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ABSTRACT

The batch means method is among the most popular
confidence interval techniques for the output analy-
sis of a steady-state simulation. The selection of the
batch size for the batch means method affects the
quality of the confidence interval estimator. Many ex-
isting algorithms, however, are ad hoc in nature and
lack a rigorous foundation. In this paper, we explore
the relationship between the sample size and the op-
timal batch size (“optimality” is a sense to be defined
in this paper). We focus on steady-state analysis and
assume that the underlying process is stationary and
strongly mixing. Three drastically different choices of
batch sizes for the batch means method are discussed.
Several empirical results illustrate our findings.

1 INTRODUCTION

An important problem in simulation output analy-
sis is that of forming confidence interval estimators
(c.i.e.s) for the mean of a stationary simulation pro-
cess. The most popular c.i.e. technique is the method
of batch means (Schmeiser (1982) and Bratley, Fox
and Schrage (1987)). An important parameter in the
batch means method is the choice of the batch size.
The choice of the batch size has a direct impact on
the quality of the variance estimator and the confi-
dence interval (c.i.) (Schmeiser (1982) and Politis and
Domano (1992)). Although the selection of an opti-
mum batch size is still an unresolved research prob-
lem (Damerdji (1991)), numerous ad hoc approaches
have been proposed (Bratley, Fox, and Schrage (1987)
and Law and Kelton (1991)). While some of these
approaches have been empirically tested, these al-
gorithms lack a rigorous support. Extrapolation of
these procedures beyond the cases that have been
studied should be carefully examined.

On the other hand, Schmeiser (1982) suggested a
practical and easy to implement algorithm. A fixed,
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relatively small number of batches (e.g., 30) is se-
lected. For a given sample size, a test for statistical
independence of the batches is checked. If the test
result suggests that the batches are “almost” inde-
pendent, a Student-t based c.i. is generated; other-
wise, more samples are needed and the sample size
is increased. However, practicality and simplicity is
achieved at the expense of consistency for the vari-
ance estimator. Glynn and Whitt (1991) had shown
that “there does not exist a procedure to consistently
estimate the asymptotic variance constant when the
number of batches is held constant as run length in-
creases.”

Another approach, as proposed by Goldsman and
Meketon (1986), Schmeiser and Song (1994), and
Chien, Goldsman, and Melamed (1954), is to focus
on the the asymptotic properties of the variance esti-
mator. They derive the asymptotic order of a batch
size so that the mean square error (MSE) of the vari-
ance estimator is minimized. Their results are inter-
esting and remarkable; however, there is no evidence
whether their results are pertinent to the problem of
generating c.i.e.s. We are unaware of any theoretical
or empirical evidence that a better variance estimator
would lead to a better confidence interval.

In this paper, we treat the problem of batch size
selection from a new point-of-view and suggest a rela-
tionship between the optimal batch size and the sam-
ple size. Asymptotic properties of some key statistics
used in the batch means method are studied. We fo-
cus on steady-state analysis. The underlying mathe-
matical model in this study is a stationary stochastic
sequence that satisfies certain regularity conditions.
We do not assume that the observed data are sampled
from independent and identically distributed (i.i.d.),
regenerative, or ARMA processes (Schmeiser (1982)
and Kang and Goldsman (1990)). This general model
is useful for the output analysis of many real-world
simulation experiments.

The rest of this paper is organized as follows. Sec-
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tion 2 is a review of the batch means method. Asymp-
totic properties of some statistics related in the batch
means method are presented in Section 3. We dis-
cuss three different optimal batch sizes in Section 4,
where optimal is a sense to be defined. Empirical re-
sults from a Monte Carlo study are presented there.
Section 5 concludes the paper.

