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ABSTRACT

When the simulation point estimator is the sample vari-
ance, its standard error can be estimated using batch
variances, which are analogous to batch means for the
standard error of the sample mean. We suggest a
modification to the definition of OBV for analytical trac-
tability and to improve its statistical propertics. We dis-
cuss conjectures about when overlapping batch variances
(OBV) is consistent. In particular, we argue that OBV
seems likely to be consistent (almost) whenever overlap-
ping batch means (OBM) is consistent. Both the
definition modification and the consistency conjecture
seem relevant to all overlapping batch statistics (OBS)
estimators where the point estimator can be interpreted
as the mean of a related stochastic process.

1 INTRODUCTION

Steady-state simulation experiments produce output data
{X1,X2,...,X,}, from which a point cstimator 0 is
calculated. Typical point estimators are the sample
mcan
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for the process mean W and the sample variance
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for the process variance 0. We consider the simulation
output analysis problem of determining the standard er-
ror of the point cstimator s
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Schmeiser, Avramidis, and Hashem (1990) discuss
overlapping batch statistics (OBS) to estimate the stan-
dard error of general point estimators 9 from statxonary
output processes. The OBS estimator of var(e) is, for a
given batch size m,
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where the j% batch statistic ) ; is the point estimator cal-
culated from the j™ 'batch of observations:
(X, X415+ Xjgm- 1}. The standard error of 0 is
then esumated by Vs(m)mZ

OBM and OBV are special cases of OBS. The OBM
estimator of var(X) is

m n-m+l _
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where X =m 12“’" 1X;. The OBV estimator of
var(S?) is

m n-m+l

Vy(m) = z ($?-5%?,
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where SJZ =(m-1)"! Z{:}"‘l X; —fj)z.

For OBM and OBV, as for all OBS estimators, the
choice of batch size m is central to the statistical perfor-
mance. For any particular estimator, the appropriate
batch size is a function of simulation run length n and
unknown properties of the output process {X;}.
Although quite a lot is known for OBM, litle is known
about OBV, including even the fundamental issue Of
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whenever OBV provides a consistent estimator of
lim,,_,.. nvar(S?). (In intcresting cases
lim, |, » vaI(G) 0, in which case Vg(m) converges
trivially to lim,, _, . var(e) Therefore, we are interest-
ed in estimating lim,, _, .. nvar(0) consistently.)

In Section 2 we review some results for OBM, ending
with a conjecture that summarizes various conditions for
consistency. In Section 3 we argue for modifying the
definition of OBV, both to simplify analysis and to im-
prove statistical performance. In Section 4 we discuss a
sequence of conjectures that argue that OBV is con-
sistent for lim,,_,., nvar(S 2) when OBM is consistent
for lim,, e nvar()?).

2 CONSISTENCY OF OBM

Under mild conditions, n17M (m) is an mse-consistent es-
timator of lim,,_,.. nvar(f); that is, the bias and vari-
ance go to zero as 1 — oo, Roughly, if the batch-size
rule satisfies m — oo and n/im — o as n — oo, then

lim,_,.. mbias[nVy(m)] = -y, 6>

and

i e var{n Py m)] = %(700'2)2 ,

where the sum of autocorrelations is

Yo = Z Ph—1+22Ph

h=—c0

and the weighted sum of autocorrclations is

v=X |hlen —22 hipn

h=—c0

and pp = corr(X;, Xish)-

Damerdji (1991), Pedrosa (1994), and Song and
Schmeiser (1994) provide various conditions under
which these two limits hold. Without specifying precise
conditions, we combine these rcsults as

Conjecture 1. For covariance-stationary data {(X;}, if
0 < 6% < o0, y] < o0, and m and n/im go to infinity as
n — oo, then nVy(m) is an msc-consistent estimator

of lim,,_,.. nvar(X).

3 REDEFINING OBV

The original definition of OBV has two disadvantages.
First, the use of /m—1, rather than m, in the definition of
the batch variances S and of n-— 1 rather than n, in the
definition of the grand variance S complicates analysis
with essentially no statistical benefit, because simulation
batch sizes and run lengths are typically quite big. The
usual purpose — obtaining an unbiased estimator — is
not compelling, because the nonzero autocorrelations
cause some bias and because the smaller mean squared
error (mse) obtained by using the sample size is appeal-
ing (Ceylan and Schmeiser 1993).

Second, statistical performance and analysis tractabili-
ty are improved by using the grand sample mean X rath-
er than the batch sample means X in the definition of
S that is, now

1 , _
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and

n —
S? =ll Y (X -X)? .

The grand sample mean is available and is a better esti-
mator of [t than the batch mean. Computation is still
possible in O (1) time.

4 CONSISTENCY OF OBV

Using the new definition of OBV, we now propose a
conjecture that says that OBV works under conditions
similar to those nceded for OBM. Let o4 denote
E[((X; — ],1)/(5)4], the fourth standard moment of X;.

