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ABSTRACT

In steady-state simulation output analysis, construc-
tion of a consistent estimator of the the variance pa-
rameter of the process may be desirable in a number
of instances. For example, if the process obeys a cen-
tral limit theorem and an estimator of the variance
is available, one may, then, construct an asymptot-
ically valid confidence interval for the process-mean
parameter. Centered moments (e.g., bias, variance,
skewness, etc.) of an estimator are familiar measures
of goodness of that estimator. Also, a central limit
theorem involving the estimator provides its asymp-
totic rate of convergence.

We consider here the batch means and the stan-
dardized time series area variance estimators, in their
nonclassical setting, and provide asympotic expres-
sions for their centered moments as well as central
limit theorems. As a by-product, consistency in the
mean-square sense of these estimators is obtained.
Our assumption on the process does not include sta-
tionarity nor covariance stationarity (although we are
in the steady-state context).

1 INTRODUCTION

Often, the goal of a steady-state simulation is to esti-
mate a mean system performance (only the univari-
ate case is considered here). Let us assume that p,
the mean system performance of interest, can be es-
timated via a discrete-time stochastic process {X,, :
n > 0}. The most natural estimator is, of course, the
grand sample mean X (n) = (1/n) 3.1, Xi, where n
is the total number of observations of the process.
Assuming ergodicity, the grand sample mean is close
to p, but is still variable nonetheless. The traditional
approach to assess the precision of this estimator is to
construct a confidence interval around it, and there
are two general classes of methods for such a construc-
tion: the class of cancellation methods and the class
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of consistent estimation methods. The limit theorems
these methods are based on involve the t-distribution
for cancellation methods (typically) and the normal
distribution for consistent estimation methods.

Consistent estimation methods are based around
the construction of an estimator of a process param-
eter called the time-average variance constant of the
process (often denoted o2). We will simply call o2
the variance of the process. When the process is co-
variance stationary (see Anderson (1971) for a precise
definition), the process variance is simply the sum of
the covariances at all lags. In the general ergodic
case (i.e., the process is ergodic, yet nonnecessarily
stationary nor covariance stationary), this process pa-
rameter is the constant which appears in the central
limit theorem

ﬁ(?(n) - u) — o N(0,1)

as n — oo, assuming it holds. The symbol “=" de-
notes convergence in distribution and N (a, b) stands
for the normal distribution with mean a and vari-
ance b. The process variance o2 is also sometimes
defined as the limit, as the sample size n grows, of

nVar(X (n)). If a consistent estimator I'(n) of o?
is available, an asymptotically valid confidence in-
terval ensues from the above central limit theorem.
However, there are also other advantages to consis-
tent estimation of the variance parameter. On the
basis of mean and variance of the confidence in-
terval half-width, Glynn and Iglehart (1990) show
that consistent-estimation-based confidence intervals
are better behaved asymptotically than cancellation-
based ones. (As they point out, however, it is not
known whether one class dominates the other or not
in the small-sample case.) Another advantage of con-
sistent estimation of the process variance is that it
provides additional information about the system.
For example, when comparing two systems with com-
parable mean performances, one may decide to choose
the system that has lower variability. The process



Area Variance Estimators 341

variance is a measure of variability, and an estimator
of the variance would provide an estimate of this vari-
ability. Another advantage of consistent estimation of
the process variance is the following. From the above
central limit theorem, one gets (assuming an extra

condition) that nVar(X(n)) =~ o2 for n large, and,
therefore, an estimate of the variance also provides
an estimate of the variability of the sample mean,
variability measured in terms of variance.

An advantage of strong consistency, or also consis-
tency with probability one, is that it is one of the
sufficient conditions of Glynn and Whitt (1992) in
order to construct a fixed-width confidence interval
for the process mean parameter. Strong consistency
of the batch means and area variance estimators is
considered in Damerdji (1994). Mean-square consis-
tency of the variance estimator allows one to consider
the bias and variance of this estimator, which are
going down to 0; bias and variance of an estimator
are familiar measures of “goodness” of that estima-
tor. Mean-square consistency of the variance estima-
tor also allows one to measure the quality, in terms of
mean-square error, in the estimation of y; see Golds-
man and Meketon (1993). Also, research on batch size
selection is often based on the assumption of mean-
square consistency of the variance estimator, and,
hence, the variance estimators must be a priori con-
sistent in the mean-square sense; see Goldsman and
Meketon (1993) and Schmeiser and Song (1993). (In
a number of steady-state output analysis methods,
a batch size parameter must be preset; this choice
may dramatically affect the performance of the pro-
cedure.)

In this paper, we will consider the batch means
and the standardized time series area variance estima-
tors, and provide mean-square consistency. Asymp-
totic expressions for the centered moments (up to any
order) of these variance estimators are given, as well
as central limit theorems. We do obtain the expected
result that the batch means and area variance esti-
mators converge to the process variance at rate one
over the square root of the number of batches.