2 THE BATCH MEANS METHOD

Before discussing the batch means method, we di-
gress to review the logic of confidence intervals. As-
sume that we want to estimate an unknown quan-
tity pu. Suppose that an estimator [ is normally
distributed with unknown expectation p and known

standard error (s.e.) o, viz., fi 2 N(u,o?), where

Z denote that the random variables (r.v.s) have the
same distribution functions (d.f.s) and N(u,0?) is
the normal d.f. with mean g and variance 2. Let
¢ 2 N(0,1). The ath percentile of N(0,1), z,
is defined by P{¢{ < z,} = a. By symmetry of
N(0,1), P{¢ < —2,} = 1 - a. It follows that
P{za £ € £ -2} = 1—-2a (if a < 1/2). Since
(i — p)o~! B N(0,1), with simple algebraic substi-
tution, we derive P{u € [i+ za0, 1 — 240]} = 1 — 200

In practice, however, o is usually unknown and
needs to be estimated as well. Let & be some rea-
sonable estimate of s.e. for 4. “Under many circum-
stances it turn out that as the sample size grows large,
the distribution of ji becomes more and more normal
and variance near 02" (Efron and Tibshirani (1993)).
Then the random quantity (i — p)d~! converges in
distribution to a standard normal as the sample size
increases, and P{u € [ + 240,01 — 246]} = 1 — 20.
We say that [ + 246, 2 — 256] is a (1 — 2a) x 100%
c.i.e. for p. “Taken together, the point estimate [
and the c.i. say what is the best guess for p, and how
far in error that guess might reasonable be” (Efron
and Tibshirani (1993)).

It is of interest to obtain a c.i.e. for the mean y of
a discrete-time stationary process X = {X; :1 > 1}.
We assume throughout this paper that X is strongly
mizing with mixing constants {a; : ¢ > 1}. (Roughly
speaking, a strongly mixing process X with mixing
constant a; — 0 as ¢ — oo implies that, among oth-
ers, r.v.s X; and X are almost independent for large
k; see Billingsley (1986) for a rigorous treatment.)
Without loss of generality, it is assumed that X has
zero-mean. (Otherwise, replace X; with X; — u.)

Assume that m observations, Xi,..., X, from a
time series X are given. Define X, = m™* Y7 X;
as the sample mean associated with the sequence.
Let ¢ = Var(Xy) + 2) 52, Cov(X1, Xk41) be the
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variance parameter (For many real-world processes,
02 = limy— o mVar(X ,); o® provides a measure for
the sample mean’s precision.) Suppose these m sam-
ples are split into n sub-intervals of length b = [m/n]
each (where |p| denotes the greatest integer that is
smaller than or equal to p). Let Y; denote the mean
over the ith interval, i.e., ¥; = b1 Eg‘=1 X(i—1)b+5s
fori = 1,...,n. For the batch means method, n is the
number of batches, b is the batch size, and the ¥;’s are
the batch means. Define Vo p =n 1 Y0 (YVi— X n)2.
as the sample variance for {Y;} and let

X —
tn,b - (V n’b/_n)l/z . (1)

Under mild regularity conditions (see, e.g., Brillinger
(1973)) for fixed n, the r.v. t, s converges in distribu-
tion to a Student-t d.f. with n — 1 degrees of freedom
as m — oo. The Student-t d.f., in turn, converges to
the standard normal d.f. as the degree of freedom in-
creases, so we can use the quantile points of either the
Student-t¢ d.f. or the standard normal d.f. to construct
a c.d.e. for u. For example, if 2z, is the a-quantile
point of the standard normal d.f., a 100(1 — 2a)%
batch means (normal) c.i.e. for p is

Xom + 2a(Vap /1) /%, Xom — 2a(Vas/n)?]. (2)

3 PRELIMINARIES

We say that the sequence &, &3, . . ., of r.v.s converges
in LP or in mean of order p (0 < p < o0) to the
r.v. £ if E[|& — £|P] — 0 as s — oo. The notation
f(k) = O(g(k)) means that |f(k)/g(k)| < C for some
constant C and all k > 1, and f(k) = o(g(k)) means
that f(k)/g(k) — 0 as k — oo.

