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ABSTRACT

Taguchi’s strategy for tolerance design provides in-
sight into the transmission of variability from noise
factors to the system response. Under assumptions
of independent noise factors, simple orthogonal de-
signs and analysis allow for straightforward assess-
ment of systemn sensitivity and evaluation of alterna-
tive system configurations. However, in certain cases
the assumptions of independent noise factors are in-
valid. How, then. should an experiment be designed
to allow similar sensitivity analysis? We illustrate
our results for a model of a simple circuit, where in-
ternal noise factors may be positively correlated due
to environmental conditions.

1 INTRODUCTION

Response surface metamodels allow an analyst to ex-
amine many scenarios without rerunning the simu-
lation, thus ways of efficiently developing response
surface metamodels are of interest. Response sur-
face metamodels can also be used in conjunction with
Taguchi’s robust design strategy to select the pre-
ferred system configuration, and to assess the sys-
tem’s performance and attribute the overall system
variance to noise factors for a specific parameter con-
figuration (Myers et al., 1992; Sanchez ct al.. 1993)
This also allows the analyst to examine several types
of potential changes to the system to see how they
will benefit the overall system performance. For an
overview of the application of robust design to dis-
crete event simulation, see the tutorial by Sanchez
(1994) in this volume. We begin by bricfly discussing
the concepts pertinent to this paper.

Before running an experiment, the analyst specifies
a performance measure which is of particular inter-
est, such as the average time in system for a queue-
ing network. Then. perhaps in conjunction with oth-
ers familiar with the process, he/she identifies factors

290

which are thought to affect this performance measure.
The factors are classified as parameters (or decision
factors) if they are controllable in the real world set-
ting, and noise factors if they are uncontrollable or
controllable only at great expense. Noisc factors can
either be internal (based on endogenous character-
istics of the system) or external (resulting from ex-
ogenous effects). For example, if you arc modecling a
manufacturing system, then decision factors such as
the numbers and types of machines, shop floor layout,
batch size, and material handling system might rep-
resent decision factors; machine breakdowns and pro-
cessing times are internal noise factors, and customer
demand patterns or supplier lead times are external
noise factors.

In the parameter design (or robust design) stage.
one conducts a designed experiment to gather in-
formation about the expected system performance
(across the noise space) and then evaluates perfor-
mance by using a loss function, which takes into ac-
count both the mean and the variability of the per-
formance measure. A way of accomplishing this is
to build response surface models of both the perfor-
mance mean and (log of ) variability, and combine the
results assuming a quadratic loss function. The idcal
system configuration is one which results in a mcan
performance equal to the target 7. and a performance
variability of zero. In practice. the ideal may not be
attainable. The loss function serves to trade off av-
erage deviation from the target with consistency of
the output, and the ‘best’ system is often not that
associated with the best mean performance.

The final stage in Taguchi’s framework is called tol-
crance design (Taguchi 1986, 1987; sec also D’Errico
and Zaino, 1988.) In this stage, the analyst evaluates
the overall system performance, attributes variation
in the response to variation in the noise factors. and
determines whether or not upgrades or downgrades in
the consistency of component parts or other sources of
noise arc worthwhile. Typically only main effects are
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considered, and the noisc factors arc assumed to be
mutually independent. This assumption is met (by
design) during the experiment. but it may be that
some of these factors are corrclated in the real world
sctting under nonexperimental (e.g.. normal operat-
ing) conditions. If so, this raises several questions: (1)
What affect does correlation have on the tolerance
analysis results? (2) How can the regression mod-
els developed under an independence assumption be
used to evaluation the system when noise factors are
correlated? (3) Are therc better alternatives for the
experimental design if correlation is known to exist a
priori? We address the first two questions in Section
2, and the last question in Scction 3.

2 USE OF METAMODELS WHEN SOME
NOISE FACTORS ARE CORRELATED

Let Y denote the performance measure of interest,
{Wi..... Wi} denote the noise factors controlled dur-
ing the course of the experiment, and let y; and o?
denote the mean and variance of W; (i = 1,.... k).
Then, assuming that the noise factor ranges are small

enough that a linear model is appropriate, we have
Y =06y + 51W1 + BoWa + ... + i Wi (1)

A orthogonal experimental design (often a factorial
or fractional factorial) is used for collecting data re-
garding the process, and a linear metamodel is fit:

V =00+ Wi+ BWot...+BWi.  (2)

Assuming that the W; are independent and normally
distributed, then the metamodel of equation (2) can
be used to determine the overall system mean and
variance by treating the cstimated coefficients as con-
stants:

5% Bo + Baper + Papz + - + Brps (3)
o} ~ Plol+pfo3+... +Giok (4)

Q2

The term o, = [ifaf is called the transmitted vari-
ance of noise factor . The ratio (J'?;i /a2 is the pro-
portion of the variability in the response that is at-
tributable to W;. Potential changes to the noise fac-
tors (which affect the variance alone, not the mean)
can then be evaluated by considering the reduction on
the overall performance variability o2 and the corre-
sponding reduction in cost.

