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ABSTRACT

We describe a graphical, interactive technique for
modeling bivariate simulation input processes using
a distribution family based on Bézier curves and sur-
faces. This family has an open-ended parameteriza-
tion and is capable of accurately representing an un-
limited variety of shapes for marginal distributions to-
gether with many common types of bivariate stochas-
tic dependence. Our input-modeling technique is im-
plemented in a Windows-based software system called
PrRIME—PRobabilistic Input Modeling Environment.
Several examples illustrate the application of PRIME
to subjective and data-driven estimation of bivariate
distributions representing simulation inputs.

1 INTRODUCTION

One of the central problems in the design and con-
struction of large-scale stochastic simulation exper-
iments is the selection of valid input models—that
is, probability distributions that accurately mimic
the behavior of the random input processes driving
the system. In many applications, it is critical not
only to capture the shape of the marginal distribu-
tion of each major input random variable but also
to represent accurately the stochastic dependencies
between those variates (Lewis and Orav 1989). Al-
though many practitioners appreciate the need for
valid models of multivariate simulation inputs, they
lack effective tools for building such input models.
For many simulation experiments in which stochas-
tic dependencies between input variates are explicitly
modeled, ad hoc methods must be used to incorpo-
rate those features into the experiment; for example,
see Veeramani, Barash, and Wilson (1991).

In this paper we extend the univariate input-
modeling methodology of Wagner and Wilson (1993)
to handle continuous bivariate populations, and we
present a flexible, interactive, graphical technique for
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modeling a broad range of input processes. We intro-
duce Bézier surfaces as the parametric form for the
representation of the bivariate input processes that
arise in simulation experiments. We implemented this
methodology in a Microsoft Windows-based software
system called PRIME—PRobabilistic Input Modeling
Environment.

The remainder of this paper is organized as follows.
In Section 2 we describe our technique for the con-
struction, manipulation, and simulation of bivariate
Bézier distributions as well as the corresponding con-
ditional univariate Bézier distributions. In Section 3
we describe the implementation of this methodology
in PRIME, and in Section 4 we present some exam-
ples illustrating the diversity of bivariate distribu-
tions that can be modeled using this methodology.
Finally, in Section 5 we summarize the main contri-
butions of this work. This paper is based on Flanigan

(1993).

2 FORMULATION OF BIVARIATE
BEZIER DISTRIBUTIONS

2.1 Definition of Bézier Surfaces

Starting from a set of control points represented by
the column vectors {a;; = (:c,',j,yi,j,zi,j)T
0,1,...,ny,j = 0,1,...,ny}, we have the corre-
sponding two-dimensional Bézier surface in three-
dimensional space that is given parametrically as

1 =

Ny

Q(t.mty) = Z Z an,i(tx)Bny,j(ty) q;;

i=0 j=0

Ny

e

for all t,,t, € [0,1], where

Bn ) = m Cry _ g ym=¢ . ¢

2e(t) T =0t g)!t (1-1) for t €0, 1] (2)
is the (th Bernstein polynomial of degree m; see Farin
(1990). Wagner and Wilson (1993) provide some mo-
tivation for using weights of the form (2) to construct



Bivariate Bézier Distributions 325

a parametric representation of a curve or surface as a
convex combination of a set of appropriately defined
control points.

2.2 Bivariate Bézier Distribution Functions

If (X,Y)T is a continuous random vector with
bounded support [z., z*] X [y., y*], unknown cumu-
lative distribution function (c.d.f.) Fxy (-, ), and un-
known probability density function (p.d.f.) fxy(,-),
then we can approximate Fxy(-,-) with an appro-
priate Bézier surface of the form .(1), where the
control points {g;;} have been arranged so as to
ensure the basic requirements of a joint distribu-
tion function: (a) Fxy(z,y) is monotonically non-
decreasing and continuous from the right in z and y;
(b) Fxy(zs,y) = 0 for all y and Fxy(z,y.) = 0 for
all z; (c) Fxy(z*,y*) = 1; and (d) Fxy(22,y2) —
Fxy(z1,y2) = Fxy(z2,91) + Fxy(z1,31) 2 0if 2; <
22 and ¥ < yo.