The batch size b is critical to the quality of
the variance estimate and the c.i.e. To see this,
note that Var(X,,) = n=Var(Y;) + 22 3721 (n —
k)Cov(Y1,Yk41). If the covariance terms are much
smaller than Var(Y;), then Var(X,,) = n~!Var(Y;).
Since V, is a good estimator for Var(Y1), the
batch means method uses n~'V,;, as the estimator

for Var(X,,) and a c.i.e. can be generated accord-
ingly. Since Var(Y;) = b=Var(X;) + 2b~2 zz;ll b-
k)Cov(X1, Xi+1); Var(Y1) and V7, (the estimator for
Var(Y;)) are dependent on b. The choice of the batch
size b will have a direct impact on the variance esti-
mator and the quality of the associated c.i.e.

We define

n

Vap =071 (Y = Xn)?, (3)

i=1

o2 =m-Var(X,,), (4)
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and

Voo
App=—"——1.
The following Propositions from literture are used for
the rest of the paper.

ProPosITION 3.1 (Carlstein (1986), Chien (1989),
Chien, Goldsman, and Melamed (1994))

(1) If E|X1| < oo and o = O@G~°), then
E(Ai,b) =O0(n~1) + O(b™?); therefore,

(2) Anp — 0 in L2 as n,b— o0o.

(8) For fized m, E(A,z.‘,b) achieves its lowest possible
order, which is O(m=2%/3), when n = O(m?*/?)
and b = O(m'/3).

It should be noted that Chien, Goldsman, and
Melamed (1994) discuss Proposition 3.1 in detail. In-
terested readers are referred there for further proper-
ties, implications, and a number of analytical and nu-
merical results. On the other hand, Damerdji (1991)
uses a more general assumption to obtain £2 conver-
gence of the variance estimator for the batch means
method. Convergence in L2 of the processes-variance
estimators for the overlapping batch means, stan-
dardized time series area, and spaced batch means
methods are discussed in Damerdji (1991).

PROPOSITION 3.2 (Chien (1989)) If E|X1]*? < oo
and a; = O(i™%), then as n,b — oo,

_ Cov(Anp, Xm) 1
Var(A, p)Var(X m)—O(b )

Proposition 3.2 states that the coefficient of corre-
lation between A, and X, decreases as the batch
size increases, and is asymptotically uncorrelated to
the number of batches. It is interesting to compare
Proposition 3.2 with a proposition Kang and Golds-
man (1990). Notice that Kang and Goldsman (1990)
assume that the batch means are independent; a con-
dition perhaps is true only when X is independent.
In contrast, the assumption here allows for a much
more general result. The order and leading terms for
Corr(An s, Xm), as expected are identical.

Next, consider t,, = — 1/ (Vi p/n)*/2. The fol-
lowing proposition demonstrates how to calculate the
first four cumulants of ¢, 5.

PROPOSITION 3.3 (Chien (1989))
(1) IfE|X1|® < 00 and a; = O(i™"), then
mb - 1
—\22_3_ N1,1(Xm,; ZY,'Z)
m =1

+o(n"Y?)o(b1/?).

Corr(Anp, m)

K1 (tn.b)

(2) IfE|X1|*? < 00 and a; = O(i~%), then

Raltns) = 1+ (/02 ka3 V)

— 1<
_(mb/a'fn)fiz’l(xm, ; Z Y,z)

~E[— ZW —1]+3/n

+o(n~ 1) +o(b-1).
(3) If E|X1|'6 < 00 and a; =
\/_/”m)s{"la(f )

m ;=1

+o(n‘1/2)o(b“1/2).

O(i~11), then

K3(tnp) =

(4) If E|X1|* < 00 and a; = O(i~13), then

— 1<
N4(tn'b) = —6(mb/dfn)N2'1(Xm,;ZYi2)

i=1

+3(b/02 ) ke (= ZYz
+12/n+ o(n~ ).