Now suppose that two of the & noise factors (Wy
and W3) are not independent in the real world, but
have a corrclation of p. (All other pairs of vari-
ables arc independent.) In this casc, the value of

ity remains unchanged from that computed in equa-
tion (3). However, the overall variance is no longer
correct. The true value is

[a4]

0o} =~ plot+piel+ 2061520102 (
+030% + ... + fia}

which is greater than the value in equation (4) if p > 0
and less than this value if p < 0. This means that the
overall estimate of system variability and the trans-
mitted variance proportions are different than thosc
calculated assuming independence.

If the W, are truly independent. the transmitted
variances completely separate the effects for the var-
ious noise factors. This does not occur when Wi
and Ws are correlated, although orthogonal experi-
mental designs might be desirable because of the in-
creased precision of the estimated coefficients. How-
ever, the results are no longer separable in the real
world. Rather than computing separate transmitted
variances for both factors, we use a joint transmitted
variance:

0210 = B0} + 303 + 201 a0100  (6)

Potential changes to the system componeunts can then
be assessed by determining the resulting changes in
the joint transmitted variance and the overall system
variance.

Table 1: Component Distribution Models

Percent

Component | Mean | Std. Dev. | of Mean
L 0.004 0.0008 20%

R 10 1.0 10%

A" 100 5.0 5%

f 50 5.0 10%

We now illustrate the effects of incorrectly assum-
ing independence for a circuit example discussed in
Ramberg et al. (1991). Consider an electrical circuit,
with a performance measure of current I (in amps)
and a target 7 = 10 amps. The analytical expression

is:
\%

'= T )

where V is the voltage (in volts), R is the resistance
(in ohms), f is the frequency (in Hertz). and L is the
inductance (in Henries). The variation in L and R
from their nominal means. as well as the values of V
and f from the environments in which the circuit will
opcrate, are all sources of noisc.
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Although an analytical expression for the cir-
cuit performance is known, assessing its performance
when the component characteristics arc random vari-
ables is not mathematically tractable. One way of
addressing the problem is Monte Carlo simulation:
an efficient alternative is the use of a designed exper-
iment. Tables 1 and 2 (from Ramberg ct al.. 1991)
show the distribution models of the four noise fac-
tors, and the experimental design and results for a
241 half-fraction experiment. The fitted metamodel
for the current is provided in equation (8).

I =~ 10.145 —40.86L — 0.985317 (8)
+0.1005V — 0.00329 f

From this metamodel, the overall mean and variance
are estimated to be 10.014 and 1.225. respectively.

Table 2: Results of Designed Experiment

Response Natural Levels
I L R V F
10.5026 | 0.0032 9 95 45
10.3807 | 0.0048 9 95 55
8.5931 | 0.0032 11 95 55
8.5714 | 0.0048 11 95 45
11.5796 | 0.0032 9 105 55
11.5362 | 0.0048 9 105 45
9.5133 | 0.0032 11 105 4
9.4387 | 0.0048 11 105 5

Now we compare the systemn variance estimates
and noise factor assessments under various assump-
tions regarding the independence of the noise factors.
Three situations are shown in Table 3: results com-
puted under (1) independence, (2) when the correla-
tion between L and R is .9, and (3) when the cor-
relation between L and R is -.9. Even though the
inductor L has a very small impact on overall system
variability in the independent case, the overall result
undercstimates the true systcin variance by 5% if the
true corrclation is .9, and overcstimates the truc sys-
tem variance by 5% if the true corrclation is —.9.