We assume that the process obeys a strong ap-
proximation, or also, a strong invariance principle;
this is discussed in the next section. Let us now de-
fine the two estimators. Let I'pm(n) and T'a(n) be
the variance estimators associated with, respectively,
the batch means and the standardized time series
area methods. In both methods, the n observations
X1,...,Xn are divided up into a number k of adjacent
batches, each of length m. This parameter m is called
the batch size. In the classical setting, the number
of batches is fixed; there, the batch means and area
methods are cancellation methods, and no estimation

of the process variance is attempted. If we let the
number of batches (and the batch size) grow with
the sample size, the batch means and area methods
are consistent estimation methods: in order to con-
struct an asymptotically valid confidence interval for
the mean, the limiting theorem will be based on the
normal distribution (and not on the t-distribution,
which is typically the case for cancellation methods).
Some notation is needed. For j = 0,...,k — 1, let
Xj(m)=m™ Y Xjmii. We assume that km = n
for simplicity. The batch means variance estimator is
defined by

Tom(n) = k_IZ(XJ(m -X(n ))2,

and the area variance estimator by

Faln) = m(m2—1 Z

where Fj = (1/2) 3 1%, (m +1—2i) X jm+i. The batch
means method is well known. The standardized time
series approach was introduced by Schruben (1983).

2 THE ASSUMPTION ON THE PROCESS

The results presented in this paper will be under the
assumption that the process statisfies a strong in-
variance principle, or also, a strong approximation.
Consider the partial-sum process {S, = Z:;l X;
n > 1}. We assume that there exists a process-
constant 6 € (0,1/2] and a random variable C with
finite second moment such that, for almost all sample
trajectories w of the process, there exists an integer
ng = no(w) such that we have

|Sn(w) = np — 0B(n,w)| < C(w)nt/?72,

for all A € (0,6) and n > ng. The process {B(n) :
n > 0} is the standard Brownian motion process.

From the assumption, the parameter p is the pro-
cess mean parameter, while o2 is the process variance.
This assumption also implies a strong law of large
numbers and a central limit theorem. See Damerdji
(1994) for an elaboration. The process constant § de-
pends on the autocorrelation and moment structure
of the process; it is closer to 1/2 for processes having
little autocorrelation and admitting high moments,
while it is closer to 0 for processes with high auto-
correlation and/or low-only moments. See Damerdji
(1994) for a lengthy discussion.

A wide class of ergodic processes do satisfy the as-
sumption of strong approximation. A process is said



342 Damerdji

to be weakly dependent if events far apart in time
are almost independent (in a certain sense). Ergodic
Markov chains are one example. Processes with the
(-mixing or the strong mixing property are other ex-
amples. Philipp and Stout (1975) show that a num-
ber of weakly dependent processes do satisfy a strong
invariance principle.

A number of stochastic processes considered in a
steady-state simulation are of the regenerative type,
that is, there exists an increasing sequence {Tr:r >
0} of finite (with probability one) random times such
that the sequence {(Xr,,..., XT,4y-1,7r) : T = 0}
of random vectors is independent and identically

distributed, where 7. = Tr41 — Tr. (The defi-
nition is not complete.) For future reference, let
U, = Y7 X,| and Vi = T 7 X5]¢. From

Damerdji (1993), a regenerative process will satisfy
the assumption of strong approximation if EVg < oo,
Er§ < oo, and EU¢ < oo; we have § = 1/4 and
C = U + 2. Regenerative processes that satisfy the
above conditions will be called “nice regenerative pro-
cesses” in this paper.

In any event, we do not see the assumption
of strong approximation as being stringent in the
steady-state setting. We stress that the upper bound
§ is related to the autocorrelation and moment struc-
ture of the process.

3 MEAN SQUARE CONSISTENCY, BIAS,
AND VARIANCE

As previously mentioned, an estimator’s centered mo-
ments such as bias, variance, skewness, and kurto-
sis are measures of goodness of that estimator. A
central limit theorem is also informative about the
quality of an estimator as it provides a rate of con-
vergence. In this section, asymptotic expressions for
the bias and variance of the batch means and area
variance estimators are given. Consistency in the
mean-square sense of these estimators is obtained as
a by-product. (An estimator Y (n) of a parameter
§ is said to be consistent in the mean-square sense
if limy, Lo E[(Y (n) — 6)? = 0.) We place ourselves
in the nonclassical setting by allowing the number of
batches in the two procedures, as well as the batch
sizes, to grow with the sample size.

We now make some assumptions on the batch size
in the procedures. Consider batch sizes of the type
m = yn%, where 0 < @ < 1 and v > 0. (The theory
for general batches is developped in Damerdji (1993).)
We also assume that a is such that

1-6 < a < 1.

Note that a is close to 1 for processes with high cor-
relation, since 6 is close to 0; therefore, m = yn® will
be relatively large. If the process has low correlation,
however, 6 is closer to 1/2, and so « is closer to 1/2
also. Ideally, we would have liked o to be closer to
0 in this case, but 1/2 is the best lower bound we
could achieve using our bounding techniques. For a
nice regenerative process, we get that 6 = 1/4, and
so, we consider a € (3/4,1).