Recall that the first four cumulants of a stan-
dard normal r.v. are 0, 1, 0, and 0 (Kendall, Stu-
art, and Ord (1991)). Summing up all the individual
terms in Proposition 3.3, Chien (1989) shows that
K1(tnp) = O(n~Y2)O(b™Y2), ka(tnp) = 1+0(n~ 1)+
O(b~1), K3(tns) = O(n~1/2)O(b=1/2), and Ky(tn ) =
O(n~1). Therefore, the first four cumulants of ¢, ; do
converge to those of the standard normal variate as n
and b increase. This is more informal evidence that
the d.f. of ¢, converges to a standard normal d.f.

4 BATCH SIZE SELECTION

In this section, we review the results presented in Sec-
tion 3 and discuss the implications to the selection
of batch size. As discussed in Efron and Tibshirani
(1993), “a good c.i. should give a dependably accurate
coverage probabilities in all situations.” In the ensu-
ing discussion, we say that a batch size selection is
better than another if the c.i. generated by the batch
size has a better coverage characteristic.

Recall that Proposition 3.1 suggests that the MSE
of the variance estimator achieves the lowest possible
order when the batch size b = O(m!/3). This batch
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size was proposed by Goldsman and Meketon (1986),
Schmeiser and Song (1994), and Chien, Goldsman,
and Melamed (1994).

On the other hand, Proposition 3.2 states that
the order of the correlation between the mean and
variance estimator decreases as batch size increases.
However, Kang and Goldsman (1990) had shown em-
pirically that “the correlation between the mean and
the variance estimators does not share a strong rela-
tionship with the coverage of a c.i.”

Proposition 3.3 suggests yet another way to choose
the batch size. The first four cumulants of a stan-
dard normal r.v. are 0, 1, 0, and 0. To use a
normal approximation to generate a c.i. for u, it
seems desirable to have the cumulants of ¢,; as
close as possible to those of the standard normal
r.v. This argument leads to two naive, but natu-
ral, approaches for the choice of the batch size: (1)
minimizing max;<i<4 |ki(tns) — £:(£)|; and (2) min-
imizing Y5, [Ki(tns) — ki(€)]2. From Proposition
3’3’ K'l(tn,b) - Kl(f) = O(n—1/2)o(b—1/2), ""2(tn,b) -
K2(€) = O(n™1) + O(b™1), K3(tn,p) — K3(€) = O(b71),
and k4(tnp) — k4a(€) = O(n1). In both cases the
optimal b and n should be chosen such that b and n
are of the same order, viz., both b = O(m'/?) and
n = O(m'/?) as m — oco. Let b?, denotes the batch
size that achieves the best coverage characteristic for
a sample size of m. Based on Proposition 3.3, we
suggest that

b, = cm/? + o(m1/?), (6)

where ¢ is a constant depends on the underlying
stochastic sequence. If eq. (6) is valid, a plot of the
optimal batch size vs. the sample size in a log-log
chart would be asymptotically linear with a slope of
1/2. This relationship of the batch size and the num-
ber of batches gives us a corresponding t,; that is
closer to a standard normal r.v. in the sense that the
differences between their respective first four cumu-
lants are smaller.

For the rest of the section, we empirically exam-
ine the relationship between the optimal batch size
and the sample size. The M/M/1 waiting time pro-
cess (with different load levels) and an AR(1) process
(with different coefficients) were studied. Sample size
for the experiments ranged from 32 to 32768. In the
Monte Carlo study, 8192 independent replications of
the M/M/1 waiting time process or the AR(1) process
were drawn. For each replication, a 90% c.i.e. for the
average waiting time (for M/M/1 queue) or the aver-
age sample value (for AR(1)) was generated (based on
the batch means method). Since the theoretical value
for the average waiting time for an M/M/1 queue and
the mean of an AR(1) process are known, we checked
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whether the true mean lays within the c.i. The cov-
erage fraction is defined as the ratio for the number
of replications that the true mean lays within the c.i.
and the total number of replications made in the ex-
periment. Sample mean and s.e. of the length of the
confidence interval were recorded as well.