The usc of the metamodel information for system
improvement analysis deserves a bit more discussion.
Analysis for any changes regarding the variance of W;
(% # 1,2) proceeds just as before. The cost for chang-
ing 02 can be compared to the reduction in expected
loss (or risk), where

R = Blloss) = ¢ [y =) + o}

The reduction in risk one can achieve by altering o2
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Table 3: Results for Independent and Correlated
Components Using Mctamodels From Orthogonal
Decsigns

Transmitted Variances (% of MSE)
p=0 p=.9 p=-.9
L | 001 (00.1)
1.030 (80.3) | 0.914 (78.3)
R | 971 (79.3)
vV | 253 (206) | 253 (19.7) | 263 (2L.7)
f T 000 (00)] .000 (0.0)| .000 (0.0)

tot | 1.225 (100.0

~

"1 1.283 (100.0) | 1.167 (100.0)

by a factor of « is then
AR=c [atz,i - 720?,7:] = 0‘7:2,7:(1 -%)

If AR is greater than the cost of improvement (i.c..
if 7 < 1), then the improvement is cost-cffective. If
~ > 1, we are considering relaxing the standard for a
particular component. This results in lower e¢xpected
loss as long as AR is less than the savings in compo-
nent cost.

For the correlated factors Wi and Wy, what types
of changes arc possible? First, suppose that the vari-
ance in both these factors results from some common
cause not explicitly included as a factor. For the cir-
cuit cxample, perhaps V' and f are positively corre-
lated because of some environmental factors. Atten-
tion to these factors might improve both o; and a9 by
multiplying them by a factor of v < 1, but leave the
correlation between Wy and W, unchanged. Then

= c[g2 2
AR =c [at;1,2 - ’72”?;1,2] = C"?;l,z(l -7

and, as before, this is cost-effective as long as AR is
greater than the cost of improvement.

Second, suppose that changes in the real world sys-
tem leave the variances unalterced but change the cor-
relation. This might occur if, for instance. component
parts were initially purchased from the same vendor
but are now purchased from two separate vendors. In
general, suppose the correlation p would change to a
new value p'. If the cost of such a switch is less than

AR = 21520102 (p — p')

then the switch is cost-effective.

The results in this section can be generalized in
a straightforward manner to situations where more
than two variables are correlated. The overall system
evaluation remains casy to compute. However. as the
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amount of dependence in the noisc factors increases
(in terms of the correlation structurc), the separable
effects are fewer. This can severely limit the utility of
the tolerance design analysis: one of the benefits cited
for Taguchi’s approach is its simplicity. Therefore, we
recommend analysis using correlation structures only
if correlations are strongly apparent in the real world.

3 ALTERNATIVE DESIGNS

In some situations, the correlation in the rcal world
may restrict the choice of the design. The work de-
scribed in this paper was motivated by a practical
application: we wished to investigate the sensitiv-
ity of a forecasting model to various cnvironmental
factors (Smith et al., 1994). A metamodel of home
mortgage losses was developed for a major California
financial institution, and a simulation option allowed
the clients to examine alternative scenarios. The fi-
nal model consisted of threc subcomponents. First,
a Markovian structure was fit to forccast the prob-
ability of transition betwecn five states on a yearly
basis over the remaining lifetime of the portfolio (30
years). Three states were non-absorbing: a mort-
gage could be ‘Cwrent,’ ‘30-89 days delinquent,’ or
‘90+ days delinquent.” The two absorbing states were
‘Paid-in-Full’ and ‘Defaulted.” The second compo-
nent further split the defaulted loans, into those re-
sulting in a monetary loss and those for which suf-
ficient equity was available to cover the mortgage
balance (e.g., if the institution held the first mort-
gage of a home, and foreclosure occurred because the
homecowner defaulted on a second mortgage.) Finally,
for those loans rcsulting in a nonzero loss, a simple
model predicted the percentage of the remaining bal-
ance lost. Simulation of the portfolio’s performance
allowed the client to specify changes in three cnvi-
ronmental components (interest rates, unemployment
rates, and market appreciation rates) for years 1-5
and 6+ which varied by four different geographic lo-
cations.

In this situation, the metamodel was built from
observational, rather than experimental, data. The
noise factors in the observational data (interest rates,
uncmployment rates, and market appreciation rates)
were highly correlated.  Although the metamodel
could have been analyzed by constructing a facto-
rial design, we felt this was inappropriate because (a)
certain combinations of the factors were not likely to
occur, thus the purpose of sampling at levels such as
it £ o in order to get the same variability in the sam-
pling distribution as in the underlying normal dis-
tribution was lost, and () the metamodel was not
constructed using similar combinations. The results

would be highly suspect for such dramatic extrapola-
tions.

