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ABSTRACT

In the steady-state simulation, it is important to identify
initialization bias for the correct estimates of the
simulation model under study. In this paper. the
methods from chaos theory are applied to the
determination of truncation points in the simulation data
for controlling the initial bias. Two mcthods are
proposed and evaluated based on their effectiveness for
estimating the average waiting time in M/M/1(x)
queueing model.

1 INTRODUCTION

A simulation method has becn used broadly to evaluate
the performance of the system under study. especially
when the quantitative analysis using mathematical
models is not applicable. The initial conditions of the
stochastic simulated system may be different each time
the simulation is run. And the estimation of true
responses in the steady-state simulation is so complicated
because of the possible presence of initial bias. So. in
studies of the steady-state characteristics of a simulation
model, it is important to identify initialization bias.
Many researchers have proposed the mecthods for
determining the truncation points(or warm up period) (o
control initial bias, but these methods seem not to work
well as intended.

The survey by Gafarian et al.(1978) indicated that
published procedures for indentifying a truncation points
appear not o exhibit very good bchavior. Kelton and
Law(1984.1985) investigated the dclction effect of
initialization bias for the three types of point estimator
criteria using a particular stochastic model. Schruben et
al.(1982,1983) presented a family of tests for detecting
initialization bias in the mean of a simulation output
data using a hypothesis testing framework. Cash et
al.(1992) evaluated the power of a family of tests for
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initialization bias.

Variations of the system observations in the transient
state are large and irregular due to initial bias as
compared to those in the steady state. In this paper.
we first proposc how to measurc the difference between
the system variation in the transient state and the
variation in the steady state and then develop two
mecthods to determine truncation points that can be uscd
in climinatinng initial bias of the system.

We cvaluate the performances of the two proposcd
methods based on their effectiveness in estimating the
average waiting time using an M/M/1 (w) queueing
model. These results are also compared with the method
suggested in the litcrature.

This paper is organized as follows. Section 2 describes
the state space recontruction to estimate a dimension for
a given time series. Section 3 explains the Lyapunov
exponent which tests the stability of dynamic system and
the sensitive dependence on initial conditions. In Section
4, we discuss the simulation output analysis. Section 5
presents the deletion strategies to decide how much data
to be deleted in simulation output data. In Section 6 we
summarize and discuss our experimental results. Finally
in Section 7 we present our conclusions and
recommendations for further work.

2 RECONSTRUCTION OF STATE SPACE

Until recently, the motions of dcterminism and
randomness were scen as opposites, and were studicd as
seperate subjects with little or no overlap. Complicated
phenomena wcre assumed to result from complicated
physics among the processes. Simple dynamic systems
were assumed to produce simple phenomena, so only
simple phenomena were modcled deterministically.
Chaos provides a link between deterministic systems
and random processes. The chaotic dynamics in a
deterministic system can amplify small differences. Also.
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chaos implics that not all random-looking bchavior is the
product of complicated physics. An important
consideration in chaos thcory is the dimension of the
dynamics. which is to cstimate the fractal dimension of a
hypothesized 'strange attractor'. to definc the asymptotic
solution of a dynamic system, in a rcconstructed statc
space. And a dimension of thc dvnamics counts thc
minimum number of degrees of frcedom necessary (0
describe this motion. To estimatc a dimension for a time
scries. we must first reconstruct a statc spacc. The past
behavior of a time scrics contains information about the
present state x(1). And so. if the delay time T is assumed
uniform, the state at time t x(t) can be reconstructed as a
delay vector of dimension m,

X(t) = { x(t). x(t-1), ....., x(t-(m-1)*7) } )

where is called the embedding dimension.

If a time series is deterministic and of finite
dimension, the estimated dimension of the reconstructed
attractor should converge to the dimension of the strange
attractor as thc embedding dimension is increased. On
the contrary, if a time series is random, the cstimated
dimension should be equal to the embedding dimension.
The Dimension that is considered in this paper is
expressed as follows[1] :
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N : total number of points in the
state space.
r : length of side for small cubes.

3 LYAPUNOV EXPONENTS

Suppose one has the ability to measure a position with
accuracy Ax and a velocity with accuracy Av. Then in
the position-velocity plane (known as the phase space)
we can divide up the space into arcas of size AX*Av as
shown in Figure 1. If we are given initial conditions to
the stated accuracy, we know the system is somewhere in
the shaded box in the phase plane. But if the system is
chaotic. this uncertainty grows in time to N(t) boxes as
shown in Figure 1.b.