Since 90% c.i.e.s were used, we denote that a batch
size has a better coverage characteristic than another
if its (empirical) coverage is closer to 0.9. Since the
s.e. of the sample mean of 8192 independent binary
r.v.s with parameter 0.9 is 0.0033, difference of cov-
erage that was 0.0033 or smaller was insignificant.
We regard that the coverage characteristics for batch
sizes that generated such a smaller difference in cov-
erage as the same. The batch size(s) that generated
the best coverage characteristic were then denoted as
the optimal batch size(s) (among all the batch sizes
tried in the experiment).

EXPERIMENT 4.1 For the M/M/1 waiting time pro-
cess, we used different load levels: 0.25, 0.5, and 0.75.
The coverage characteristic, sample mean and s.e. of
the length of the c.i. for each batch size were recorded.
In Tables 1.a to 1.f, simulation results for sample size
ranges from 32 to 32768 for the case that p = 0.25 are
reported. The optimal batch size(s) (among all the
batch sizes that has the form 2°) with the correspond-
ing coverage are marked with an *. For example, ex-
periments with sample size of 2048 were reported in
Table 1.d. It is clear that batch size = 32 generated
the best empirical coverage (i.e., 0.8806). However,
the coverage of batch size = 64 is 0.8773. Since the
difference is smaller than 0.0033, both batch sizes are
marked as optimal for the particular sample size.
Figure 1 summarizes the relationship between the
optimal batch size(s) and the sample size from Tables
l.a to 1.f. X-axis denotes the sample size and Y-axis
denotes the batch size. Based on the results in Tables
1 to 11, optimal batch size(s) for each sample size is
marked with a circle. For example, the optimal batch
size for sample size = 32 is 4, the optimal batch size
for sample size = 64 is 8, and so on. Finally, the
optimal batch sizes for sample size = 32768 are 64,
128, 256, and 512. It is observed that the optimal
batch size increases as the sample size increases. A
line with slope 1/2 (in log-log scale) is plotted in the
chart. Notice that all the optimal batch sizes (for
different sample sizes) are clustered around the line.
Figures 2 and 3 summarize the cases for p = 0.5
and p = 0.75. In Figure 2, we observe that the opti-
mal batch sizes for different sample sizes are clustered
around a line with slope 1/2 in log-log scale. The in-
tercept of the line on the Y-axis, however, is greater
than the one in Figure 1. This implies that, given a
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fixed sample size, the optimal batch size to simulate
the average waiting time of a M/M/1 queue with p
= 0.5 is larger than that of the queue with p = 0.25.
It is in line with the fact that the waiting times from
a queue with a higher traffic level are more positively
correlated; in general, a larger batch size is required
if the data are more correlated (see Bratley, Fox, and
Schrage (1987)). In the sense of eq. (6), a more corre-
lated data requires a larger constant c. Figure 3, how-
ever, portrays a slightly different picture. Although
the optimal batch sizes for sample sizes that are 256
or larger are clustered around a line with slope 1/2
in log-log scale; for sample size = 16, 32, and 64, the
optimal batch sizes are smaller than as indicated by
the line. This phenomenon is due to the fact that
since that data is so positively correlated, it would

Table 1.d Sample size for each replication is 2048.