For other systems, it might be that a factorial or
fractional factorial design could not be conducted
over the entire range of interest. For cxample, a
queueing system might be unstable if all noise fac-
tors were held at their high levels. If this situation
was unlikely to occur in practice because of corre-
lation among the variables, then a sampling scheme
which made use of the underlying dependence stiuc-
ture would seem more appropriate.

Once again, for simplicity, we assume that the noise
factors are normally distributed but only the first
two (W and W3) are correlated. We also assumc,
without loss of generality, that p; = 0 and o; = 1
(i=1,...,k). (This is less restrictive than it sounds:
it corresponds to standardizing all our noisc factors
by subtracting the mean and dividing by the standard
deviation before conducting the experiment.) The
joint distribution of Wi and W; is then a bivariate
normal. Letting W; be on the z-axis and Wy on the
y-axis, the contours of the bivariate distribution arc
elliptical, satisfying

w2 = 2pmy +y® = (9)

as long as |p| < 1 (Dudewicz and Mishra. 1987).

Figure 1: Density Contours for Bivariate Standerd
Normal with Correlation Coefficient p = .9

If p = 0 then cquation (9) reduces to a circle with
radius ¢ centered about the orvigin. If p # 0 then
the major axis of the ellipse falls on the line y = =
and the minor axis is along the line y = —1/. as
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shown in Figure 1. If we ran our experiment as if
W1 and Wy were independent, then a 2-level factorial
would results in sampling at the 4 points (1, +1).
These correspond to sampling cach of the two factors
at pto, so that the discrete sampling distribution for
Wi and W; have the same mean and variance as the
marginal distributions. An alternative, which looks
much more reasonable in the presence of correlation,
is to sample at points on one of the elliptical contours.

From equation (9) and basic geomectry (Beyer.
1987) onc can compute coordinates of the major and
minor axial points for given ¢. Thesc are given in
equations (10) and (11) for p > 0, again for the case
when standardized units are used for both noise fac-
tor designs. (If p < 0 then equation (10) gives the
minor axial points and equation (11) gives the major
axial points.)

Major Axial Points

+ c__ ¢ ) 10
(\/2(1—p) V2(1=p) (10)

Minor Axial Points

+ < ___° ) 11
<\/2(1+p) V2(1+p) (11)

If we sample at the four axial points, then the vari-
ance of the sampling distribution for either Wy or Wy
will be

1 c? c?
oW = Z((1—/>)+(1+p)> 12
_ f(l+ﬂ+1—p>_ c?
4 \(+p-p)) 2(1-p2)

In order for the marginal variances to work out
correctly, set equation 12 equal to the marginal vari-
ance (07 = 02 = 1) and solve for c¢. This yields
=2 (1 — p?). so the experimental design will con-
sist of sampling at the major and minor axial points

of the cllipse specified by
2 —2pzy 4+ 142 =2 (1 - pz). (13)

A plot of such ellipses is shown in Figure 2, with
correlations ranging from zero (a circle) to .9. (For
negative corrclations, the mirror image of this figure
is appropriate.) The standard two-level factorial de-
sign (with sampling of both factors at one standard
deviation below and one standard deviation above
the mean) is the limiting case as p approachces zero.
However, the design is quite different if correlation is
present: the individual factor ranges are larger than
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Figure 2: Elliptical Design Points for Two-Level Sam-
pling Under Correlation, for p = 0 (circle), .1. .3, .5.
.7, and .9

pixo, but the two-dimensional region over which sam-
pling takes place is narrower.

Recall that tolerance design is motivated by a de-
sire to assess system performance across the noise fac-
tor space. If sampling at some corners of the range is
not practical (or even possible) because of the nature
of the response surface, then the methods in Section
2 cannot be used. Reducing the entire range of sam-
pling to allow an orthogonal design puts the design
points in a smaller circle within the ellipse, which
means more extrapolation is required for predicting
system behavior over the relevant noise space. Hence
system assessment, even if carried out using equa-
tions (3) and (5). could be very inaccurate.

We again turn to the simple circuit example to il-
lustrate the results. When p > 0, we can use a stan-
dard factorial design with the convention that for the
correlated factors, the coded levels (1. £1) refer to
the design point’s quadrant relative to the origin. Ac-
tual levels are taken from the ellipse specified in cqua-
tion (13). Table 4 provides the experimental design,
in both coded and natural units.