In view of the computational and statistical ad-
vantages of univariate Bézier distributions detailed in
Wagner and Wilson (1993), we seek to formulate the
bivariate Bézier c.d.f. Fixy(-,-) so that the marginal
distribution of X is a univariate Bézier distribution
whose c.d.f. Fx(-) is represented parametrically by

P(t,) = [Polte), BT = S B it)ps ()

=0
for all t; € [0, 1], where the ith control point in (3)
is p; = [:z:(x), ,(X)]T Similarly, we seek a setup in

which the marginal distribution of Y is a univariate
Bézier distribution whose c.d.f. Fy( ) is represented
parametrically by

L(ty) = [Ly(ty), La(t)]T = D _ B j(ty)l;  (4)
=0
for all t, € [0, 1], where the jth control point in (4) is
=y (y), fy)]T As explained in Flanigan (1993),
the coordmates of the control points used in displays
(1), (3), and (4) must related as follows:

z _z(x)
g fori=0,1,...,n; & j=0,1,...,ny
— oY)
Yij =Y, (r)
5
and
0 [= zgx) =z"]ifi=0orj=0
z.gy) fori=nzand j=1,2,...,ny =1
zij =
v z,(X) forj=nyandi=12,...,n;, -1

1 [= z’({:) = 251 )] fori = 771:;] =Ny

(6)

In terms of the setup specified by displays (3)-(6),
we see that the joint c.d.f. Fxy (-, ) of the Bézier ran-
dom vector (X, Y)T is given parametrically by

Q(ts,ty) (7)

= [Q:(tz,ty), Qyltz,ty), Qz(tz‘ty)]T
[Pr(tz)’ Ly(ty)’ Qz (t:mty)]T

for all ¢;,2, € [0, 1]; and it is straightforward to ver-
ify that a bivariate Bézier distribution for (X,Y)T
whose c.d.f. Fxy(-,-) is defined by equations (5)—(7)
will have marginal c.d.f.’s Fx(-) and Fy(-) for X and
Y that are given parametrically by (3) and (4), re-
spectively. Notice that the stochastic dependency
between X and Y is represented by the {z; : i =
l,...,n; =1, j=1,...,ny — 1}—that is, by the z-
coordinates that are not specified in (6).

If X and Y are independent, then we take z; ; =
zgx) ) for i = I,...,ng—land j=1,...,ny,—1
so that the joint distribution function factors into the
product of the two marginal distribution functions:

Q. (tz,ty) = Py(ts) - L.(ty) for all £, 1, € [0, 1]; (8)

and (8) is equivalent to the more familiar factoriza-
tion Fixy(z,y) = Fx(z)- Fy(y) for all z, y.

2.3 Bivariate Bézier Density Functions

For the bivariate random vector (X,Y)T whose joint
c.d.f. Fxy(:,-) is specified by equation (1), the corre-
sponding joint p.d.f. fxy(:,-) is given parametrically
by

Q" (ts,1y) 9)
= [Q:(fl‘vty)v Q;(ttvty)v Q:(tzvty)]T
[P.L‘(t.l.‘)v Ly(ty)’ Q:(tl')t!/)]T

for all t,,t, € [0, 1], where
Q:(txvty) = (10)
nx—lny_l

> Baowalts)

i=0 j=0
ne=1
E Bn,—lz z Alz

with Az; = 2541 —2; (fori =0,1,...,n, — 1) and
Ayj = yj41—y; (for j=0,1,...,ny — 1) respectively
representing the corresponding first differences of the
- and y-coordinates of the control points {g; j}in
the formulation (1) of the joint c.d.f., and

Bn,-1i(ty) Aidjzi;

)
ny—1

Z B"y‘an )AyJ

j=0

AiAjzij = zig1j41 = Zige1 — Zigry +2ij (1)
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(for ¢ = 0,1,...,n; — 1l and j = 0,1,...,ny — 1)
representing the corresponding second partial differ-
ences of the z-coordinates of those control points. A
detailed justification of (9)—(11) is given in Flanigan
(1993).