SUne | Tne | barches | COVT° | AP | S
2048 1 2048 0.6595 0.06379 0.006404
2048 2 1024 0.7533 0.07761 0.009435
2048 4 512 0.8232 0.09073 0.01355
2048 8 256 0.8595 0.09993 0.01797
2048 16 128 0.8756 0.1048 0.02121
2048 | 32 64 0.8806™ 0.1070 0.02333
2048 | 64" 32 0.8773* 0.1077 0.02543
2048 | 128 16 0.8717 0.1073 0.02913
2048 | 256 8 0.8539 0.1060 0.03507
2048 | 512 4 0.8035 0.1015 0.04629
2048 | 1024 2 0.6572 0.08916 0.06962

Table 1.e Sample size for each replication is 8192.

take a large constant c in eq. (6). Sesxir;lep. Bs?Zgh bﬁcg{e . Coverage Saxg Joean Sa;xt}% s
Tables 1.a-f Coverage, sample mean and sample 8192 1 8192 | 0.6608 0.03207 | 0.001673
standard error (s.e.) of the length of a 90% c.i. for 8192 | 2 4096 | 0.7524 0.03909 | 0.002485
various batch sizes. The data is based on 8192 in- 8192 4 2048 | 0.8220 0.04582 0.003606
dependent replications of the M/M/1 waiting time 8192 | 8 | 1024 | 0.8639 | 0.05068 | 0.004940
process (p = 0.25). 8192 | 16 512 | 0.8807 | 0.05334 | 0.005993
8192 | 32 256 | 0.8876 0.05461 | 0.006592
Table 1.a Sample size for each replication is 32. 8192 | 64* 128 | 0.8927* 0.05519 0.007245
Samp. |Batch | # of |Coverage | Samp. mean | Samp. s.e. 8192 | 128* 64 0.8910* 0.05540 0.008130
size | size |batches ° of C.L 8192 | 256 | 32 0.8870 | 0.05536 | 0.009502
32 ! 32 0.6000 0.4181 0.2571 8192 | 512 16 0.8788 0.05496 0.01173
32 2 16 | 06449 | 0.4839 0.3499 8192 | 1024 | 8 0.8574 | 0.05400 | 0.01569
32 | & 8 [06674" | 05379 0.4574 8192 | 2048 0.8013 | 0.05137 | 0.02240
32 8 4 0.6566 | 0.5624 0.5443 8192 | 4096 | 2 0.6458 | 0.04418 | 0.03433
32 16 2 0.5702 0.5368 0.6653

Table 1.b Sample size for each replication is 128.

Table 1.f Sample size for each replication is 32768.

I i N ol e P A Shr | Paae | pdches | CVeTo° | SR enn | Samp: g
128 1 128 | 0.6365 0.2399 0.08474 32768 | 1 | 32768 | 0.6609 0.01605 | 0.0004212
128 2 64 0.7097 0.2858 0.1204 32768 | 2 | 16384 | 0.7518 0.01957 | 0.0006269
128 4 32 0.7551 0.3257 0.1625 32768 | 4 8192 | 0.8252 0.02296 | 0.0009153
128 | 8* 16 | 0.7719* 0.3499 0.1994 32768 | 8 4096 | 0.8671 0.02542 | 0.001262
128 | 16 8 0.7662 0.3603 0.2283 32768 | 16 | 2048 | 0.8867 0.02679 | 0.001558
128 | 32 0.7357 0.3557 0.2551 32768 | 32 | 1024 | 0.8949 0.02744 | 0.001737
128 | 64 2 0.6230 0.3198 0.3027 32768 | 64* | 512 | 0.8989* | 0.02777 | 0.001893

32768 | 128* | 256 | 0.8982* | 0.02792 | 0.002114

Table 1.c Sample size for each replication is 512. 32768 | 256" | 128 | 0.8988" | 0.02799 | 0.002472