Conjecture 2. For covariance-stationary data {X;}, if
0<0%<eo, 1 <0y <o ¥ <o, and m and n/m
go 1o infinity as n — oo, then ll&v(m) is an mse-
consistent estimator of lim,; _ye nvar(Sz).

Conjecture 2 adds only the requirement that the fourth
moment be finite and greater than one. For 04 = 1, the
data are binary, which causes var(S%) = O (n~?) rather
than O (n™1) (Ceylan and Schmeiser 1993).

The argument for Conjecture 2 rests on viewing OBV
as an application of OBM to the data process of squared
deviations from the sample mean.
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Result 3. OBV applied to the data process {X;} is alge-
braically equivalent to OBM applied to the data pro-
cess {(X;i=X)?).

The proof is trivial because under the new definition
lhe sample batch variances S2 and the sample variance
52 are sample averages of Lhe squared deviations from
the sample mean.

Because of Result 3, OBV is consistent for {X;} if
and only if OBM applied to the squarcd-deviations pro-
cess is consistent. Let tildes on process propertigg
denote the squared-deviations process; for example, ©
is the variance of (X; — X)?.

Conjectur_g 4. Fog:2 covafiance-statjona_ry data
{(X; —X)?)},if0 <G < oo,y <o, and mand n/m
go to infinity as n — oo, then nvv(m) is an mse-
consistent estimator of lim,, _,., nvar(S 2).

Result 5 and Conjecture 6 provide the two conditions
necded for Conjecture 4 to be applicable: that the
squared-deviations process is covariance stationary and
that Lhe weighted sum of autocorrelations ¥; is finite.
Let a4 be the fourth standard moment of X, which
asymptotically has the value three if Xis asymptolically
normal.

Result 5. Assume that y;, 04, and 54 are finite. The
squared-deviations process {(X; — X )%} is asymptoti-
cally covariance stationary if the original data process
{X;} is covariance stationary. That is,

5(a) lim E[(X; - X)*] = E[(X; - p)*] = o*

n — co

5(b) lim var[(X; - X)2] = var[(X; — )?]

=(04 - 1o* ,
and

5(c) lim cov[(X; = X)%, Xisn — X)?]

n— o
=cov[(X; =), Kiwn =1, h=1,2,.,
independent of 1.

The proof of Result 5, which is not given here, con-
sists of expanding terms and taking expected values.

Conjecture 6 says that the squared-deviations process
has sufficient mixing if the original data process mixes
sulficicntly.

Conjecture 6. If Y] < oo, theny; < oo,

The argument for Conjecture 6 consists of examples
where the result holds, and the lack of a counterexample.
For processes with noxmzll marginal distributions,
;5,, = p2 and therefore 0 < [Pr| <|Pn|forh=1,2,.
(Patel and Read 1982). In the appendix we show that the
conjecture  holds for first-order ~moving-average
processes with arbitrary marginal distributions on the er-
ror terms. Monte Carlo simulation results are consistent
with the conjecture for steady-state M /M /1 queue wait-
ing time processes. Numerical integration results indi-
cate that ||5| < |p] for bivariate lognormal data. We have
no counterexample for | Py | < | Pp |-

5 SUMMARY

Via a scquence of six results and conjectures, we have
argued that using OBV to estimate the standard error of
the sample variance is reasonable whenever using OBM
to estimate the standard error of the sample mean is rea-
sonable. The argument is quite heuristic, based on view-
ing the sample variance as a sample mean. (See also Pri-
estley 1992, p. 321.) It nevertheless adds confidence to
our empirical experience. The only counterexample,
symmetric binary marginal distributions, is pathological
and casy to identify in practice.

The points made here about OBV estimators seem
likely to be relevant to the more general OBS estimators.
Grand point estimates should be used where possible.
For OBS estimators where the point estimator can be
viewed as a sample mean of a related process, applica-
tion sccms likely to work well. In addition, the ideas of
this paper also apply to other batching estimators (Song
and Schmeiser 1993).

APPENDIX

We show here that Conjecture 6, that 7y finite implies &1
finite, holds for the steady-state MA(1) process

Xi=g;+ag_ ,

where the crror terms {€;} are independent with zcro
mean, variance Gg, and fourth standardized moment aﬁ.
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Because pp = E’h =0 for h=2,3,..., the argument
reduces to showing that |p| < |py|.

|p1] =|corr(X3, X3)|
E(X1x3) - E(X])EX3)
var(X})

at(§-1)
(1+a?) oy - 1)

<|2 corr® (X1, X2)|
< ICOI'I'(X], X2)|

=[P1] -

The first two and last equalities are by definitions. The
third equality follows from o’ = 0'% 1+ az) and
EX3X3)=(a%0§ +a* +a® +1)cf (Song 1988).
The first inequality follows from

€
o —1
4 <

’

a4—1 -

which follows from (Song 1988)

2a?

(Cl4 - 3) .

€
o3 =04 +
1+a*

The last inequality is true because p; < 1/2.
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