihood of being optimal
for the next outcome. In many real-world settings,
this nezt outcome may occur only once. That is, the
real system is exercised under just a single realization
of w.
When the parameter space O is discrete, say,

@ = {01,02,...,91:}
let

pi = Plw:6;= azge%pt f(6,w)}

represent the probability that 6;, i=1,2,... k is opti-
mal. Then

" = by

where [k] denotes the index of the largest of the p;’s,
le.

P <P < S P

An unbiased retrospective estimate of 6* is obtained
by determining the most frequently occurring result
among a number of observations of the solution to the
single realization sample path optimization problem
defined by (5).

In the prospective approach to the problem (Golds-
man 1984), every trial requires that a separate simula-
tion be conducted for each value of § and the best cho-
sen from among the results. If a common realization
w is employed in all k simulations, the prospective
observation is the same as the retrospective estimate.
In this case, the retrospective distinction applies only
if there exists some means to evaluate f(6,w), either
algebraically or algorithmically, at different values of
6 making separate simulations unnecessary.

If N;, i=1,2,... k, represents the number of times
f; is optimal in n iid observations of 8} then the joint
mass function of (Ny, Na,..., Ni) is

n

fng, ... ng) = ny ... N o

p’lh P

and the problem can be modeled as a multinomial
sampling procedure with the goal of identifying the
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cell with the largest underlying probability of occur-
rence. We estimate each p; by

13,‘ = N,'/n
and their ordering by

Py <P < - < Py

Guidelines for conducting such experiments can be
found in the copious literature on statistical ranking
and selection procedures. The most commonly used
techniques fall generally into one of two categories,
the so-called indifference zome (Bechhofer and El-
maghraby 1959) and subset (Gupta and Panchapake-
san 1979) approaches. Indifference zone approaches
prescribe the sample size, n, necessary to guarantee
the probability of making a correct selection is no less
than some prespecified value. In the process, they al-
low for the analyst’s indifference to errors when the
probability associated with a chosen cell is within a
specified amount of the optimum. In contrast, sub-
set procedures are designed to identify a small but
nonempty subset of the k cells such that the proba-
bility that the optimal cell is among those chosen is
no smaller than some prespecified value. In this case,
there is no indifference zone. The sample size is fixed
by the analyst and the size of the selected subset is
random.
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