2.4 Conditional Bézier Distributions

Given Y = y(ty) = Ly(ty), the conditional c.d.f. of X
at the point z(t;) = P;(t;) is univariate Bézier with

FX|Y[Z(ta:)|y(ty)] = (12)
ny ny—1
ZB"rv"(tI) { E Bn,-1,i(ty) [z, 41 — -’i,j]}
i=1 j=0
ny—1
3" Bayouj(ty) Az
j=0

provided fy[y(ty)] > 0. It follows from (12) that the
control points {[z;, ,("‘IY)]T 1=0,1,...,n;} for the
Bézier curve representing the coudltlonal distribution
of X given Y = y(t,) have the same 2-coordinates as
in (3); and the corresponding z-coordinates are given
by
ny—1
> Bayo1,i(ty) [7i,541 — 7,5
(Xly) _ =0
2 - ny—1
v
D Bay-i(ty) Az

j=0

(13)

for i =0,1,...,n,. An analogous formulation yields
Fy x(:|-), the conditional distribution of ¥ given ..
2.5 Covariance between Bézier Variates

The covariance between X and Y is given by

ne—1 ny—1

Cov(X,Y) Z Zv(’“o(’)AA-,,, (14)
=0

where
'1 nr (ng)(ne—1 1 )
02)() = |3 __—( f_)”(x_’l )a:e - E[X] (15)
L“ ¢=0 i+e ) ]
fori=0,1,...,ng,
— 1 b
1
= |k 0(_1 ) | —E[¥] (16)
9 ny )
L k=0 J+L
for j =0,1,...,ny, and A;Ajz;; is defined by (11).

For the random variable X (respectively, Y'), the ex-
pected value E[X] (respectively, E[Y]) and the vari-
ance Var[X] (respectively, Var[Y]) are readily evalu-
ated using computational formulas given in Wagner

and Wilson (1993) and derived in Flanigan (1993).
Thus Corr(X,Y), the correlation between X and Y is
readily evaluated as Cov(X,Y)/[Var(X)Var(Y)]'/2,

2.6 Gencration of Bézier Vectors

The random vector (X,¥)T can be generated us-
ing the method of conditional distributions as fol-
lows. Given a pair of independent random numbers
U, and Us, we compute Y from U; by inversion of
the marginal c.d.f. Fx(-); then given Y, we com-
pute X from Us by inversion of the conditional c.d f.
Fx|y(-|Y). Specifically, this involves the following
steps:

1. Generate Uy, Uy ~ Uniform[0, 1] independently.
2. Find {, € [0,1] such that

Ny

> B, j(f):") = U (17)

i=0

3. Find £, € [0,1] such that

Ny

3" Ba,a(te)z X = Uy; (18)

4. Deliver the vector

T = (19)
T
Nx . Ny .
ZBn,,i(tI)ziy any,j(ty)yj
i=0 j=0

Notice that a root-finding procedure is required to
compute the solutions to equations (17) and (18).

3 MODELING BIVARIATE BEZIER DIS-
TRIBUTIONS USING PRIME

PRIME, PRobabilistic Input Modeling Environment,
is a graphical Microsoft Windows—based software sys-
tem that incorporates the methodology developed in
Section 2 to help an analyst estimate the bivariate
input processes that arise in large-scale simulation
studies. PRIME is designed for IBM-compatible mi-
crocomputers equipped with a math coprocessor and
a pointing device such as a mouse. It is written en-
tirely in the C programming language, and it has
been developed to run under version 3.1 of Microsoft
Windows (Microsoft Corporation 1992). PRIME is de-
signed to be easy and intuitive to use. The construc-
tion of a bivariate distribution is performed through
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Figure 1: A Typical Bivariate PRIME Session

the actions of the mouse, and several options are con-
veniently available through menu selections.

In PRIME, the user manipulates the marginal dis-
tributions independently of each other; then to com-
plete the construction of a bivariate input model,
the user manipulates the joint p.d.f. (9) or selected
conditional c.d.f.’s like (12). For example, to edit
(subjectively estimate) the marginal c.d.f. (4) of Y,
the user may add, delete, or move the control points
{t; - j =0,1,...,n,} by moving the mouse within
a window depicting Fy (-). Control points are repre-
sented as small black squares, and each control point
is given a unique label corresponding to its index j
in equation (4). Each control point acts like a “mag-
net” pulling the curve in the direction of the control
point, where the Bernstein polynomials (2) govern
the strength of the “magnetic attraction” of each con-
trol point. The movement of a control point causes
the displayed curve to be updated (nearly) instan-
taneously. Figure 1 displays a typical PRIME ses-
sion depicting a bivariate joint density fxy (-,-) with
Cov(X,Y) = 2.657 and Corr(X,Y) = 0.345, the
marginal density fx(-), and the conditional density
fxy (Y = 4.0).