The Size of uncertainty at time . N(t) can be expressed
as follows :

N(t) = N(0) » ¢ 3)

where constant h is related to the concept of entropy in
information thcory and will also be rclated to another
concept called the Lyapunov exponent. The test using
Lyapunov cxponcnt mcasurcs the sensitivity of (he
system to the change in the initial conditions.
Conceptually. one imagines a small ball of initial
conditions in phasc spacc and looks at its dcformation
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Figure 1 : The Growth of Uncertainty in a
Dynamic Systcm

into an cllipsoid under the dynamics of the system. If
d() is the maximum length of the cllipsoid at time t and
d(0) is the initial size of the initial condition sphere. the
Lyapunov exponent 2 is interpreted by the cquation (4)
in the reconstructed statc space.

d(t) = d(0)-2*
1 d(t)

A==
%8250,

)

There is a relationship betwecen Lyapunov exponent
which test the stability of chaotic system and cigenvalue
which (est the stability of dynamic system, and also a
relationship between Lyapunov exponent  which test the
sensitive dependence on initial conditions and cntropy
which measure the growth of uncertainty.

The sign of Lyapunov exponent provides a qualitative
picture of a system's dynamics such as

A >0 : chaotic motion
A <0 : regular motion. (5)

A chaotic system must have nonlincar clements or
propertics. A lincar system cannot cxhibit chaotic
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vibrations. The notion of a Lyapunov cxponcnt is a
generalizaiton of the idea of an cigenvaluc as a measurce
of the stability of a fixed point. For a chaotic trajectory. it
is not sensiblc to examine the instantancous cigenvalue
of a trajectory. The best quantity. thercforc. is an
cigenvaluce averaged over the whole trajectory. The idca
of mcasuring the average stability of a trajectory lcads to
the formal notion of a Lyapunov exponent.

Mathematically. Lyapunov exponent 2 is defined by
the cquation (6).

L(1,)
A lo (0)
Iy — OAZI b-l(’kl)
where
L (t,_,) : Euclidcan distance between the
initial point and the nearst
neighbor.
L'(t,) . Euclidean distance between the initial

point and the nearest neighbor at a
later time.

A schematic representation of the cvolution and
replacement procedure is shown in Figure 2.

Figure 2 : A Schematic Representation of the
Evolution and Replacement Procedure

The magnitudes of the Lyapunov exponent quantify an
attractor's dynamics in information theorctic terms. The
exponent 2. mecasures the rate at which system proccsses
create or destroy information: thus the exponcnts are
cxpressed in bits of information per unit time or bits per
orbit for a continuous system and bits per itcration for a
discrete system.

4 SIMULATION OUTPUT ANALYSIS

When the goal of a simulation experiment is to cstimate
the valuc of stcady statc parameters. the initial
conditions of the simulation usually bias the cstimators.
This problem is particularly troublecsome when several
independently sceded runs of the simulation arc madc
and the results arc uscd to construct confidence intervals.
The frequency with which confidence intervals based on
biascd outputs includc the true performance value
generally decrcases as morc runs arc made. This is
causcd by the intervals shrinking about an inaccuratc
point cstimator. The litcraturc  on  simulation
methodology contains somc techniques for controlling
initialization bias as follow. Thesc techniques arc often
too elaborate and offer no assurance that initialization
bias will be effectively controlled.

Variations of the system observations in the transient
state are large and irregular due to initial bias as
compared to those in the steady state. In this research,
we first proposc how to measure the difference between
the system variation in the transicnt statc and the
variation in the stcady state and then develop two
methods to dctermine truncation points that can be used
in climinatinng initial bias of the systcm.

The cquations like (7) or (8) in Tablc 1 measures the
level of variations of the system observations over time.
The level of varitions is then analyzed using the chaos
theory to ascertain whether or not the difference in the
varitions is significant. The chaos theory used for this
purposc has some good features. One good fcature is that
it can classify dynamic characteristics of the systcm into
the regular motion, the chaotic motion. and the random
motion without knowing any information about the input
parameters. This classification process is done according
1o reconstruction state spacc. dimension. and Lyapunov
exponent that arc based on the time scries of the systcm
of under study.

To test the effectiveness of equation (7) and (8). the
equation are applicd to given simulation output data in
Table 1. The obtained time serics data. reconstructed
state space, dimension using equation (2), and Lyapunov
exponent using equation (6) for two equations are also
shown in the Tablc 1.

