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ABSTRACT

This paper investigates the performance of the vector-
autoregressive method of analyzing multivariate out-
put data (numbers in subsystem) from queueing net-
work models vis-a-vis three other methods of multi-
variate analysis—Bonferroni batch means, multivari-
ate batch means, and spectral analysis. Differences
in performance for all methods are found when time
averages of numbers in subsystem are used rather
than discretized observations taken at equally spaced
points in simulated time. Further investigation is
made into the effect of varying the spacing of aver-
aging times for the methods. The results show that
the analysis of time averages rather than discretized
observations leads to slightly improved performance
for all methods considered but that there is little dif-
ference in the relative performance of the methods
considered.

1 INTRODUCTION

The VAR (vector-autoregressive) method of making
statistical inferences on the mean vector of simulation
output was studied by Jow (1982), and Charnes and
Kelton (1993). In the latter, both open- and closed-
system multiple queueing networks were studied by
analyzing the vectors of “snapshots” (discretized vec-
tor observations) of the numbers in subsystem at
equally spaced moments in simulated time. It was
found that the VAR method worked quite well rela-
tive to the other output analytic methods with which
it was compared.

However, the data resulting from taking snap-
shots of numbers in subsystem are integer-valued, and
the VAR method uses the continuous-space vector-
autoregressive model for making inferences. An obvi-
ous issue to investigate is whether the VAR method
might work better for continuous output than it does
for discrete. This paper reports such an investigation.
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The specific questions considered here are: (i) Is
the coverage of VAR improved when time averages of
numbers in subsystem are analyzed instead of snap-
shots of numbers in subsystem, and (i) How is the
coverage of VAR confidence regions affected by vary-
ing the spacing of the times at which the averages
are taken? The next section of this paper describes
briefly the VAR method of output analysis. Follow-
ing that, the experiment is described and the results
given. The concluding section gives implications and
directions for future research.

2 VAR OUTPUT ANALYSIS

The basic notion underlying the VAR method of out-
put analysis is to model the simulation’s steady-state
data-generation process as a vector-autoregressive
process, estimate the VAR parameters from the simu-
lation output, and then use the estimated parameters
to construct confidence regions on the mean vector of

the steady-state simulation output process.
The VAR model is

Xi—p+A(Xemi—p)+ -+ A (Xip —p) = ¢

where X; = (X1, Xa,..., Xa;)" is the d x 1 vector of
observations at time ¢, E[X,] = p = (g1, g2, - - Hd)'
is the parameter on which inference is to be made,
and the A, = [—afj] are d x d matrices of autore-
gression coefficients. The vector of random errors at
time ¢, ¢, = (e14,€2;,...,€4;), is multivariate white
noise (not necessarily Gaussian) with d x d variance-
covariance matrix ¥, i.e.,

z if h=0

E = =
&) = Ouxs and Ele,ypg] = { O4xa oOtherwise

(0 denotes an all-zero matrix of the indicated dimen-
sions).

It is assumed that the process is stationary, i.e.,
that the roots of

IId+AIZ+A222+"'+ApZPI=O
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are outside the unit circle in the complex plane (I is
the d x d identity matrix), so that neither g nor the
A.’s depend on time. For such a process is defined
the lag-h autocovariance matrix

L(h) = E [(Xepn — p)(Xe — p)'] .

From an observed output sequence {X;,...,X,}
on a stationary VAR(p) model the estimator of p used

1S
ln
o= - X;.

The autocovariance matrices I'(h) can then be esti-
mated by

n—h
-~ 1 - .
L(h) = — D (Xegn — B)(Xe — ),
i=1

forh=0,1,...,n—-1.

The algorithm reported in Charnes and Kelton
(1993) proceeds as follows. Use the BIC criterion
(Liitkepohl 1985, 1993) to select the order p of
the VAR model, and the Durbin-Levinson algorithm
(Durbin 1960, Levinson 1946, Whittle 1983) to solve
recursively the Yule-Walker equations with the esti-
mated autocovariance matrices,

£O)+AT(-1)+---+A,T(-p) = =
L(h)+ A T(h—1)+---+ A, T(h-p) = 0,

for h = 1,...,p, to obtain the estimators Kﬁ of Ay
for k =0,1,...,p (by definition, Ag = Is = Ag) and
¥ of . Letting

§-3 A
k=0

the VAR confidence region is the d-dimensional ellip-
soid

{6:n(@- /28 -0) <xPa(d) ]

where x2_,(d) is the 100(1 — a)% percentile of the
chi-square distribution with d d.f. Because the VAR
model approximates the relationships among out-
put vectors observed at different points in simulated
time, it accounts for both autocorrelation and cross-
correlation in the simulation data-generation process.

