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ABSTRACT

This paper presents a new methodology for improv-
ing the search techniques currently being used in
standard Response Surface Methodology (RSM) al-
gorithms. RSM is a collection of mathematical and
statistical techniques used for experimental optimiza-
tion. Our improved RSM algorithm incorporates cer-
tain gradient deflection methods, augmented with ap-
propriate restarting criteria, as opposed to using the
path of steepest descent as the only search direction.
In order to empirically investigate our new RSM al-
gorithm in comparison with the standard RSM tech-
niques, a set of standard test functions is used. We
consider two cases for each test function; with a ran-
dom perturbation added to the function and without
a random perturbation added to the function. Com-
putational results exhibit the improvements achieved
under the proposed algorithm.

1 INTRODUCTION

The focus of this paper is on improving the standard
algorithm of response surface methodology (RSM) as
it is applied to the optimization of simulation models.
First proposed by Box and Wilson (1951) in the con-
text of optimization problems concerned with chemi-
cal process engineering, RSM is a collection of math-
ematical and statistical techniques for experimental
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optmization. The search procedures currently em-
ployed by RSM use the method of steepest descent
only. This paper develops a new RSM algorithm
which incorporates certain gradient deflection meth-
ods and is further augmented with suitable restart-
ing criteria. We use a set of standard test functions
taken from the literature to empirically investigate
the merits of this new RSM algorithm relative to the
standard RSM algorithm. Computational results ex-
hibit the improvements achieved under the proposed
algorithm.

This paper is organized as follows. The remainder
of this section presents an overview of RSM and de-
fines the standard RSM algorithm. A discussion of
various competitive gradient deflection techniques is
also given. Section 2 gives a definition of our proposed
RSM algorithm. A summary of extensive empirical
results of a comparision study are given in Section 3.
Section 4 gives conclusions and recommendations for
future research.

1.1 Definition of Response Surface Method-
olgy

Throughout this paper we focus only on an uncon-
strained minimization problem and that the func-
tional form of the objective function is unknown.
Typically, to start the RSM procedure, an experi-
ment is designed in a small sub-region of the fac-
tor space, and a low-degree polynornial (usually first-
order) is used to represent the data obtained from the
responses. This polynomial helps the experimenter
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decide the next region of the factor space that should
be explored by identifying a search direction along the
path of steepest descent (in the case of minimization).
If the goal is to minimize the response, this method
tries to “climb down” the response surface toward
the overall, response minimum rather than exploring
a large region of the factor space. Its success depends
on the assumption that the overall, response mini-
mum can be reached via such a path of descent (see
Davies 1956, p. 503). (Throughout the remainder
of this paper, we assume that problem at hand is to
minimize the expected mean response over the factor
space of interest.)

If the experimenter has a prior notion of the gen-
eral vicinity of the location of the minimum, then
Myers (1976) gives the following five-step procedure
{see Myers 1976, p. 88):

STEP 1: Fit a first-order regression model to
the mean response over some restricted (usually
taken to be small) region of the factor space.

STEP 2: Based on the results of Step 1, estimate
a path of steepest descent.

STEP 3: Perform a series of experiments along the
estimated steepest descent path until no addi-
tional decrease in the mean response is evident.

STEP 4: Based on the results of Steps 1, 2, and 3,
estimate the overall, minimum mean response.

STEP 5: Repeat Steps 1, 2, 3, and 4 over a new
region centered at the current estimate of the
overall, minimum mean response. If curvature
is evident and the experimenter is satisfied that
little or no significant, additional improvement
in the estimate of the overall, minimum mean
response can be obtained from conducting fur-
ther searches, a more elaborate experiment and
analysis study is conducted using a second-order
design. From this design, a final estimate of the
minimum mean response is obtained.