32768 | 512* 64 | 0.8972* | 0.02796 | 0.003033

Samp. |Batch | # of [Coverage SamP. mean | Samp. s.e.
size | size |batches of C.L of C.I 32768 | 1024 | 32 0.8918 0.02786 | 0.003933
512 1 512 | 0.6559 0.1259 0.02405 32768 | 2048 | 16 0.8795 0.02747 | 0.005321
512 2 256 | 0.7467 0.1523 0.03494 32768 | 4096 8 0.8544 0.02689 | 0.007477
512 4 128 | 0.8085 0.1768 0.04888 32768 | 8192 0.8005 0.02577 0.01090
512 8 64 0.8381 0.1929 0.06240 32768 | 16384 | 2 0.6624 0.02266 0.01682
512 | 16* 32 0.8468* 0.2011 0.07223
512 | 32* 16 0.8447* 0.2040 0.07918 EXPERIMENT 4.2 In this experiment, data was
512 64 8 0.8306 0.2029 0.08804 drawn from an AR(1) process. The residuals of the
512 | 128 4 0.7860 0.1963 0.1053 process are negative-exponential r.v.s with parame-
512 | 256 2 0.6449 0.1721 0.1427 ter 1. Four different coefficients were used: 0.25, 0.5,
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0.75 and 0.9. Tables 2.a to 2.f list the simulation re-
sults for sample size ranges from 32 to 32768 for the
case that the coefficient is 0.25. The optimal batch
size(s) (among all the batch sizes that has the form
2%) with the corresponding coverage are marked with
an *. Figures 4 to 7 summarize the experimental re-
sults. In all cases, we observe that the optimal batch
sizes for different sample sizes are all clustered around
a line with slope 1/2 in the log-log scale. It is noted
that the intercept of the line on the Y-axis becomes
bigger as the coefficient increases. This is in line with
our intuition since the data becomes more positively
correlated as the coefficient increases.

Tables 2.a-f Coverage, sample mean and sample
standard error (s.e.) of the length of a 90% c.i. for
various batch sizes. The data is based on 8192 inde-
pendent replications of an AR(1) process (coefficient
= 0.25; the residual is exponentially distributed with
parameter 1).

Table 2.a Sample size for each replication is 32.

Sinl | Tre |bdtches | “Oereee | SUupqen | Sk e
32 1 32 0.7742 0.5747 0.1387
32 2 16 0.8082 0.6371 0.1742
32 4 8 0.8157* 0.6746 0.2255
32 8 4 0.7817 0.6748 0.3104
32 16 2 0.6399 0.5940 0.4612

Table 2.b Sample size for each replication is 128.

Samp. [ Batch of |Coverage | Samp. mean | Samp. s.e.
size size | batches OP C.L of C.I.
128 1 128 0.7877 0.2974 0.03734
128 2 64 0.8304 0.3316 0.04645
128 4 32 0.8563* 0.3555 0.05930
128 8™ 16 0.8589* 0.3652 0.07749
128 16 8 0.8429 0.3640 0.1056
128 32 4 0.7913 0.3506 0.1513
128 64 2 0.6390 0.3015 0.2318

Table 2.c Sample size for each replication is 512.

Samp. | Batch of |Coverage | Samp. mean | Samp. s.e.
size size | batches oF C.L of C.I.
512 1 512 0.8043 0.1499 0.009420
512 2 256 0.8507 0.1674 0.01179
512 4 128 0.8804 0.1800 0.01488
512 8" 64 0.8918* 0.1863 0.01935
512 16" 32 0.8921* 0.1887 0.02616
512 32 16 0.8833 0.1890 0.03584
512 64 8 0.8616 0.1864 0.05137
512 128 4 0.8126 0.1785 0.07615
512 256 2 0.6583 0.1533 0.1179
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Table 2.d Sample size for each replication is 2048.

Samp- | Bateh | dtones | 8" | S0P | MR
2048 1 2048 0.8104 0.07503 0.002365
2048 2 1024 0.8567 0.08386 0.002979
2048 4 512 0.8816 0.09015 0.003782
2048 8 256 0.8932 0.09345 0.004888
2048 | 16" 128 0.9006" 0.09501 0.006517
2048 | 32* 64 0.9015* 0.09568 0.008941
2048 | 64* 32 0.8970* 0.09558 0.01245
2048 | 128 16 0.8865 0.09472 0.01769
2048 | 256 8 0.8634 0.09295 0.02514
2048 | 512 4 0.8075 0.08917 0.03748
2048 | 1024 2 0.6566 0.07743 0.06008

Table 2.e Sample size for each replication is 8192.