The methods to which VAR is compared here,
BBM (Bonferroni batch means), MBM (multivariate
batch means), and SPA (spectral analytic), account
for autocorrelation and cross-correlation in different
ways. BBM is a method for combining the results of

Factor Levels
Design | System
Point Type d n
1 open 2 4,096
2 open 2 8,192
3 open 4 4,096
4 open 4 8,192
5 closed 2 4,096
6 closed 2 8,192
7 closed 4 4,096
8 closed 4 8,192

Table 1: Factor Combinations for Experiments

two or more univariate analyses; MBM is a general-
ization of the univariate batch means method; and
SPA is a frequency-domain time-series technique (as
opposed to time-domain, as is VAR). See Charnes and
Kelton (1993) for further discussion of these methods.

3 DESCRIPTION OF EXPERIMENTS

The experiments reported here used both open- and
closed-system queueing networks having exponen-
tially distributed service times and Poisson arrivals
to the open system. See Charnes and Kelton (1993)
for a fuller description of these networks. The same
systems are used here because the interest is in com-
paring the previous results (obtained with snapshots
of numbers in subsystem) to the results obtained here
(with time averages of numbers in subsytem).

We consider only exponential distributions for ser-
vice times here both in the interest of conserving
space in the Proceedings and because a common be-
lief among researchers in simulation output analysis
is that the highly skewed exponential distributions
yield the “hardest” data to analyze, i.e., if an out-
put analytic method works well for data from queue-
ing models using exponential distributions, then it
is likely that it will also work well for models using
less-skewed distributions.

For the experiments, eight design points were used
as a result of considering three factors at two levels
each. The factors are: (1) type of queueing network,
open and closed; (2) the dimension of the vectors of
data to be analyzed, d = 2 and d = 4; and (3) the
number of vector observations to be analyzed, n =
4096 and n = 8192. Table 1 gives the assignment of
design point number to each combination of factors.

For each design point the steady-state distribution
of the vectors of numbers in subsystem are known.
The corresponding steady-state distribution was used
to generate the initial numbers in subsytem for each
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replication. Thus there was no initial transient bias
in the observations generated for the experiments re-
ported here.

In Charnes and Kelton (1993) the observations that
were analyzed consisted of d-dimensional vector snap-
shots of numbers in subsystem observed at points in
time that were spaced equally every w = 3.0 units of
simulated time. Question () in §1 asks if the coverage
of VAR is improved if time averages are analyzed in-
stead of snapshots. To answer this, the experiments
run previously were run again exactly as they were
when the snapshots were obtained; however, in the re-
runs time averages were calculated during each period
of time w = 3.0 instead of using the discrete numbers
in subsystem at each observation time. Question (i7)
in §1 asks how the coverage of VAR confidence re-
gions is affected by varying the spacing of the times
at which the averages were taken. To answer this, the
interobservation time, w, was varied between 1.0 and
12.0.

4 RESULTS OF EXPERIMENTS

4.1 Snapshots vs. Time Averages

Denote the vector of numbers in subsystem at time,
tas Q(t) = (Ql(t)iQZ(t))'-‘de(t))Tl where QJ(t)
is the number of customers in queue j at time ¢,
plus one if the jth server is busy. The observa-
tions analyzed when snapshots are used are then
Q(t1),Q(t2), - .., Q(tn) where t; = iw. The observa-
tions analyzed when time averages are used are then
Qt(tl),Q(tg),...,Q(tn) where t; = iw and Q(t;) =
e Q(t)dt/w.

For the queueing models simulated here, the true
mean vector is known. Thus, the coverage of each
method can be estimated empirically by making sev-
eral independent runs of the model, calculating the
confidence regions from the observations generated,
and then checking whether the true mean vector fell
within the d-dimensional confidence region. The ex-
periments reported here consisted of 100 independent
runs at each design point. Thus the empirical cover-
age reported for each method is the proportion of the
100 runs for which the indicated confidence region
contained the true mean. This empirical coverage is
denoted in the graphs of the next subsection as ¥.