In Step 1, typically, replications of a factorial or
fractional factorial experiment are performed. The
unknown parameters of the fitted model are then
computed. A judicious selection of an experirental
design having desirable properties such as minimum
variance of model parameter estimates is needed in
order to obtain better estimates of the unknown pa-
rameters. The first-order model linear model is rep-
resented as

k
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where y;; is the response of the jth replication at the
ith design point, 3 is the {th unknown model param-
eter, r; is the [th experimental factor, and ¢;; is the
error term at the ith design point and jth replica-
tion, (for i =1,2,...,m; j=1,2,...,r; and | =
1,2,...,k).

If, for example, a full 2* factorial experiment is
used in Step 1, then estimates of all the 3; can be
obtained. We denote these estimates by b (for [ =
1,2,...,k). These estimates are then used in Step 2
to locate the path of steepest descent, which is given
by the vector d = (—b1,—ba,...,—br). Responses
are oberved along this path using some prescribed
search strategy until there is no observed, significant
improvement in the mean response. In the standard
RSM approach, a simple sequence of fixed steps along
the direction d are taken. If curvature is evident,
then a second-order model is fitted. The second-order
model is represented as:

k k
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where 3 is the coefficient of interaction between fac-
tors h and [, By is the second-order coefficient for fac-
tor [, and all other terms are as defined in (1). The
model in (2) is used to evaluate a stationary point
of the response surface. A canonical analysis is per-
formed that typically involves locating the stationary
point as well as determining the nature of this point.
From this analysis, an estimate of the optimum is ob-
tained; perhaps following additional investigation in
the case of a detected ridge system.

The principal shortcomings of the standard RSM
algorithm described in this section are two-fold.
First, the inital gradient search can be prone to “zig-
zaging” and can be slow to converge (see Bazaraa,
Sherali, and Shetty, 1993). Moreover, there is no
information from previous iterations that is succes-
sively employed to provide improved search direc-
tions (the process is essentially memoryless). Second,
in the event that curvature is detected, there is no
attempt to conduct a continuous, iterative, second-
order search using the information available from the
canonical analysis. In this paper we present a revised
RSM algorithm which attempts to rectify these short-
comings using a technique called gradient deflection.

1.2 Gradient Deflection Methods

This section discusses the four gradient deflection
methods we used in revising the standard RSM al-
gorithm presented in the previous section. Origi-
nally developed by Hestenes and Stiefel (1952), conju-
gate gradient (gradient deflection) methods were first
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applied to unconstrained minimization problems by
Fletcher and Reeves (1964). In this approach, a se-
quence of design points, x;, and a sequence of direc-
tions d;, are generated iteratively as

Xjt1 = X; + A;d;, (3)

where
dj = -g; +k;dj-1, (4)

and dy = 0. &; is a scalar multiplier that scales the
direction vector of the previous iteration (the calcu-
lation of x; varys under different gradient deflection
methods), g; is the gradient of the objective function
at the operating point x; (assumed to be nonzero,
or else the method is terminated), and J; is the step
length adopted along the descent direction d;. As
seen from (4), a deflected direction d; at the jth it-
eration is comprised of a linear combination of the
negative gradient at the jth iteration and the direc-
tion vector of the previous iteration. This implies a
possible advantage in this method over the method
of steepest descent, since the deflection strategy at-
tempts to capture the second-order curvature effects
over successive iterations. For a quadratic function in
k variables, this approach can be made to converge
to an optimum within k iterations (see Bazarra et al.,
1993).

Various gradient deflection methods use different
techniques for computing the deflection parameters
k; at the jth iteration. In this paper, we consider
four such techniques that have been suggested in the
literature. A brief description of each of these tech-
niques follows.

A gradient deflection method proposed by Sherali
and Ulular (1989) that was found to be promising
even for nondifferentiable functions (where g; repre-
sents a subgradient of the function) uses the average
direction strategy and is denoted here as GD1. The
deflected direction at the jth iteration for this method
is given by

_ o sl
=8t g ®)
where d;_; is the search direction adopted at the (j—
1)st iteration, with d; = —g;.