By applying linear regression to the results in Ta-
ble 4, we obtain the following metamodel of current:

I =~ 12.393 +40.93L — .9019R (14)
+.0785V — .0239f

Using cquations (3) and (5), we then estimate the
response mean and variance. The mean current is
approximately 10.133 and the current variance is ap-
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Table 4: Experimental Design for Circuit Example
When Correlation(L,R)=.9

Coded Natural Units

LRV L R \% f I

- ———1.0029 8.6216 95 45 | 10.9693
+ — — + | .0043 9.6838 95 55 9.6967
—+ -4 1.0037 10.3162 95 55| 9.1389
+ 4+ — — | .0051 11.3784 95 45 9.1548
- — 4+ 4+ | .0029 8.6216 105 55 | 12.0973
+ —+ —|.0043 9.6838 105 45 | 10.7582
-+ 4+ —].0037 10.3162 105 45 | 10.1262
+ 4+ + 4+ | .0051 11.3784 105 55 9.1193

proximately .930. Together, the inductor and resistor
components account for 81.9% of the variation in the
current, the voltage accounts for 16.6%, and the fre-
quency accounts for 1.5%.

The coefficients of the metamodel terms in in equa-
tion (14) differ from those computed using an orthog-
onal design. The transmitted variances also differ
from those computed assuming p = .9 in in Table 3.
This is to be expected whenever the truc response
surface is nonlinear. A linear approximation (and the
factors which describe it) will depend a great deal on
the area over which the model is fit, which is differ-
ent for the two experiments. In gencral the difference
between using an orthogonal design and an elliptical
design to collect data (and considering correlations
between variables in the analysis) will be small if the
response surface is nearly planar around the region
of interest. The circuit current metamodel computed
from sampling at elliptical axial points is simpler than
that computed from an orthogonal design, but this
is not truc in general. Also, note that the overall
variance estimate obtained from sampling at ellipti-
cal axial points is lower than any obtained using the
standard factorial design. (This holds even when the
full regression metamodel is used.) The estimates in
Table 3 are larger by over 18%. cven when the correct
correlation between L and R of .9 is used for system
assessicnt.

Finally, we remark that it may be possible to sim-
plify the metamodels by removing statistically in-
significant terms. For our circuit exanple, the p-value
for L is over .9 for the elliptical experiment, indicat-
ing that in practice. the resistance R can be used as
a surrogate for the inductance L, at least in the con-
text of metamodel building. (Removing insignificant,
terms from the metamodel means the overall variance
estimate drops from .930 to .916.) However, we ad-

vise caution in oversimplification when two or more
noise factors are correlated. The sampling scheme is
not orthogonal, so if |p| is near one, then the standard
crrors of the correlated regression coefficients may be
inflated due to multicollinearity. The effect of cor-
relation on the overall variance is computed through
the metamodel coefficients. so excluding a marginally
insignificant main effect from the model may have
noticeable impacts on system cvaluation and noise
factor assessment due to the exclusion of interaction
terms. We also wish to emphasize that statistical
significance in the metamodels does not necessarily
imply practical importance. Since the transmitted
variances depend on the component variances (and
covariances), a term may be statistically significant in
the metamodel yet correspond to a factor with trans-
mitted variance near zero.

4 CONCLUSIONS

We presented a method for selecting factor scttings
for two-level experimental designs when pairs of the
underlying variables are correlated. We illustrated
this using a simple circuit system with fowr noise fac-
tors, including two which were pairwise dependent.
Further work is needed to develop designs appropri-
ate for more complicated correlation structures. and
to investigate the benefits of incorporating variance
reallocation techniques into the designs (Schruben ot
al., 1992; Donahue et. al. 1992; Tew and Wilson,
1994). Properties such as the bias and mean squared
crror of the estimators resulting from elliptical axial
sampling should also be evaluated more closely. It is
possible that other elliptical sampling schemes may
be preferred in certain situations.

A final comment is in order regarding the extension
of this work to discrete-event simulation. For Monte
Carlo experiments, such as the example used in this
paper, the transmitted variances for the noisc fac-
tors sum to the overall system variance. In discrete-
event simulation experiments, this is generally not. the
case: although many noise factors can be explicitly
controlled, the system is characterized by some in-
herent variability which remains unexplained by any
noise factors. Sanchez et al. (1994) showed that the
tolerance design analysis must be modified to take
this into account. In order to reflect the true system
variability, they augment the overall system variance
estimate of equation (4) by incorporating estimates
of the system variability obtained within simulation
runs, and so reflect the true system variability. Such
an augmented analysis should also be used when the
experimental design includes elliptical axial sapling
points.
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