As scen in the time scrics of the equation in Table 1,
cquation (7) does not illustratc the system varition
sufficicntly. Also. since the reconstruction attraclor has
an infinitc dimension and Lyapunov exponent results in
a positive value, the variation rate evaluted using
equation (7) is under the random motion. This implics
that equation (7) fails to distinguish the transicnt statc
{rom the stcady statc.
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Table | : An Example of a Dynamic Characteristics for given Simulation Output Data

average waling tlme
V/v,\—”\-\_ wM‘ Wr
Simulation
Output Data
90 180 270 360 450
time
X, 1 X | x, 5
Equations log. '|'——‘I‘ (7 log, @)
X, — X,._ll X,
X(L) versas t X(t) vorsus t
g0y s z
Modificd
Time Serics Ll
b_\’ xw ‘v..‘i, ,(M
Equations
1 lier ™ U,
1 tire w9
W) us X(t-1) wx X(£-2) (L) v K(t-1) w K(L-2)
xct. T uLr
Reconstructed AT
State Space
L{{T 3] -0 R(L-2) A-1)
Dimension o0 4
Lyapunov Exponent 0.587 -0.002

On the contrary. when cquation (8) is uscd, the time
series of thc cquation indicates the systcm variation
correctly. Sincc the reconstruction attractor has a finite
dimension and Lyapunov exponcnt results in a ncgative
value. the varition ratc sccms under the regular motion.
This also states that the difference of variation rates
between the transient state and the stcady state is

significant.

Based on thesc results. we proposc two methods Ml
and M2 using cquation (8) for the determination of
truncation points. The underlying concept of the two
mcthods is that they determine truncation points bascd
on the system variations in order to control initial bias.
This is quite different from the concept of the existing
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mcthods in which truncation points arc decided using
the mean and the variance of the output data.

S DELETION STRATEGIES

Initialization bias can bc a major source of crror in
cstimating the steady state valuc of a simulated sysicm
performance measurc. Lyapunov exponent 7. which
decides whether convergence or divergence of a
trajectory is applied to deciding how much data to be
dceleted which is called truncation points in simulation
output data. The methods to be used in the experiments
are as follow.

1) Method 1 (M1)

The first mcthod uses /li for deciding truncation point
represented by equation (9).

1 & X,
1‘ = — ‘0, i+l
= s,

k=1.2,....n-1 &)

where

X, : averagc wailing time in queuc for up to the
i-th customer from the [irst customer in
M/M/1(e0) with arrival ratc A. service ratc
T

n: run length (total number of obscrvations in

simulation output data).

The criteria for A; to decide the truncation points arc

as follow.

ecritcrion1 (Cl): |li| must bc lecss than the
specified value.

The specified values for variation rate 5% is obtained
to be 0.036 as follows,

[a(1£0.025)] _

2

log 0.036

a

e critcrion 2 (C2) : /1, must not have the positive
values(or negative valucs) more
than 30 times continuously.

A variation rate is distributcd normally if systcm's
behavior comes to be the steady state.

2) Mcthod 2 (M2)

Partition n simulation data Xx,, X,, ... ,X, inlo b
nonoverlapping batches in which cach batch has m

obscrvations such that n=bem. and decfinc the following
functions of the original data for i=1.2.....b.

Xli Limy (I())
c 2

Jb 'v”-‘l)”lll

where
X¢j 1y, - AvCrage waiting time in queuc for up
1o the j-th customer in i-th batch.

ecritcrion 3 (C3):

A,| must be less than the
specified value.

This criterion C3 is equal to the criterion C1.

3) Mecthod 3 (M3)

The delction strategy suggested by Cash et al.(1992) is as
follow. First. computc the below values for i=1.2....b
and j=1.2....m. And perform the F (est with [(=0.25. the
fraction of thc batches used to compute the variance
estimator : if the null hypothesis of no initial condition
bias is rcjected. delete the first 25% of the data and apply
the test again to the rcmaining data. If the null
hypothesis is accepted. retest at =0.5 and next at [=0.75,
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6 EXPERIMENTAL RESULTS

M/M/1() queucing modcl was used to cvaluatc the
performance of mcthods. In order to gather the data. we
exccuted the simulation using the following conditions.
Simulations arc conducted with the utilities p=0.5(1/%
=20.00, 1/p=10.00). p=0.7(1/A=14.29. 1/p=10.00) and p
=0.9(1/A=11.11. 1/p=10.00). Each cxperiment involved
10 independently sceded replications in which cach has
500 obscrvations of customer waiting times in the qucue.
Each of the observations is gathered cvery 30 customers
who have been served. To evaluate the cffectivencss of
the methods. the criterian in equation (11) was uscd.
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where

i~ ¢ theory valuc of average waiting time.
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(rn

x, . average waiting time of i-th customer in

j-th replication.
n : run length of each run.
1 : truncation point in each run.
k : number of replications.