In the context of proposing a conjugate gradient al-
gorithm that adopts quasi-Newton types of updates
and permits inexact line searches, Sherali and Ulular
(1989) develop yet another scheme for computing &;.
Their method, denoted in this paper as GD2, gener-
ates the deflected direction at the jth iteration as

9,8 — ()58
q';d;-

where
Pj =Xj —Xj_1, (7)

q; =8 — 8i-1 (8)

and s; is a scale parameter that, if suitably chosen,
permits s;d; to be the Newton direction at the jth
iteration, given that this direction is spanned by —g;
and d;_;. From a computational viewpoint, the pa-
rameter s; is prescribed as

SJ' =/\j_1. (9)

Motivated by the computational success of BFGS
quasi-Newton updates, Shanno proposed a related
conjugate gradient strategy for which the direction
at the jth (j = 2,3,...) iteration is given by

dj=— I

. ’,+ .
_wf_w_:]gj‘ (10)

q9';p;

where p; and q; are as defined in (7) and (8), respec-
tively. We denote this gradient deflection method as
GD3.

Finally, a fourth gradient deflection method we
constdered, denoted by GD4, is a modification of GD2
suggested by Sherali and Ulular (1990) that converts
this strategy into a symmetric, memoryless BFGS
type of an update. The prescribed search direction
under this modification is given hy

p;q; — 4P,
q;Pj

1 | q9;] pip;
+ [—+————,Jq’] ——Lig,, (1)

Sj 4q;Pjl 4';Pj
where p;, q;, and s; are as defined in (7), (8), and
(9), respectively.

The four gradient deflection methods described

above were used in our emprical study whose partial
results are summarized in Section 3.

1.3 Restarting Techniques

In addition to the gradient deflection techniques pre-
sented in the previous section, restarting techniques,
in conjuction with gradient deflection methods, can
significantly enhance their performance. Beale (1972)
and Powell (1977) have offered various criteria for im-
proving the performance of gradient deflection meth-
ods. In the present context of RSM, restarting at
any iteration would imply following the path of steep-
est descent at that iteration; although, as suggested
by Powell (1977), in the context of conjugate gra-
dient methods, one could restart using the current
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deflected direction in order to preserve the accumu-
lated second-order information. However, this would
require an additional term in the deflection scheme.

We considered two restarting techniques, RSA and
RSB, which were used in conjuction with the four
gradient deflection methods discussed in the previous
section.

First, we consider RSA. For a k-factor problem, the
optimization procedure is restarted at the jth itera-
tion, by setting d; = —gj; . if any one of the following
three conditions is satisfied:

CONDITION 1: j = k,
CONDITION 2: ||g';g;+1 > (0.2)]lg; |I*,
CONDITION 3:

(_I'Q)Hgillz < d/proj.jgproj,j < (-0'8)(gljgproj,j)

1s false,

where d;0;,; and g,,; ;, respectively, project d; and
—g; onto the box (boundary) constraints by zero-
ing out the components corresponding to the active
bounds that would be immediately violated by mov-
ing along the corresponding direction d; or —g;. The
rationale for these conditions is provided in Section 4
of Powell (1977) and in Bazaraa et al. (1993).

Next, we consider RSB. For a k-factor problem,
the optimization procedure is restarted at the jth it-
eration if any one of the following two conditions is
satisfied:

CONDITION 1: j =k,
CONDITION 2: d'proj; > (—0.8)(g';8proj j)-

Notice that the conditons given for RSB are a
subset of the conditions given for RSA, and that
in particular, since restarting is triggered whenever
d'pr0j,i8 > (—0.8)(8';8proj ), the adopted direction
dproj; 1s always a descent direction having a suffi-
ciently negative directional derivative. In the next
section we formally present an enhanced RSM al-
gorithm that incorporates the deflection and restart
schemes discussed in this section and also adopts
second-order search directions whenever significant
curvature is detected.

2 AN ENHANCED RSM ALGORITHM

This section presents an enhanced version of the stan-
dard RSM algorithm outlined in Section 1. It incor-
porates the gradient deflection methods which were
presented in Section 1.2, along with second-order
search directions. In the following, we assume that

the problem is a minimization one in k factors. All
factors are assumed to have upper and lower bounds
that cannot be violated at a prescribed solution; al-
though, in any experimental design we can set the
levels of a factor above or below that factor’s bounds
(i.e., when the center of a design lies on the boundary
of any factor). However, along a search direction if
some factors reach their lower or upper bound, then
their levels are set to that respective boundary value
and the search is continued. The steps of the en-
hanced RSM algorithm are given below:

STEP 1: Select a starting point as the current in-
cumbent solution.