In the remainder of the paper, we will be using
the classical Big-Oh notation, i.e., a(n) = O(b(n))
if |a(n)/b(n)| is bounded by a constant for n large
enough. In the next proposition, the batch means
and area variance estimators are generically denoted
by I'(n).

Proposition 1 We have that

@)

Bias (r(n)) = O(m—1/2n1/2—4\(10gn)1/2)

b)
%Var (F(n)) =21+ 0 (m—lnl_)‘(log n)l/z)'

The rate of convergence we obtain on the bias is
far from being as sharp as that obtained by Golds-
man and Meketon (1993); computing the moments di-
rectly, as they did in their paper, gives sharper rates.
We are able, however, to give a sharp bound on the
variance.

As a consequence of the above proposition, it fol-
lows that the batch means and variance estima-
tors are consistent in the mean-square sense. For
the batch means method, this result was previously
obtained by Carlstein (1986) and Goldsman and
Melamed (1992) (the process was assumed to be
strongly mixing and with stationary increments in the
respective works). Here, we used a different assump-
tion on the process, namely the strong approxima-
tion.

4 HIGHER CENTERED MOMENTS OF
THE VARIANCE ESTIMATORS

We use here the power of the strong approximation
and present asymptotic expressions for any order cen-
tered moment of the batch means and area variance
estimators. Quantities, such as skewness and kur-
tosis, based on higher moments of an estimator are
informative about the quality of that estimator.
Define the skewness and the kurtosis of I'pm(n)

by Skew(I‘bm(n)) = E[(l"(n) - a2>3] and
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4
Kurt(Tom(n)) = E[(T(n) = o?)
These are nonstandard definitions, used for simplic-
ity. Recall that we are not assuming that the process

is stationary, but that it only satisfies the strong ap-
proximation. We get that

] , respectively.

(k — 1)*/2Skew (Pbm(n)) = 808(k — 1)1/
+0 ((k = 1)7%/2) + 0 (m~'a1"X(l0gn)/?)
and
(k — 1)?Kurt (Pbm(n)) = 120%
+0 ((k — 1)‘1) +o (m'lnl_’\(logn)l/z).

Similar results can be obtained for the area variance
estimator, but with (k — 1) replaced by n/m in the
above two expressions.

If the batch size m grows sufficiently fast, we are
able to get the sharper bound

(k — 1)2Skew (Fbm(n)) — 8¢5

+0 ((k - 1)'1) + O(m'3/2n3/2‘)‘(]ogn)1/2).

If the batch size grows sufficiently fast, we have, then,
that Skew (I"bm (n)) ~ 80%/k2. For a nice regenera-
tive process (and so a = 3/4 from a previous discus-
sion), we get that Skew (I"bm(n)) ~ (808/4%)n"1/2,

See also Chien (1993) for an asymptotic expression of
the batch means variance estimator up to the third
moment (via its cumulants).

In order to give expansions for the pth centered
moment, we need to assume that E[C?] < o0. We
get the following proposition, where {Kq: ¢ > 1} is
a sequence of integers, related to the x 2-distribution
(see Kendall, Stuart, and Ord (1987, p. 507) for a
description).

Proposition 2 If E[C?] < oo, we have that
(k- 1)”/2E[(Fbm(n) - 02)p] = Kpo2p
40 ((k - 1)-1) +o0 (m_lnl_)‘(logn)l/z)
for p even, and, for p odd, that
(k — 1)P/2E[(rbm(n) - 02)”] = Ko (k—1)"Y?

+0 ((k - 1)"3/2) +0 (m’lnl"’\(log n)1/2).

The results presented here are large-sample ones.

5 CENTRAL LIMIT THEOREMS

Central limit theorems can also be obtained. These
give rates of convergence. One may also be able to
construct an asymptotically valid confidence interval
for the process variance, if one of the goals of the
simulation is to estimate that parameter.

Proposition 3 For the batch means and the area
methods, we have that

vk (F(n) - 02) — N(0,20%)
as n — O0.

For the batch means case, this theorem can also be
found in Carlstein (1986). It is new for the area es-
timator. An asymptotically (1 — 7)100%-valid confi-
dence interval for o2 is given by

[ I'(n) '(n) ]
1+ zn/2\/m T1- zn/2\/§/—k ’

where z,/9 is the (1 — n/2)-quantile of the standard
normal distribution.

6 CONCLUSION

We have provided here asymptotic expressions for the
moments of the batch means and the area variance es-
timators. As a by-product, we showed consistency in
the mean-square sense of these two estimators. Cen-
tral limit theorems were also provided. These results
extend to the continuous-time case.

Variance estimators other than the batch means
and area estimators, such as the weighted area and
the Cramér-von Mises area variance estimators have
been investigated in Damerdji and Goldsman (1993).
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