The cascs of cxperimentals for the delction strategics
are shown in Table 2.
Experimental results can be summarized as follow.

not significant. And the difference among the results of
threc methods is not also significant. Comparisons of
A2(M1). B6(M2). D2(M3) for cach run arc shown in
Figurc 4.

Bias O 1

—e— A1
—g—h3 A
—a— D1

0.01

0. 001
No of Replications

Figure 3 : Comparisons of Dclction Strategies
for p=0.5

10

2 3 % 5 T 8\ |

Bias
. . 0.1 o— Al ——0
Table 2 : Cascs of Expcriments for Each Dcletion —@|— B
Strategy —aA— D2
Deletion Cases 0. 01
Strategy No of Replications
Mothod 1 ’/:; ‘r:;g; Figurc 4 : Comparisons of Dclction Strategics
A3 p=0.9 for p=0.7
Bl p=0.5  batch size-=30
132 p=0.5 _ batch size=30 3) In Case of p=0.9
133 p=0.5  batch size=30
134 0=0.7 In this case, system behavior fails 1o rcach stcady state in
Method 2 135 p-0.7 : .
I 007 somc cascs. with the given present run length. The
57 0=0.9 mcthod M1 and M3 dctect a truncation point rcgardliess
B8 0=0.9 of the system state. But the mcthod M2 can determine
B9 0=0.9 correctly the transient statc and B8 yields the best
DI p=0.5 outcome regarding to point estimator and equation (11).
Method3 | D2 p=0.7 Throughout the evaluation of three methods, we
D3 p=0.9 observed that the method M2 showed the best results.

1) In Casc of p=0.5

With respect to point estimators and cquation (11), B3
produced good results among the cascs of the mcthod
M2 but the difference in the cases of M2 is not
significant. And the diffcrence among the results of three
mcthods is not also significant. Comparisons of A1(M1),
B3(M2). D1(M3) for cach run arc shown in Figure 3.

2) In Casc of p=0.7

In this casc. B6 produced good results among the cascs
of the method M2 but the difference in the cascs of M2 is

Comparison of A3(M1), B§(M2), D3(M3) for each run
arc shown in Figure 5.

No of Replications

Figurc 5 : Comparisons of Dclction Stratcgics
for p=0.9
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The experimental results of the delction strategies for p
=0.5,0=0.7 and p=0.9 are summrized in Tablc 3. When
method M2 is applied in case of p=0.9, if the system's
behavior shows a transient state. the run length which

must be added to reach steady statc is calculated as
follows.

Za/2 xo

2

n = ( ) (12)

e

where
Z ., - thevalue of the standard normal
distribution lcaving an arca of o/2
to the right
o : standard deviation
€ : aspecified amount for absolute
deviation between 77, and 7,

Table 3 : Performance of Dclction Strategy
Deletion W ‘ﬁ: _";|/”‘r, W

Cases Strategy q q

Al M1 10.398 0.040
Bl 10.357 0.036

p=0.5 | B2 M2 10.328 0.033 10.00
B3 10.317 0.032
Dl M3 10.338 0.034
A2 M1 23.483 0.007
B4 23.537 0.010

p=0.7 | BS M2 23.474 0.007 23.310
B6 23.423 0.005
D2 M3 23.412 .004
A3 M1 97.134 0.078
B7 96.661 0.073

p=0.9 | B8 M2 88.851 0.014 90.090
B9 91.618 0.017

D3 M3 95.467 0.060

7 CONCLUSIONS

Initialization bias is the most troublcsome problem in
evaluating system's responses cerrectly using simulation
output data. Two methods have been proposed to handle
this problem using chaos theory.

The suggested methods have been compared with the
method by Cash et al.(1992) using M/M/1(0). We could
find that the method M2 of which batch size is 40 among
the three methods produced the best results with respect
to p=0.5, p=0.7 and p=0.9 especially. Truncation point
cannot be found in some cases. This means that system
behavior fails to reach steady state, with the given the
present run length. For these cases, we could natually
think that the run length should be increased to get more
data. Some statistical work is required to detecrmine the
most appropriate criteria to be used in the proposed
methods.
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