STEP 2: Construct a 2% full factorial experiment,
using the current incumbent solution as the cen-
ter of the design. If the first-order model is a
good fit, then proceed to Step 3. Otherwise, go
to Step 4.

STEP 3: For the first pass of the algorithm (j = 1),
adopt the path of steepest descent as the search
direction d,. For subsequent iterations, adopt
the appropriate deflected gradient direction, d;,
as prescribed in Section 1.2, using any one of the
deflection techniques GD1, GD2, GD3, or GD4
unless a restart is triggered by the selected crite-
rion RSA or RSB in which case follow the path of
steepest descent (reset d; = —g;). If any vari-
able is at its upper or lower bound, and if the
search direction being followed immediately vio-
lates this bound, then fix the corresponding com-
ponent of the search direction, dj, to zero. If
the appropriate restarting criterion is triggered,
then restart with the negative gradient direc-
tion. (Note that this restarting check is per-
formed only when using deflected diretions.) If
the direction adopted is a projection of the nega-
tive gradient direction, and this direction is zero,
then proceed to Step 9. Otherwise, the present
direction is a descent direction. Call this the
revised search direction d;. Determine a maxi-
mum step-length, A.,,., that can be taken along
this direction without violating any bounds and
conduct a line search on this interval to deter-
mine a suitable step-length A € (0, Apnqz]. If the
optimal step-length A* € (0, Apnaz), return to
Step 2 with the resulting solution as the current
incumbent solution. Otherwise, if A\* = Anazs
then further project the current direction by ze-
roing out the components corresponding to the
factors that have just hit their bounds and con-
tinue searching along such projected directions
until no further improvement can be obtained.
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Return to Step 2 with the current incumbent so-
lution. In the rare instance that A* = 0, due to
inaccuracies in experimental, functional evalua-
tions, terminate the algorithm by proceeding to
Step 9.

STEP 4: Construct a second-order design and
check if the second-order model represents the
data adequately. If the second-order model is a
good fit, then go to Step 6. Otherwise, proceed
to Step 5.

STEP 5: Expand (or contract) the design size ap-
propriately and return to Step 2.

STEP 6: Suppose the center of the current design
is located at x, let g; = V f(x) as determined
by the second-order model. Perform a canonical
analysis. Let H denote the Hessian of the pre-
dicted quadratic response function with k eigen-
values Ap,Aa,..., k. Also, let vy,va, ... Vg
be the corresponding k normalized eigenvectors,
Q = [VI,VQ,.. .,Vk], A = diag[/\l,)\g,...,/\k],
I, = {i: X >0 and v';g; # 0}, and
I_={i: X\ <0}

If g; # 0, then proceed to Step 7. Otherwise, go
to Step 8.

Step 7: If Iy = ¢, then return to Step 3 with
d; = —g;. Otherwise, let

viv’,- ;
d=-Y Tgf, (12)
i€ly ¢

so that
/)2
d;g = - Y W)l ’ffi) <0.  (13)
iely ¢

If d')r0jj8; < 0, then perform Step 3 using d;
as the prescribed search direction (no restarting
criterion is checked in this case). Otherwise, per-
form Step 3 after resetting d; = —g; and return
to Step 2 with the current incumbent solution.
If the optimal step-length A* equals zero, then
terminate the algorithm by proceeding to Step
9.