Table 2 compares the coverage obtained with 90%
confidence regions calculated from snapshots (in the
column labeled “Snap”) and time averages (in the
column labeled “TAvg”) for the BBM, MBM, SPA,
and VAR methods at each of the eight design points.
While the coverage is improved at many design
points, it is not improved at every point. In particu-

Design BBM MBM

Point | Snap TAvg | Snap TAvg
1 0.85 0.87 | 0.84 0.89

2 0.86 0.86 | 0.82 0.87

3 0.87 0.92 | 0.83 0.87

4 0.80 0.90 | 0.89 0.88

5 0.93 0.87 | 0.86 0.80

6

7

8

0.97 0.98 | 0.86 0.88
095 0.89 | 0.88 0.86
0.8 0.86 | 0.84 0.3
Avg 090 0.89 | 0.85 0.86

SPA VAR

Point | Snap TAvg | Snap TAvg
1 0.86 089 | 079 0.86

2 0.83 0.86 | 0.78 0.82

3 0.84 090 | 0.80 0.89

4 0.89 0.90 | 0.86 0.88

5 0.89 081 | 086 0.79

6

7

8

0.89 091 | 0.84 0.89
091 087 | 085 085
08 084 | 084 0.79
Avg 087 087 | 0.83 0385

Table 2: Comparison of Coverage for Snapshot Ob-
servations vs. Time Average Observations

lar, the coverage of every method is much lower with
time averages than with snapshots at Design Point
5; in addition, the VAR coverage is much lower with
time averages than with snapshots at Design Point 8.

4.2 Spacing of Averaging Times

To investigate the effects on coverage of varying the
spacing of the times at which the time averages are
observed, the queueing models described above were
used to generate the same number of observations, n,
as specified in Table 1. Thus the simulations were
run for a total of nw units of simulated time.

Figures 77-7? are plots of 4 (coverage) vs. w (in-
terobservation time) for each design point. The plot-
ted data were obtained by specifying w at the inte-
gers 1, 2,...,12. The nominal coverage of the regions
(0.90) is indicated on each plot by a horizontal arrow.

In general, the plots show low coverage for all meth-
ods when w is small (1 or 2), with improved coverage
as w increases. The variability of the coverage for
w > 3 is what is to be expected as the standard er-
ror for 90% confidence intervals with 100 independent
replications is /(.90(.10))/100 = .03 and the cover-
ages for larger w mostly fall within the two-standard-
error range of .84 to .96.

An interesting characteristic of the plots is the ten-
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dency of the coverages to follow each other. That
is, in general no one method vastly outperforms any
other method, and the coverages of all the methods
seem to be relatively close to each other. This effect is
more pronounced in the open networks (Figures 1-4)
than in the closed networks (Figures 5-8).

5 CONCLUSION

This paper is part of an investigation of the behavior
of the VAR method of output analysis. The two ques-
tions posed in the Introduction are answered here: (%)
The coverage of VAR s improved when time aver-
ages are taken instead of snapshots (but not in every
case). Apparently the continuous-space VAR model
does a fairly adequate job of modeling even when the
process being modeled has discrete output, but the
time-averaging may provide central limit effects that
help improve the performance modestly. (i7) The cov-
erage of VAR is affected by the spacing of the time
averages, but the effect is only obvious for low val-
ues of w. After w is about 3 or 4, the plots shown
here indicate that the coverage fluctuates as would
be expected due to sampling error. This implies that
the spacing w need not be more than about 3 or 4
(this should be compared to the interarrival time of
1.0 for open queueing systems and service times of .8,
7, 6, .5, and .4 for both open and closed queueing
systems).

In comparing the methods BBM, MBM, SPA, and
VAR to each other, it appears that there is little dif-
ference in the coverage of the methods. This implies
that the choice of which method to use should be
made on some other criterion than coverage. Pre-
vious work has shown that the VAR method yields
confidence regions that are somewhat smaller (more
precise) on average than the other methods. How-
ever, the final choice of a method should probably be
based upon what an analyst is comfortable with. The
use of a method that an analyst does not understand
could very well lead to erroneous conclusions.

Future work might consider how the comparisons
reported here fare with queueing models having
higher traffic intensities. With the arrival rate set
at 1.0 in the open sytems, and the service rates in
both systems at .8, .7, .6, .5, and .4, the congestion
level of the queueing networks might not be as high
as would be experienced in practice. Higher levels of
congestion in the systems could give different results.
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