Samp. | Batch | # of |Coverage |Samp. mean | Samp. s.e.
size size |batches of C.L of C.I.
8192 1 8192 0.8021 0.03754 0.0005975
8192 2 4096 0.8535 0.04197 0.0007512
8192 4 2048 0.8789 0.04513 0.0009473
8192 8 1024 0.8923 0.04679 0.001225
8192 16 512 0.8966 0.04759 0.001638
8192 | 32~ 256 0.9009* 0.04797 0.002204
8192 64* 128 0.9025* 0.04815 0.003094
8192 | 128* 64 0.9006* 0.04813 0.004396
8192 | 256 32 0.8965 0.04800 0.006163
8192 | 512 16 0.8833 0.04760 0.008895
8192 | 1024 8 0.8571 0.04658 0.01282
8192 | 2048 4 0.8036 0.04422 0.01892
8192 | 4096 2 0.6476 0.03779 0.02870

Table 2.f Sample size for each replication is 32768.

Samp. |Batch | # of |Coverage |Samp. mean | Samp. s.e.
size size |batches ot C.I. of C.I
32768 1 32768 | 0.8076 0.01877 0.0001481
32768 2 16384 | 0.8511 0.02099 0.0001864
32768 4 8192 0.8767 0.02257 0.0002354
32768 8 4096 0.8879 0.02341 0.0003029
32768 | 16 2048 0.8945 0.02382 0.0004063
32768 | 32* 1024 | 0.8973* 0.02402 0.0005566
32768 | 64* 512 0.8993* 0.02413 0.0007708
32768 | 128" 256 0.8993" 0.02417 0.001082
32768 | 256 128 0.9014* 0.02417 0.001517
32768 | 512* 64 0.8987* 0.02415 0.002153
32768 | 1024 32 0.8918 0.02404 0.003078
32768 | 2048 16 0.8822 0.02364 0.004381
32768 | 4096 8 0.8564 0.02314 0.006240
32768 | 8192 4 0.8066 0.02216 0.009233
32768 | 16384 2 0.6644 0.01957 0.01448
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Figure 1. Optimal batch sizes are based on 8192 indep.
replications of M/M/1 waiting time process with load 0.25.
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Figure 2. Optimal batch sizes are based on 8192 indep.
replications of M/M/1 waiting time process with load 0.5.
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Figure 3. Optimal batch sizes are based on 8192 indep.

replications of M/M/1 waiting time process with load 0.75.
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Figure 4. Optimal batch sizes are based on 8192 indep.
replications of AR(1) process with parameter 0.25.
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Figure 5. Optimal batch sizes are based on 8192 indep.
replications of AR(1) process with parameter 0.5.
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Figure 6. Optimal batch sizes are based on 8192 indep.
replications of AR(1) process with parameter 0.75.
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Figure 7. Optimal batch sizes are based on 8192 indep.
replications of AR(1) process with parameter 0.9.
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5 SUMMARY

Proposition 3.1, Proposition 3.2 and Proposition 3.3
suggest three different methods of reasoning in choos-
ing an optimal batch size. However, the resulting
batch sizes turn out to be drastically different. While
Proposition 3.1 is intended to minimize the MSE of
the variance estimator and Proposition 3.2 is intended
to minimize the correlation between the mean and
variance estimator, Proposition 3.3 can be used to
minimize the difference between the cumulants of the
statistic of the batch means method and those of the
standard normal r.v. If the validity of the c.i. is the
main concern, we believe that Proposition 3.3 yields
a preferred choice of batch size for the traditional the
batch means method. Numerical experiments in Sec-
tion 4 agree with our findings.
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