Step 8: If I_ = ¢, then terminate the algorithm
by proceeding to Step 9. Otherwise, let A =
min{); : i € I_}. Pick d; = v;. In this case, we
note that

fE+Ad;) = f(x)+2g;d; +

22
+-2—dledj +

+A2)|d;|[20(x — 0), (14)

where O(A — 0) is a function that approaches
zero as A — 0. Since g; = 0, this yields

f(x+2dj) - f(x)

jim g = d;Hd;
= VltHVt
viQAQ'v,
= €jAe
= A <0, (15)

where e; is a vector having a 1 in position t
and 0’s everywhere else. Thus, d; is a descent
direction. Perform a search as in Step 3 using
d; as the prescribed search direction (no restart-
ing criterion is checked in this case). If an im-
provement results, then return to Step 2. Oth-
erwise, if A* = 0 (which would be the case if
d’;,05,;8; > 0) repeat this step by replacing I_
with I_ — {t}.

STEP 9: Terminate the algorithm and report the
incumbent solution.

The next section contains a summary of a compu-
tational assessment of the enhanced RSM algorithm
and draws some conclusions about the relative per-
formance of the four gradient deflection methods dis-
cussed in this paper. Recommendations for adoption
of a suitable restart policy under each of the gradient
deflection methods are also given.

3 EMPIRICAL RESULTS

This section provides a brief summary of experimen-
tal results obtained as a result of empirical evalua-
tions of the enhanced RSM algorithm to the stan-
dard one presented in Section 1. First, we performed
a comparative study of the four gradient deflection
methods with no restarting criterion in the context
of the RSM algorithm using ten deterministic “test
functions” given by Sherali and Ulular (1990). Com-
prehensive tables of results obtained as a result of the
experimental trials are given in Section 3 of Joshi,
Sherali, and Tew (1993).

Table I contains computational results showing the
best (smallest response value) solutions obtained us-
ing the four gradient deflection methods and the
method of steepest descent along with the number
of simulation runs needed to reach these solutions.
Overall, GD1 performed as well as or significantly
better than POSD on 9 of the 10 test functions and,
sometimes with significantly fewer simulation runs.
Moreover, GD1 performed the best of all methods
considered in 6 of the 10 cases. In particular, inter-
esting results were obtained for test functions 3. 6,
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and 8. For functions 3 and 6, GDI1, GD2, and GD3
exhibited superior performance to the POSD; again,
often with significantly fewer simulation runs. For
function §, all gradient deflection methods performed
worse than the method of steepest descent. For the
other test functions, in general, POSD did not per-
form significantly worse or better than the gradient
deflection methods. The focus for the remainder of
the empirical study was therefore restricted to test
functions 3, 6, and 8.

In order to improve the performance of the en-
hanced RSM algorithm, the starting criteria dis-
cussed in Section 2.2, RSA and RSB, were employed.
The results for these two criteria were tabulated in
Section 3 of Joshi, Sherali, and Tew (1993) and indi-
cated that GD2 performs better with RSA and GD1,
GD3, and GD4 work well with RSB. This allocation
of the restarting criteria to the gradient deflection
methods was preserved throughout the remainder of
the study.

A point of interest for function 8 is the number
of second-order models employed under the gradient
deflection method. Recall from Section 1 that the
standard RSM algorithm stops after the first second-
order model adequately fits the data and reports the
most favorable design point obtained using that de-
sign as the optimum. The added feature of the mod-
ified algorithm that allows the search to be contin-
ued using more designs, if needed, after the data has
been adequately represented by a second-order model
at any stage of the algorithm, improves the mean re-
sponse of the best design point reported. Table 5
of Joshi, Sherali, and Tew (1993) illustrates such an
improvement achieved on function 8 under different
starting conditions. In particular, note that while
POSD achieves a minimum response value of 3.42 if
only one second-order model is employed, it attains
an improved objective function value of 0.06 if a suc-
cession of second-order model runs (5 in this case)
are employed. Similarly, GD3 uses 6 second-order
models under the restarting criterion RSB to reach a
minimum value of (.02, with the true optimal value
being 0. If the same algorithm is used in conjunction
with GD3, but only one second-order model is em-
ployed, then the minimum value obtained was 4.71.
This illustrates the improvement possible under the
enhanced second-order search steps.