In addition to subjective estimation of bivariate
Bézier distributions by interactive manipulation of
the control points, PRIME allows data-driven estima-
tion of the control points that yield the “best” fit to
the sample data according to a variety of statistical-
estimation principles. In the next section we illustrate
both modes of operation for PRIME.

4 EXAMPLES

4.1 Fitting Bivariate Distributions
Subjectively

In the absence of data, PRIME can be used to con-
struct a bivariate input process conceptualized from
subjective information and expertise. The represen-
tation of the conceptualized distribution is achieved
by: (a) constructing the two marginal distributions
by manipulating the control points associated with
each marginal distribution; and (b) representing the
dependencies between the two marginal distributions
by either moving the control points associated with
the joint density, or by moving the control points as-
sociated with the conditional distributions.

For example, suppose it is known that the process-
ing times for two successive manufacturing operations
are negatively correlated, with correlation coefficient
of —0.37. The distribution of the first processing time
is denoted by X, where X is known to have a mini-
muim value of 2 minutes, a maximum value of 6 min-
utes, and a most likely (modal) value of 3 minutes.
The distribution of the second processing time is de-
noted by Y, where Y is known to have a minimum
value of 3 minutes, a maximum value of 9 minutes,
and a most likely (modal) value of 6 minutes. To con-
struct the joint distribution of (X,Y), we must first
define the two marginal distributions. Figure 2 shows
the two marginal distributions that were defined by
placing the control points corresponding to the re-
spective marginal distributions. After the marginal
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Figure 2: A Bivariate Distribution of Processing Times (X,Y)T with Corr(.X,Y) = —0.369

distributions were satisfactorily constructed, the de-
pendencies between X and Y were modeled. In this
case, the dependencies were modeled by moving the
control points associated with the conditional distri-
butions until the correlation of the fitted joint dis-
tribution was approximately equal to —0.37. In Fig-
ure 2, the displayed joint distribution has a correla-
tion of —0.369.

4.1.1 Uniform Marginal Distributions

Figure 3 depicts a PRIME session where each
marginal distribution is uniform; that is, X' ~
Uniform[0, 10] and Y ~ Uniform([0, 10]. Figure 3
displays a bivariate distribution for (X, Y)T with
Cov(X,Y) = —5.322 and Corr(X,Y) = —0.645. Be-
neath the window containing the joint p.d.f.,, there are
two windows displaying the marginal c.d.f.’s, Fix(:)
and Fy(-); and these latter windows also display as
dashed curves the corresponding marginal p.d.f.’s,
fx(-) and fy(-). To the right of the joint p.d.f. win-
dow are two windows depicting the conditional c.d.f.’s
Fy x(:|X = 9.0) and Fxy(:]Y = 2.0); and these
c.d.f. windows also display as dashed curves the cor-
responding conditional p.d.f.’s. As shown in the joint
p-d.f. window, most of the probability mass is con-
centrated along the line y = —z + 10.

4.1.2 Nonuniform Marginal Distributions

Figure 4 depicts the joint c.d.f. and p.d.f. of the

nonuniform random vector (.X',Y)T. Notice that for
this case, Cov(.X,Y) = 2.133 and Corr(X,Y) =
0.539. Figure 4 also shows the conditional c.d.f.’s
Fy|,\'(Y"\’ = 30) and Fx|y("‘{ly = 80)

4.2 Fitting Bivariate Distributions to Data

Suppose that a random sample {(Xi,Yi)T : k =
1,2,...,m} has been taken from an unknown contin-
uous bivariate distribution, and we seek to approx-
imate this distribution with a bivariate Bézier c.d.f.
Fxy(-,-). Let

Fm(l',y) = #{('\’k$y'k) : Xk S i, Yk S y}/m

denote the corresponding empirical c.d.f., and let
Fin(z) and G, (y) denote the corresponding marginal
empirical c¢.d.f.’s for X and Y, respectively.