The three test functions were then modified to in-
clude a measure of random behavior and all five algo-
rithms (POSD, GD1, GD2, GD3, and GD4) were per-
formed on them. For these runs, at each design point,
the response function was augmented by a random er-
ror term that was normally distributed with mean 0
and variance equal to 10% of the true reponse value at

the center of the corresponding design. Two indepen-
dent replications were performed at each design point
and the mean of these two responses was recorded.
Independent replications were also performed across
design points. While performing line searches, the
variance on the error term was the same as that used
for the first-order design. For all test functions, the
uncoded values of the factors for the first-order model
were set at +0.1 and —0.1 as the high and low levels,
respectively. The axial points for the second-order
model were selected so as to make the design rotat-
able (see Section 7.3 in Myers 1976 for a discussion
on rotatable designs). Computational results for test
functions 3, 6, and 8 with random error terms added
are given in Tables 6, 7, and 8 of Joshi, Sherali, and
Tew (1993).

With the pressence of a random error term for func-
tion 3, GD1 performed considerably better than all
of the other methods. Also, GD2, GD3, and GD4
failed to perform as well as POSD in this situation.
For function 6, GD1 again performed superior to all
other methods. GD4 performed competitively with
POSD. For function 8, all methods performed well
in terms of the minimum value returned. However,
GD1 required significantly more simulation runs than
the other methods. The results for function 8 indi-
cated that (contrary to the deterministic case) POSD
nolonger performed better than the gradient deflec-
tion methods and on average did not perform as
well as GD2, GD3, and GD4 while performing only
marginally better than GD1. This indicates, as ex-
pected, that the relative effectiveness of the methods
is significantly affected by the level of random vari-
ation present in the response. Overall, GD1 contin-
ued to perform better than the other methods and is
therefore recommended for future use in RSM opti-
mization problems.

These results, although preliminary, illustrate the
relative performance of the enhanced RSM algorithm
to the standard RSM algorithm and indicate that sig-
nificant improvements can be obtained when using
gradient deflection methods. The numerical results
also indicate that GD1 offers, perhaps, the most po-
tential improvement over POSD.

4 SUMMARY AND CONCLUSIONS

The standard RSM approach uses a pure gradient
search method that can be prone to “zig zaging’
(i.e., slow to converge). There is no information from
pervious iterations that is successively employed to
provide improved search directions; the process is es-
sentially memoryless. Moreover, after curvature is
detected there is no attempt to conduct a contin-
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Table 1
Minimum Response with no Restarts

Function # POSD | GD1 GD2 GD3 GD4
1 0.01 0.01 0.01 0.01 0.01
(23) | @3 | 3 | (23) | (23

2 0.12 0.12 0.12 0.12 0.12
(25) | (25) | (25) | (25 | (25

3 16.93 2.55 128.76 2.76 9.66
(162) | (83) | (52) | (183) | (161)

4 1.31 0.88 73.05 1.24 0.95
(90) | (139) | (49) | (e1) | (161)

5 0.01 0.00 0.00 0.77 0.75
1) | (s8) | (35) | (26) | (26)

6 6.47 3.73 130.04 5.47 3.44
(o2) | am | 63 | 1) | 87)

7 0.00 0.00 0.00 0.00 0.00
(101) (123) (102) (83) (83)

8 0.06 18.38 2.25 2.64 2.63
(156) | 86) | (131) | (90) | (119)

9 2.94 2.50 2.41 2.94 2.94
(40) (68) (63) (40) (40)

10 3.00 3.00 3.00 3.00 3.00
a9 a9 | a9 | a9 | a9

uous iterative second-order search using the infor-
mation available from the canonical analysis. This
paper presents a new RSM algorithm which rectifies
these shortcomings by incorporating gradient deflec-
tion techniques in conjunction with certain restart-
ing criteria as well as adopting second-order search
directions whenever significant curvature is evident.
An empirical study comparing our revised RSM algo-
rithm to the standard RSM algorithm using a set of
test functions taken from the literature suggests us-
ing the average direction strategy proposed by Sherali
and Ulular (1989) in conjunction with the criterion of
RSB.
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