After fitting a marginal distribution separately to
each component of the random sample {(Xx,Ys)T},
the user can model the dependencies between these
components. The dependencies are modeled by mov-
ing the control points associated with either the
Joint Bézier p.d.f. fxy(-,-) or the conditional Bézier
c.df’s or p.d.f’s until the desired stochastic de-
pendence is achieved. Figure 5 displays the fit-
ted joint p.d.f., a superimposed bivariate histogram,
and the fitted marginal distributions that were es-
timated by the method of moments from a random
sample {(X;,¥)T : k = 1,2,...,m} of size m =
44 with sample statistics Cov(X,Y) = —1.979 and
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Figure 5: A Bivariate Distribution Fit to Data

(%?r(X,Y) = —0.255. After each marginal distribu-
tion was satisfactorily fitted to its corresponding com-
ponent of the sample {(X,Y%)}, the dependencies
between X and Y were modeled. The control points
for the joint p.d.f. were manipulated until the theoret-
ical covariance Cov(X,Y’) for the fitted distribution

matched the sample covariance @(X, Y) = -1.979.

4.3 Manipulating Conditional Distributions

The conditional p.d.f.’s and c.d.f.’s are edited in the
same manner as the marginal distributions, except
that the control points for the conditional p.d.f.’s and
c.d.f.’s are only allowed to move in the vertical direc-
tion.

5 SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS

5.1 Bivariate Bézier Distribution Families

If (X,Y)T is a continuous random vector having a
bivariate Bézier distribution function Fxy (-,-) as de-
fined in Section 2.2, then the distribution of (X, ¥)T
has the following properties:

e The joint c.d.f., represented parametrically by
(1) as a Bézier surface, is similar in form to a
Bézier curve. The Bernstein polynomials (2) are
the same basis functions used for both Bézier
curves and Bézier surfaces.

e The joint p.d.f., fxy(-,"), has a closed-form para-
metric representation as a ratio of Bézier func-
tions, as given by (10).

e The conditional c.d.f.’s, Fx|y(:|) and Fy|x(-|),
have the same parametric form as the univariate
marginal c.d.f.’s; and the control points that de-
fine the conditional c.d.f.’s are easily related to
the control points that define the joint c.d.f.

o The conditional p.d.f’s, fxy(:|-) and fy|x(:|),
have the same parametric form as the univariate
marginal p.d.f.’s; and the control points that de-
fine the conditional p.d.f.’s are easily related to
the control points that define the joint c.d.f.

e The covariance between X and Y, Cov(X,Y),
for a joint distribution function represented para-
metrically as a Bézier surface, has a closed-form
expression given by (14).

o The parameterization of the bivariate Bézier dis-
tribution family is both natural and open-ended.
The coordinates of the control points define the
distribution parameters; and if additional flexi-
bility is required, it is easily achieved by adding
more control points.

9.2 Modeling Simulation Inputs with PRIME

From the user’s point of view, PRIME is an easy-
to-use, intuitive, graphical software system. PRIME
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provides immediate, visual feedback on the currently
configured distribution. The user can easily alter
an inappropriately configured distribution by adding,
deleting, or relocating one or more of the relevant con-
trol points for the joint p.d.f., the marginal p.d.f.’s or
c.d.f.’s, or the conditional c¢.d.f.’s or p.d.f.'s. PRIME
also provides a framework for viewing and manipu-
lating bivariate distributions.

5.3 Recommendations for Future Work

Several aspects of this work require further devel-
opment. Of particular interest is the extension of
the methodology to handle trivariate and higher-
dimensional distributions. For subjective estimation
of continuous multivariate distributions, we also re-
quire more comprehensive techniques for visually rep-
resenting and manipulating general types of stochas-
tic dependence. For data-driven estimation of con-
tinuous multivariate distributions, we require fully
automated fitting schemes to estimate not only the
marginal distributions of the target random vector
but also the stochastic dependency structure between
components of that random vector.
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